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Introduction

The quantum cohomology of homogeneous varieties has been extensively studied (see [Tam]
for references). Other well-known examples are toric varieties, yet apart from these settings, there
are only few examples where the quantum cohomology has been explicitly determined. Quasi-
homogeneous varieties provide interesting non-toric and non-homogeneous examples. Among these
two Hilbert schemes have been studied, Hilb(2,P2) [Gra01] and Hilb(2,P1 × P

1) [Pon07].
In [Mih07] Mihai studied a family of varieties, the odd symplectic flag manifolds, which have many

features in common with the symplectic flag manifolds. These varieties are interesting at least for two
reasons; first, they are quasi-homogeneous, and secondly, since they have an action of the algebraic
group Sp2n+1 (the odd symplectic group), whose properties are closely related to those of Sp2n , they
are expected to behave almost like homogeneous spaces and thus be relatively easy to deal with. The
classical and quantum cohomology of symplectic Grassmannians has been described in [BKT09] and
[BKT08], so one can ask whether it is possible to obtain similar results in the case of odd symplectic
Grassmannians.
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Here we deal with the case of the odd symplectic Grassmannian of lines IG(2,2n + 1), although
some of the results about the classical cohomology hold in a more general setting. In 1.2 and 1.6 we
use the natural embeddings of IG(2,2n + 1) in the usual Grassmannian and in the symplectic Grass-
mannian to compute classical Pieri (see 1.4) and Giambelli (see 1.7) formulas, as well as a presentation
of the cohomology ring (see 1.8).

For the quantum cohomology the situation is more complicated. Since these varieties are not con-
vex it is necessary to study the moduli spaces corresponding to invariants of degree one to show that
they are smooth of the expected dimension. This is done in 2.1. Another difficulty is that since the
group action is not transitive, an important transversality result, Kleiman’s lemma [Kle74, Thm. 2]
no longer holds. So it will not be possible to force two Schubert varieties to meet transversely by
an adequate choice of the defining flags as was done for instance in [Cos09]. Hence the Gromov–
Witten invariants associated to Schubert varieties are not always enumerative. To solve this problem
we replace Schubert varieties by another family of subvarieties and we use a transversality result of
Graber [Gra01] suited for quasi-homogeneous spaces. In 2.5 we obtain a quantum Pieri formula and a
presentation of the quantum cohomology ring. Finally, in 2.7, we check for odd symplectic Grassman-
nians of lines a conjecture of Dubrovin [Dub98, Conj. 4.2.2] relating semisimplicity of the quantum
cohomology and the existence of a full exceptional collection in the derived category.

Our results show that there are many similarities with the symplectic case, since the classical and
quantum Pieri formulas are almost the same in both cases. The Hasse diagrams are closely related
as well (see 1.5). However, Poincaré duality is very different, since the Poincaré dual of a Schubert
class is no longer always a single Schubert class (see 1.3). Moreover, contrary to what we prove
here, the small quantum cohomology ring of the symplectic Grassmannian of lines is not semisimple
(see [CP09]), and it is not known whether the Dubrovin conjecture holds in this case.

I wish to thank Laurent Manivel for his help on this subject.

1. Classical cohomology

Let 2 � m � n be integers, V be a C-vector space of dimension 2n + 1 and ω be an antisymmetric
form of maximal rank on V . We denote its kernel by K . The odd symplectic Grassmannian is

IGω(m, V ) := {
Σ ∈ Gr(m, V )

∣∣ Σ is isotropic for ω
}
.

It has an action of the odd symplectic group:

Sp(V ) := {
g ∈ GL(V )

∣∣ ∀u, v ∈ V , ω(gu, gv) = ω(u, v)
}
.

Up to isomorphism, IGω(m, V ) does not depend on the (2n + 1)-dimensional vector space V nor on
the form ω, so we may denote it by IG(m,2n+1). Similarly, from now on we denote Sp(V ) by Sp2n+1.
We recall some basic facts from [Mih07, Prop. 4.1 and 4.3]:

Proposition 1.

1. The odd symplectic Grassmannian IG(m,2n + 1) is a smooth subvariety of codimension m(m−1)
2 of the

usual Grassmannian Gr(m,2n + 1).
2. Moreover, it has two orbits under the action of the odd symplectic group Sp2n+1:

• the closed orbit O := {Σ ∈ IG(m,2n + 1) | Σ ⊃ K }, which is isomorphic to the symplectic Grassman-
nian IG(m − 1,2n);

• the open orbit {Σ ∈ IG(m,2n + 1) | Σ �⊃ K }, which is isomorphic to the dual of the tautological bundle
over the symplectic Grassmannian IG(m,2n).

For us, a quasi-homogeneous space will be an algebraic variety endowed with an action of an al-
gebraic group with only finitely many orbits. Odd symplectic Grassmannians are examples of such
spaces.
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1.1. Schubert varieties

A C-vector space V of dimension 2n + 1 endowed with an antisymmetric form of maximal rank
ω can be embedded in a symplectic space (V ,ω) of dimension 2n + 2 such that ω|V = ω. This
construction gives rise to a natural embedding i : IG(m,2n + 1) ↪→ IG(m,2n + 2). It can be easily seen
that i identifies IG(m,2n + 1) with a Schubert subvariety of IG(m,2n + 2). Moreover this embedding
enables us to obtain a description of the Schubert subvarieties of IG(m,2n + 1). In 1.1.1 we recall
some facts about Schubert varieties in IG(m,2n), then in 1.1.2 we describe the Schubert varieties of
IG(m,2n + 1) and introduce an indexation using partitions.

1.1.1. Schubert varieties in the symplectic Grassmannian
Here we recall the indexing conventions introduced in [BKT09, Def. 1.1]. Two kinds of combinato-

rial objects can be used to index Schubert varieties of the symplectic Grassmannian IG(m,2n), k-strict
partitions (with k := n − m) and index sets:

Definition 1.

1. A k-strict partition is a weakly decreasing sequence of integers λ = (λ1 � · · · � λm � 0) such that
λ j > k ⇒ λ j > λ j+1.

2. An index set of length m for the symplectic Grassmannian is a subset P = (p1 < · · · < pm) ⊂ [1,2n]
with m elements such that for all 1 � i, j � m we have pi + p j �= 2n + 1.

Now if F• is an isotropic flag (i.e. a complete flag such that F ⊥
n−i = Fn+i for all 0 � i � n), to each

admissible index set P = (p1, . . . , pm) of length m we can associate the Schubert cell

X◦
P (F•) := {

Σ ∈ IG(m,2n)
∣∣ dim(Σ ∩ F p j ) = j, ∀1 � j � m

}
.

Moreover there is a bijection between k-strict partitions λ such that λ1 � 2n − m and index sets
P ⊂ [1,2n] of length m, given by

λ → P = (p1, . . . , pm) where p j = n + k + 1 − λ j + #{i < j | λi + λ j � 2k + j − i},
P → λ = (λ1, . . . , λm) where λ j = n + k + 1 − p j + #{i < j | pi + p j > 2n + 1}.

The advantage of the representation by k-strict partitions is twofold: it mimics the indexation of
Schubert classes of type A Grassmannians by partitions, and the codimension of the Schubert variety
associated to a k-strict partition λ is easily computed as |λ| = ∑m

j=1 λ j . In the next paragraph we will
describe a similar indexation for the odd symplectic Grassmannian.

1.1.2. Schubert varieties in the odd symplectic Grassmannian
We now use Mihai’s description of the odd symplectic Grassmannian as a Schubert subvariety of

IG(m,2n + 2) to define the Schubert varieties of the odd symplectic Grassmannian. We also introduce
two indexations for them.

Schubert varieties of the odd symplectic Grassmannian will be defined with respect to an isotropic
flag of C2n+1, i.e. a complete flag F• which is the restriction of an isotropic flag F +• of C2n+2. Denote
by 1m the partition λ0 such that λ0

1 = · · · = λ0
m = 1. It corresponds to the index set P 0 = (2n + 2 −

m, . . . ,2n + 1).

Proposition 2. The embedding i : IG(m,2n + 1) → IG(m,2n + 2) identifies IG(m,2n + 1) with the Schubert
subvariety of IG(m,2n + 2) associated to the (n + 1 − m)-strict partition λ0 (or, equivalently, to the index
set P 0).
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We define the Schubert varieties of IG(m,2n + 1) as the subvarieties of IG(m,2n + 1) of the form

X P (F•) := {
Σ ∈ IG(m,2n + 1)

∣∣ dim(Σ ∩ F p j )� j for all j
}
,

where

• P is an index set of length m of [1,2n + 1], that is, an m-uple P = (p1 � · · ·� pm) with 1 � p j �
2n + 1 for all j and pi + p j �= 2n + 3 for all i, j;

• F• is an isotropic flag of C2n+1.

These varieties coincide with the Schubert varieties of IG(m,2n + 2) indexed by index sets P of
[1,2n + 2] such that P � P 0 (for the lexicographical order), hence Proposition 2 implies that they
define a cellular decomposition on IG(m,2n + 1).

Let us now describe another indexation of the Schubert varieties of IG(m,2n + 1) using partitions.
If P is an index set of [1,2n + 1], we associate to it an (n − m)-strict m-uple of weakly decreasing
integers λ = (λ1 � · · · � λm � −1) defined by

λ j = 2n + 2 − m − p j + #{i < j | pi + p j > 2n + 3} for all 1 � j �m.

Conversely if λ = (λ1 � · · · � λm � −1) is any (n−m)-strict m-uple of weakly decreasing integers such
that λ1 � 2n + 1 − m and (λm = −1 ⇒ λ1 = 2n + 1 − m), then the assignment

p j = 2n + 2 − m − λ j + #
{

i < j
∣∣ λi + λ j � 2(n − m) + j − i

}
for all 1 � j �m

defines an index set of [1,2n + 1]. It is easy to check that with respect to this indexation convention,
the Schubert variety Xλ(F•) has codimension |λ| in IG(m,2n + 1).

Remark 1. For the case of the odd symplectic Grassmannian of lines IG(2,2n + 1), it follows that the
indexing partitions can be either

• “usual” (n − 2)-strict partitions λ = (2n − 1 � λ1 � λ2 � 0);
• the “partition” λ = (2n − 1,−1) corresponding to the class of the closed orbit O.

1.2. Embedding in the symplectic Grassmannian

Now we draw some consequences of the embedding of IG(2,2n + 1) as a Schubert subvariety of a
symplectic Grassmannian. Since we know the cohomology of IG(2,2n + 2), describing the restriction
map i∗ will give us information on the cohomology of IG(2,2n + 1).

Let F• be an isotropic flag, Ya,b(F•) a Schubert subvariety of IG(2,2n + 2) and υa,b the associ-
ated Schubert class, where (a,b) is an (n − 2)-strict partition. From Proposition 2, we know that
IG(2,2n + 1) is isomorphic to the Schubert subvariety Y1,1(E•) of IG(2,2n + 2), where E• is an
isotropic flag which we may assume to be in general position with respect to F• . Then it follows that
Ya,b(F•) and Y1,1(E•) meet transversally, hence we can compute the restriction i∗υa,b by computing
the class of the intersection Ya,b ∩ Y1,1 in IG(2,2n + 2) using the classical Pieri rules for IG(2,2n + 2)

[BKT09, Thm. 1.1]:

υa,b ∪ υ1,1 =
{

υa+1,b+1 if a + b �= 2n − 2, 2n − 1,

υa+1,b+1 + υa+2,b if a + b = 2n − 2 or 2n − 1.

Remark 2. In the above formula, we should remove classes that are not indexed either by (n − 2)-
strict partitions λ = (2n − 1 � λ1 � λ2 � 0) or by the special partition λ = (2n − 1,−1). We will adopt
this convention throughout the rest of the text to simplify formulas.
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Denote by τλ the cohomology class associated to the Schubert variety Xλ(F•) ⊂ IG(2,2n + 1),
where λ is an (n − 2)-strict partition and F• is an isotropic flag of C2n+1. This class does not depend
on the choice of the isotropic flag.

Looking at the incidence conditions for the corresponding Schubert varieties, we prove that for
each τc,d ∈ H∗(IG(2,2n + 1),Z), we have

i∗τc,d = υc+1,d+1.

Using the projection formula i∗(α ∪ i∗β) = i∗α ∪ β , we deduce

Lemma 1 (Restriction formula). Let υa,b ∈ H∗(IG(2,2n + 2),Z) be a Schubert class. Then its restriction to the
odd symplectic Grassmannian IG(2,2n + 1) is given by

i∗υa,b =
{

τa,b if a + b �= 2n − 2, 2n − 1,

τa,b + τa+1,b−1 if a + b = 2n − 2 or 2n − 1.

In particular we notice that i∗ is surjective and has kernel generated by the class υ2n . So the clas-
sical cohomology of IG(2,2n + 1) is entirely determined by the classical cohomology of IG(2,2n + 2).

1.3. Poincaré duality

If X is a smooth algebraic variety and (γi) a homogeneous basis of its cohomology ring, we de-
note by (γ ∨

i ) the corresponding Poincaré dual basis. For homogeneous spaces and for odd symplectic
Grassmannians, the basis (γi) we consider is the basis of Schubert classes. Here we compute Poincaré
duality for IG(2,2n + 1).

If α = υa,b is a Schubert class such that b � 1 or (a,b) = (2n,0), then there exists a unique class
γ in IG(2,2n + 1) such that i∗γ = α. We denote it by α− . We first prove

Lemma 2. Let α = υa,b be a cohomology class in IG(2,2n + 2) such that b � 1 or (a,b) = (2n,0). Then
i∗α∨ = α∨− .

Proof. By definition of Poincaré duality, if α and β are two cohomology classes in IG(2,2n + 2), then∫
IG(2,2n+2)

α ∪ β∨ = δα,β,

where δ is the Kronecker symbol. So∫
IG(2,2n+2)

(i∗α−) ∪ β∨ = δα,β =
∫

IG(2,2n+2)

i∗
(
α− ∪ i∗β∨)

. (1)

Expressing i∗β∨ on the dual basis in IG(2,2n + 1), we get i∗β∨ = ∑
γ xβ,γ γ ∨ . Hence

δα,β =
∑
γ

xβ,γ

∫
IG(2,2n+2)

i∗
(
α− ∪ γ ∨) =

∑
γ

xβ,γ δα−,γ .

So xβ,α− = δα,β , and the result follows. �
Finally, Poincaré duality in IG(2,2n + 1) takes the following form:
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Fig. 1. Hasse diagram of IG(2,7).

Fig. 2. Hasse diagram of IG(2,6).

Proposition 3 (Poincaré duality).

τ∨
a,b =

⎧⎨⎩
τ2n−1−b,2n−2−a if a + b < 2n − 2,

τ2n−2−b,2n−1−a + τ2n−1−b,2n−2−a if a + b = 2n − 2 or 2n − 1,

τ2n−2−b,2n−1−a if a + b > 2n − 1.

Proof. We will derive this result from Poincaré duality on IG(2,2n+2) using Lemmas 1 and 2. Indeed,
we prove with the projection formula that if α is a class in IG(2,2n + 2), then α∨− = (α∨ ∪ υ1,1)− .
Then using the Poincaré duality formula in IG(2,2n + 2) proved in [BKT09, §4.1], an easy calculation
gives the result. �
Remark 3. This result is very different from what we get for the usual Grassmannians or even the
symplectic or orthogonal ones. Indeed, the basis of Schubert classes is not self-dual. This fact will
have many consequences; in particular, the Hasse diagram of IG(2,2n + 1) (see Fig. 1) will be much
less symmetric than the Hasse diagram of, say, IG(2,2n + 2) (see Fig. 2).

1.4. Pieri formula

To compute the cup product of two cohomology classes in IG(2,2n + 1), we need two ingredients:
a Pieri formula describing the cup product of any Schubert class with a special class (that is, one of
the classes τ1 or τ1,1), and a Giambelli formula decomposing any Schubert class as a polynomial in τ1
and τ1,1. In this paragraph we describe the Pieri formula as well as an alternative rule for multiplying
Schubert classes and classes of the form τp with 0 � p � 2n − 1 or τ2n−1,−1.

We start by expressing cohomology classes in IG(2,2n + 1) in terms of cohomology classes in
IG(2,2n + 2) using Lemma 1:

τc,d =

⎧⎪⎨⎪⎩
i∗υc,d if c + d �= 2n − 2, 2n − 1,∑c−n

j=0(−1)c−n− ji∗υn−1+ j,n−1− j if c + d = 2n − 2,∑n−1
j=c−n(−1) j−c+ni∗υn+ j,n−1− j if c + d = 2n − 1.

Now combining this with the Pieri rule in H∗(IG(2,2n + 2),Z), we can prove a Pieri rule for
IG(2,2n + 1):
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Proposition 4 (Pieri formula).

τa,b ∪ τ1 =
{

τa+1,b + τa,b+1 if a + b �= 2n − 3,

τa,b+1 + 2τa+1,b + τa+2,b−1 if a + b = 2n − 3,

τa,b ∪ τ1,1 =
{

τa+1,b+1 if a + b �= 2n − 4, 2n − 3,

τa+1,b+1 + τa+2,b if a + b = 2n − 4 or 2n − 3.

We may also state a rule for multiplying by the Chern classes of the quotient bundle:

cp(Q) =
{

τp if 0 � p � 2n − 1 and p �= 2n − 2,

τ2n−2 + τ2n−1,−1 if p = 2n − 2.

We prove in the same way as Proposition 4:

Proposition 5 (Another Pieri formula).

τa,b ∪ τp =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
(a+1,b+1)→(c+1,d+1)

c+d=a+b+p
d�0 or c=2n−1

2N((a+1,b+1),(c+1,d+1))τc,d,

if p �= 2n − 2 or (a + b �= 2n − 1 and (a,b) �= (2n − 1,−1)),

(−1)aτ2n−1,2n−2 if p = 2n − 2, a + b = 2n − 1 and b �= 0,

0 if p = 2n − 2 and ((a,b) = (2n − 1,−1) or (2n − 1,0)),

where the relation λ → μ and the integer N(λ,μ) are defined in [BKT09, Def. 1.3].

τa,b ∪ τ2n−1,−1 =

⎧⎪⎪⎨⎪⎪⎩
(−1)a−1τ2n−1,2n−2 if a + b = 2n − 1,

τ2n−1,a−1 if b = 0 and a �= 2n − 2,

τ2n−1,2n−3 if (a,b) = (2n − 1,−1),

0 else.

Notice that contrary to the symplectic case (and to the case of other homogeneous spaces) we
sometimes get negative coefficients for the second Pieri rule. It is a consequence of the fact that we
only have a quasi-homogeneous space, so it is not always possible to find representatives of the two
Schubert varieties that intersect transversally. So even in degree 0 Gromov–Witten invariants asso-
ciated to Schubert classes are not always enumerative, contrary to the case of homogeneous spaces.
That is why we have to outline conditions in 2.2 to recover enumerativity for some invariants.

1.5. The Hasse diagram of IG(2,2n + 1)

The Pieri rule from Proposition 4 enables us in particular to compute the multiplication by the hy-
perplane class τ1. The corresponding graph is called the Hasse diagram of IG(2,2n+1). More precisely,
the Hasse diagram of IG(2,2n + 1) is an oriented graph with multiplicity such that:

• its vertices are the Schubert classes of IG(2,2n + 1);
• two vertices τa,b and τc,d are related by an arrow of multiplicity r if τc,d appears with multiplicity

r in the product τa,b ∪ τ1.

For instance see Fig. 1 for the Hasse diagram of IG(2,7). Arrows are going from left to right.
As a comparison, see also the Hasse diagram of the symplectic Grassmannian IG(2,6) in Fig. 2,

and of IG(2,8) in Fig. 3.



C. Pech / Journal of Algebra 375 (2013) 188–215 195
Fig. 3. Hasse diagram of IG(2,8).

Looking at these examples we notice that the Hasse diagram of IG(2,7) contains the Hasse diagram
of IG(2,6) as a subgraph, the subgraph induced by the remaining vertices being isomorphic to the
Hasse diagram of IG(1,6). Moreover, the Hasse diagram of IG(2,8) contains the Hasse diagram of
IG(2,7) as a subgraph, the subgraph induced by the remaining vertices being isomorphic to the Hasse
diagram of IG(1,6). This is a general fact. More precisely, we have the following decomposition of the
Hasse diagrams of the even and odd symplectic Grassmannian:

Proposition 6.

• The Hasse diagram of IG(2,2n + 1) is isomorphic to the disjoint union of :
1. the Hasse diagram of IG(2,2n), whose vertices are the classes in IG(2,2n + 1) associated to the Schu-

bert varieties not contained in the closed orbit;
2. the Hasse diagram of the closed orbit O ∼= IG(1,2n);
with parts 1 and 2 linked by the simple arrows joining τ2n−3 to τ2n−1,−1 and τ2n−2,a to τ2n−1,a for
0 � a � 2n − 3.

• The Hasse diagram of IG(2,2n) is isomorphic to the disjoint union of :
1. the Hasse diagram of IG(2,2n − 1), whose vertices are the classes in IG(2,2n) associated to the Schu-

bert varieties contained in X1,1;
2. the Hasse diagram of IG(1,2n − 2), corresponding to the classes τ∅ to τ2n−3;
with parts 1 and 2 linked by the double arrow joining τ2n−3 to τ2n−2 and the simple arrows joining τp to
τp,1 for 1 � p � 2n − 3.

Proof. We will denote by HIG(m,N) the Hasse diagram of IG(m, N).

• Let G1 be the subgraph of HIG(2,2n+1) induced by the vertices τλ for λ such that λ1 < 2n − 1. We
need to prove that G1 = HIG(2,2n) . First notice these graphs have the same set of vertices. Then
use the diagram:

O

i

φ
IG(2,2n)

IG(2,2n + 1)

where i is the natural inclusion and φ(Σ) = Σ/K for each Σ ∈ O. Looking at incidence conditions
we notice that φ∗υλ = i∗τλ for each Schubert class υλ of IG(2,2n), and we get

φ∗(υ1 ∪ υλ) = φ∗υ1 ∪ φ∗υλ = i∗(τ1 ∪ τλ),

hence G1 and HIG(2,2n) have the same arrows. Now the vertices of HIG(2,2n+1) not contained in
G1 correspond to the classes τλ with λ1 = 2n − 1, that is to the Schubert varieties contained in
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the closed orbit O ∼= P
2n−1. So the graph G2 they induce is isomorphic to IG(1,2n). Finally, the

arrows joining G1 and G2 are determined using the Pieri rule 4.
• For IG(2,2n) the result is simply a consequence of the isomorphism between IG(2,2n + 1) and

the Schubert subvariety X1,1 of IG(2,2n) stated in 1.2, and of the Pieri rule for IG(2,2n) proved
in [BKT09, Thm. 1.1]. �

This result can be easily generalized to all symplectic Grassmannians IG(m, N):

Proposition 7.

• The Hasse diagram of IG(m,2n) is made of the union of :
1. the Hasse diagram H1 of IG(m,2n − 1), whose vertices are the cohomology classes of IG(m,2n) asso-

ciated to the Schubert varieties contained in X1m ;
2. the Hasse diagram H2 of IG(m − 1,2n − 2).
The arrows from H2 to H1 are of two types:
– simple arrows λ → μ for λ, μ such that λ1 � 2n−1−m, λm−1 �1, λm = 0 and μ= (λ1, . . . , λm−1,1);
– double arrows λ → μ for λ,μ such that λ1 = 2n − 1 − m, λm = 0 and μ = (2n − m, λ2, . . . , λm).
There is no arrow from H1 to H2 .

• The Hasse diagram of IG(m,2n + 1) is made of the union of :
1. the Hasse diagram H1 of IG(m,2n), whose vertices are the cohomology classes associated to the Schu-

bert varieties of IG(m,2n + 1) not contained in the closed orbit;
2. the Hasse diagram H2 of the closed orbit O ∼= IG(m − 1,2n).
The arrows from H1 to H2 are simple and of two types:
– λ → μ for λ,μ such that λ1 = 2n − m and μ = (2n + 1 − m, λ2, . . . , λm);
– λ → μ for λ,μ such that 2(n − m) + #{1 � i � m | λi � 1} � λ1 � 2n − 1 − m and μ = (2n + 1 −

m, λ2, . . . , λλ1−2(n−m),−1, . . . ,−1).
There is no arrow from H2 to H1 .

The proof is very similar to the m = 2 case. However, the determination of the arrows between
both parts of the Hasse diagram is a bit more complicated and uses a Pieri rule for the symplectic
Grassmannian proved by Pragacz and Ratajski [PR96, Thm. 2.2], hence we will not give it here.

1.6. Embedding in the usual Grassmannian

The easiest way to find a Giambelli formula for IG(2,2n + 1) is to use the Giambelli formula on
Gr(2,2n + 1) and to “pull it back” to IG(2,2n + 1). More precisely, we use the natural embedding:

j : IG(2,2n + 1) ↪→ Gr(2,2n + 1).

We first prove that j∗([IG(2,2n + 1)]) = σ1, which means that j identifies IG(2,2n + 1) with a
hyperplane section of Gr(2,2n + 1). It is enough to prove that if C is a line in Gr(2,2n + 1) not
contained in j(IG(2,2n + 1)), then C intersects j(IG(2,2n + 1)) in only one point. Any line C not
contained in j(IG(2,2n + 1)) can be written as

C = {
Σ ∈ Gr(2,2n + 1)

∣∣ V ⊂ Σ ⊂ W
}
,

where dim V = 1, dim W = 3 and W �⊂ V ⊥ . Hence the only point in C ∩ j(IG(2,2n + 1)) is Σ =
W ∩ V ⊥ .

Now using the same arguments as for Lemma 1 and the fact that j∗([IG(2,2n + 1)]) = σ1, we can
prove
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Lemma 3.

• If a + b < 2n − 2, then j∗σa,b = τa,b.
• If a + b � 2n − 2, then

j∗σa,b = τa,b + τa+1,b−1.

This proves that the map j∗ is surjective and that its kernel is generated by the class

n−1∑
i=0

(−1)n−iσn+i,n−i.

1.7. Giambelli formula

With Lemma 3 and the Giambelli formula for Gr(2,2n+1), we can prove a Giambelli formula with
respect to τ1 and τ1,1. First define dr := (τ11+ j−i )1�i, j�r , with the convention that τ1p = 0 if p < 0 or
p > 2. We have

Proposition 8 (Giambelli formula).

τa,b =

⎧⎪⎪⎨⎪⎪⎩
τ b

1,1da−b if a + b � 2n − 3,∑p
q=0(−1)p−qτ

c−q
1,1 d2q if (a,b) = (c + 1 + p, c − 1 − p),∑2n−2−c

q=p (−1)q−pτ
c−q
1,1 d2q+1 if (a,b) = (c + 1 + p, c − p),

where n − 1 � c � 2n − 2 and 0 � p � 2n − 2 − c.

We can also state a Giambelli formula expressing classes in terms of the ep := cp(Q):

Proposition 9 (Another Giambelli formula).

τa,b =

⎧⎪⎨⎪⎩
eaeb − ea+1eb−1 if a + b � 2n − 3,

(−1)a−ne2
n−1 − eaeb + 2

∑a−n
j=1(−1)a−n− jen−1+ jen−1− j if a + b = 2n − 2,

eaeb + 2
∑2n−1−a

j=1 (−1) jea+ jeb− j if a + b � 2n − 1.

1.8. Two presentations for the classical cohomology ring

1.8.1. Presentation in terms of the classes ep

Proposition 10 (Presentation of H∗(IG(2,2n + 1),Z)). The ring H∗(IG(2,2n + 1),Z) is generated by the
classes (ep)1�p�2n−1 and the relations are

det(e1+ j−i)1�i, j�r = 0 for 3 � r � 2n, (R1)

e2
n + 2

∑
i�1

en+ien−i = 0. (R2)
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Proof. First of all, the quotient bundle Q of IG(2,2n + 1) is the pullback by the restriction map i
of the quotient bundle Q+ on IG(2,2n + 2). So the i∗cp(Q+) = cp(Q) = ep for 1 � p � 2n gen-
erate H∗(IG(2,2n + 1),Z). But Q having rank 2n − 1, i∗c2n(Q+) = 0, hence the cohomology ring of
IG(2,2n +1) is generated by the (ep)1�p�2n−1. Then we follow the method from [BKT09, Thm. 1.2] to
obtain presentations for the isotropic Grassmannians. Consider the graded ring A := Z[a1, . . . ,a2n−1],
where deg ai = i. Set a0 = 1, and ai = 0 if i < 0 or i > 2n − 1. We also define d0 := 1 and
dr := det(a1+ j−i)1�i, j�r for r > 0. For all r � 0, set br := a2

r + 2
∑

i�1(−1)iar+iar−i . Now let φ :
A → H∗(IG(2,2n + 1),Z) be the degree-preserving morphism of graded rings sending ai to ei for
all 1 � i � 2n − 1. Since the ep generate H∗(IG(2,2n + 1),Z), this morphism is surjective. To prove
that relations (R1) and (R2) are satisfied, we must check that φ(dr) = 0 for all r > 2 and φ(bn) = 0.

(R1) Expanding the determinant dr with respect to the first column, we get the identity

dr =
r∑

i=1

(−1)i−1aidr−i.

Hence the identity on formal series:(
2n−1∑
i=0

ait
i

)(∑
i�0

(−1)idit
i
)

= 1. (2)

On IG(2,2n + 1) we have the following short exact sequence of vector bundles

0 → S → OIG(2,2n+1) → Q → 0,

so c(S)c(Q) = 1, where c denotes the total Chern class. But

c(Q) =
2n−2∑
i=0

τit
i,

so (2) implies

c(S) =
∑
i�0

(−1)iφ(di)t
i .

Since S has rank 2, it follows that φ(dr) = 0 for all r > 2, hence the relations (R1).
(R2) From the presentation of IG(2,2n + 2) in [BKT09, Thm. 1.2], we know that

υ2
n + 2

∑
i�1

(−1)iυn+iυn−i = 0

in IG(2,2n + 2). Pulling back by i we get (R2).

Now consider the Poincaré polynomial of IG(2,2n + 1) computed in [Mih05, §2.2.3]:

P
(
IG(m,2n + 1),q

) =
∏l

i=1(q
2n+2−2i − 1)

∏m
i=l+1(q

2n+4−2i − 1)

(qm − 1)(qm−1 − 1) . . . (q − 1)

for m = 2l. Evaluating this polynomial at q = 1, we get that the rank of H∗(IG(2,2n + 1)) is 2n2.
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As in the proof of [BKT09, Thm. 1.2], we will need the following lemma:

Lemma 4. The quotient of the graded ring Z[a1, . . . ,ad] with deg ai = i modulo the relations

det(a1+ j−i)1�i, j�r = 0, m + 1 � r �m + d

is a free Z-module of rank
(m+d

d

)
.

To prove the previous lemma notice that the above presentation is nothing but the presentation
of the cohomology ring of the usual Grassmannian Gr(m,m + d). Now to conclude the proof of the
proposition we use

Lemma 5. Let A = Z[a1, . . . ,ad] be a free polynomial ring generated by homogeneous elements ai such that
deg ai = i. Let I be an ideal in A generated by homogeneous elements c1, . . . , cd in A and φ : A/I → H be a
surjective ring homomorphism. Assume:

C1. H is a free Z-module of rank
∏

i(
deg ci
deg ai

).
C2. For every field K , the K -vector space (A/I) ⊗Z K has finite dimension.

Then φ is an isomorphism.

This result was proven in [BKT09, Lem. 1.1]. Apply it for

H = H∗(IG(2,2n + 1),Z
)
, I = (d3, . . . ,d2n,bn), and A, φ as above.

Condition C1 is an immediate consequence of the rank calculation. For condition C2 it is enough to
prove that A/I is a quotient of A/(d3, . . . ,d2n+1). Indeed, by Lemma 4, the last module is a free Z-
module of finite rank. So we are left with proving that d2n+1 belongs to the ideal I . But the following
identities of formal series hold:(

2n−1∑
i=0

ait
i

)(
2n−1∑
i=0

(−1)iait
i

)
=

2n−1∑
i=0

(−1)ibit
2i,

(
2n−1∑
i=0

(−1)iait
i

)(∑
i�0

dit
i
)

= 1.

Hence we get:

2n−1∑
i=0

ait
i =

(
2n−1∑
i=0

(−1)ibit
2i

)(∑
i�0

dit
i
)

.

Modding out by the ideal I , it yields:

2n−1∑
i=0

ait
i ≡

(
n−1∑
i=0

(−1)ibit
2i +

2n−1∑
i=n+1

(−1)ibit
2i

)(
2∑

i=0

dit
i +

∑
i�2n+1

dit
i

)
.

In degree 2n + 1, we get 0 ≡ d2n+1, which ends the proof of the proposition. �
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1.8.2. Presentation in terms of τ1 and τ1,1
First we will need a presentation for the symplectic Grassmannian IG(2,2n) in terms of υ1 and

υ1,1:

Proposition 11. The ring H∗(IG(2,2n),Z) is generated by the classes υ1 , υ1,1 and the relations are

1

υ1
det(υ11+ j−i )1�i, j�2n−1 = 0,

det(υ11+ j−i )1�i, j�2n = 0.

Proof. We will use Lemma 5. Set R := Z[a1,a2], where deg ai = i. We denote by φ : R →
H∗(IG(2,2n),Z) the surjective ring homomorphism given by ai → τ1i . We also use the convention
that a0 = 1 and ai = 0 for i /∈ {0,1,2}. For r � 1, set δr := det(a1+ j−i)1�i, j�r . We have the recurrence
relation

δr = a1δr−1 − a2δr−2, (3)

which is equivalent to the identity of formal series

(∑
ait

i
)(∑

(−1)iδit
i
)

= 1.

But φ(ai) = τ1i = ci(S∗). Moreover, as

0 → S⊥ → OIG → S∗ → 0,

where we denote by S the tautological bundle on IG(2,2n), we have c(S⊥)c(S∗) = 1, hence δr =
cr((S⊥)∗) = cr(Q) (Q being the quotient bundle on IG(2,2n)). Since Q has rank 2n − 2, we have
φ(δr) = 0 for all r > 2n − 2, and in particular we get φ(δ2n−1) = φ(δ2n) = 0. We can write δ2q+1
as

δ2q+1 = a1 Pq(a1,a2),

where Pq(a1,a2) is a homogeneous polynomial of degree 2q. Now set δ′
2q+1 := Pq(a1,a2). We want

to prove that φ(δ′
2n−1) = 0. For this, since IG(2,2n) is a hyperplane section of the usual Grassman-

nian Gr(2,2n), we use Lefschetz’s theorem. In particular, we obtain that the multiplication by the
hyperplane class υ1 is surjective from H2n−2(IG(2,2n),Z) to H2n−1(IG(2,2n),Z). But these vector
spaces have the same dimension n − 1, so it is bijective. As we already know that φ(δ2n−1) = 0 it
implies that φ(δ′

2n−1) = 0. Now let I := (δ′
2n−1, δ2n). We proved that φ(I) = 0 so we may define φ : R/

I → H∗(IG(2,2n),Z). Now check that conditions C1 and C2 are satisfied:

(C1) H∗(IG(2,2n),Z) is a free Z-module of rank 2n(n − 1) = deg(d2n−1)′ deg(d2n)

deg a1 deg a2
.

(C2) For every field K , (R/I) ⊗Z K is finite-dimensional. Indeed R/I is a quotient of R/(d2n−1,d2n),
which is isomorphic with H∗(Gr(2,2n),Z), hence a free Z-module of finite rank.

Finally Lemma 5 yields that φ is an isomorphism, hence the result. �
Now we deduce a presentation of H∗(IG(2,2n + 1),Z) using classes τ1 and τ1,1:
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Proposition 12 (Another presentation of H∗(IG(2,2n + 1),Z)). The ring H∗(IG(2,2n + 1),Z) is generated by
the classes τ1 , τ1,1 and the relations are

det(τ11+ j−i )1�i, j�2n = 0,

1

τ1
det(τ11+ j−i )1�i, j�2n+1 = 0.

Proof. First notice that τ1 and τ1,1 generate the cohomology ring of IG(2,2n + 1) since they are the
pullbacks of the Chern classes of the dual tautological bundle over Gr(2,2n + 1) by the surjective
restriction map j. Then define R := Z[a1,a2], where deg ai = i. We denote by φ : R → H∗(IG(2,2n +
1),Z) the surjective ring homomorphism given by ai → τ1i . We also use the convention that a0 = 1
and ai = 0 for i /∈ {0,1,2}. For r � 1, set δr := det(a1+ j−i)1�i, j�r . On Gr(2,2n + 1) we know by the
usual presentation (see for instance [ST97, §3]) that

det(σ11+ j−i )1�i, j�2n = 0.

Now define δ′
2q+1 as in the proof of Proposition 11. Using the embedding in the symplectic Grass-

mannian IG(2,2n + 2), we get that φ(δ′
2n+1) = 0. Indeed, we only have to pull back the rela-

tion 1
υ1

det(υ11+ j−i )1�i, j�2n+1 = 0 proven in Proposition 11. Finally, set I = (d2n,d′
2n+1) and apply

Lemma 5. �
2. Quantum cohomology

Our main goal in this section is to prove a quantum Pieri formula for IG(2,2n + 1). We denote
the quantum product of two classes τλ and τμ as τλ � τμ . The degree of the quantum parameter q is
equal to the index of IG(2,2n + 1), so deg q = 2n.

Theorem 1 (Quantum Pieri rule for IG(2,2n + 1)).

τ1 � τa,b =

⎧⎪⎪⎨⎪⎪⎩
τa+1,b + τa,b+1 if a + b �= 2n − 3 and a �= 2n − 1,

τa,b+1 + 2τa+1,b + τa+2,b−1 if a + b = 2n − 3,

τ2n−1,b+1 + qτb if a = 2n − 1 and 0 � b � 2n − 3,

q(τ2n−1,−1 + τ2n−2) if a = 2n − 1 and b = 2n − 2,

τ1,1 � τa,b =

⎧⎪⎪⎨⎪⎪⎩
τa+1,b+1 if a + b �= 2n − 4, 2n − 3 and a �= 2n − 1,

τa+1,b+1 + τa+2,b if a + b = 2n − 4 or 2n − 3,

qτb+1 if a = 2n − 1 and b �= 2n − 3,

q(τ2n−1,−1 + τ2n−2) if a = 2n − 1 and b = 2n − 3.

The previous theorem is proved in 2.5, and from this a quantum presentation is deduced in 2.6.
To prove the quantum Pieri formula, we first study in 2.1 the moduli spaces of stable maps of degree
1 to IG(2,2n + 1). Then in 2.2 we describe conditions for the Gromov–Witten invariants to have
enumerative meaning. Finally, in 2.3 and 2.4 we compute the invariants we need. From now on, we
denote IG(2,2n + 1) by IG.

2.1. The moduli spaces M0,r(IG,1)

If X is a smooth projective variety we denote by Mg,n(X, β) the moduli space of stable n-pointed
maps f in genus g to X with degree β ∈ H2(X,Z). This moduli space is endowed with n evaluation
maps (evi)1�i�n mapping a stable map f to its value at the i-th marked point. We refer to [FP97] for
more details. If X has Picard rank 1, which is the case when X = IG(2,2n + 1), then β = dH for some
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d � 0, H being the positive generator of the Picard group. In this situation, we will simply denote the
degree as the integer d. In this section we prove

Proposition 13. For every r ∈ N, the moduli space M0,r(IG,1) is a smooth projective variety. Moreover, it has
the expected dimension 6n − 6 + r.

Proof. To prove this, we use a remark of Fulton and Pandharipande in [FP97, §0.4], which states that
for all r � 1, the moduli space M0,r(P

m,1) is a locally trivial fibration over the variety Gr(P1,Pm)

of lines in P
m , having M0,r(P

1,1) as a fiber. Moreover, this last moduli space is isomorphic to the
configuration space P

1[r] of Fulton–MacPherson. The fibration is simply the map

M0,r
(
P

m,1
) → Gr

(
P

1,Pm)
,[

f : (C; p1, . . . , pr) → P
m] → f (C)

which to any stable map of degree one associates its image line.
The Plücker embedding embeds IG as a closed subvariety of a projective space P

m (with m =
(2n − 1)(n + 1)). Under this embedding, lines in IG are lines in P

m . From [FP97, §5.1], we know that
this yields an embedding M0,r(IG,1) ↪→ M0,r(P

m,1). If we denote by Y1 the variety of lines on IG,
we see that[

f , (C; p1, . . . , pr)
] ∈ M0,r(IG,1) ⇔ ([

f , (C; p1, . . . , pr)
] ∈ M0,r

(
P

m,1
)

and f (C) ∈ Y1
)
.

Hence the following diagram:

M0,r(P
m,1) Gr(P1,Pm)

M0,r(IG,1) Y1

is a fiber square, which means that the map M0,r(IG,1) → Y1 is locally trivial. Since the fiber P
1[r]

is known to be smooth, we only need to prove that the variety of lines Y1 is also smooth.
First notice that lines in IG are of the form

D(U1, U3) := {
Σ ∈ IG(2,2n + 1)

∣∣ U1 ⊂ Σ ⊂ U3
}

where dim Ui = i and U3 ⊂ U⊥
1 . Hence Y1 is a subvariety of the (type A) flag variety F(1,3;2n + 1).

Let us denote by S1 and S3 the tautological bundle on F(1,3;2n + 1) and consider the homogeneous
vector bundle E := S∗

1 ⊗ (S3/S1)
∗ on F(1,3;2n + 1). Let also π be the projection map from the com-

plete flag variety F(C2n+1) to the two-step flag variety F(1,3;2n + 1). If we denote by U1, . . . ,U2n+1
the tautological bundles on F(C2n+1), we see that E = π∗(U−1

1 ⊗ (U2/U1)
−1). Hence

H0(F(1,3;2n + 1),E
) = H0(F

(
C

2n+1),U−1
1 ⊗ (U2/U1)

−1) =
2∧(

C
2n+1)∗

,

the last equality being a consequence of the Borel–Weil theorem. This implies that the form ω is a
generic section of the vector bundle S∗

1 ⊗ (S3/S1)
∗ on F(1,3;2n + 1). From the condition U3 ⊂ U⊥

1 , it
follows that the zero locus of this section is exactly the variety Y1. Moreover, the vector bundle E is
generated by its global sections. Hence Y1 is smooth, and so is M0,r(IG,1).

Finally, Y1 having codimension 2 in F(1,3;2n+1), we have dimM0,r(IG,1) = dim Y1 +dimP
1[r] =

6n − 6 + r. �
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2.2. Enumerativity of the invariants in M0,2(IG,1) and M0,3(IG,1)

In this section we will use a Kleiman-type lemma for quasi-homogeneous spaces, due to Graber in
[Gra01, Lem. 2.5]:

Lemma 6. Let X be a variety endowed with an action of a connected algebraic group G with only finitely many
orbits and Z an irreducible scheme with a morphism f : Z → X. Let Y be a subvariety of X that intersects the
orbit stratification properly. Then there exists a dense open subset U of G such that ∀g ∈ U , f −1(gY ) is either
empty or has pure dimension dim Y + dim Z − dim X. Moreover, if X , Y and Z are smooth and we denote by
Yreg the subset of Y along which the intersection with the stratification is transverse, then the (possibly empty)
open subset f −1(gYreg) is smooth.

This enables us to prove the following enumerativity result for degree one Gromov–Witten invari-
ants on IG(2,2n + 1).

Theorem 2 (Enumerativity of the Gromov–Witten invariants). Let r be a positive integer and Y1, . . . , Yr be
subvarieties of IG of codimension at least 2 intersecting the closed orbit generically transversely and represent-
ing cohomology classes γ1, . . . , γr such that

r∑
i=1

codimγi = dimM0,r(IG,1).

Then there exists a dense open subset U ⊂ Spr
2n+1 such that for all g1, . . . , gr ∈ U , the Gromov–Witten invari-

ant I1(γ1, . . . , γr) is equal to the number of lines of IG incident to the translates g1Y1, . . . , gr Yr .

Proof. The result is proven by successively applying the Transversality Lemma 6. First we prove that
stable maps with reducible source do not contribute to the Gromov–Witten invariant by applying the
lemma to the following diagram

M \M∗

ev

Y
i

IGr

where Y = (Y1, . . . , Yr), ev = ev1 × · · · × evr , M = M0,r(IG,1) and M∗ is the locus of map with
irreducible source, which is a dense open subset by Proposition 13.

We should also prove that it is not possible for a line to be incident to one of the subvarieties Yi
in more than one point, since such a line would contribute several times to the invariant. Suppose
for example that there exists a line L that intersects Y1 in at least two points. Then any stable map
f whose image curve is L corresponds to a map f̃ in M0,r+1(IG,1) (in fact in M∗

0,r+1(IG,1)) that

contributes to the invariant I1(γ1, γ1, . . . , γr). By Proposition 13, M0,r+1(IG,1) has dimension 6n −
5 + r. Moreover, since each Yi intersects the closed orbit generically transversely, Y1 × Y1 × · · · × Yr
intersects all 2r+1 Spr+1

2n+1-orbits of IGr+1 generically transversely. Hence applying Lemma 6 to the
following diagram

M∗
0,r+1(IG,1)

ev

Y1 × Y1 × · · · × Yr
i

IGr+1

and using the fact that codimγ1 � 2 we conclude that such a line cannot exist.
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Now using

M∗

ev

Sing Y
i

IGr

where Sing Y denotes the singular locus of Y , we may assume that Y is smooth. Moreover, since
Y1, . . . , Yr intersect the closed orbit generically transversely, a third application of Lemma 6 allows us
to assume that this intersection is transverse everywhere. Finally, applying the lemma to

M∗

ev

Y
i

IGr

we conclude that there exists a dense open subset U ⊂ Spr
2n+1 such that for all (g1, . . . , gr) ∈ U ,⋂r

i=1 ev−1
i (gi Yi) is a finite number of reduced points, which equals the number of lines incident to

all the gi Yi . �
Remark 4. Theorem 2 enables us to compute the Gromov–Witten invariants by geometric means.
However, Schubert varieties will not be appropriate to perform this calculation. Indeed, the inter-
section of any Schubert variety and the closed orbit is not even proper. So we will instead use the
restrictions of the Schubert varieties of the usual Grassmannian.

2.3. Computation of the invariants in M0,2(IG,1)

In this paragraph, we use Theorem 2 to compute all invariants of IG of the form I1(α,β), where
α and β are the classes of the restriction to IG of some Schubert varieties Y1 and Y2 of the usual
Grassmannian, defined with respect to complete flags F• and G• . In order for the varieties Y1 and
Y2 to verify the conditions of the theorem, we will need some technical conditions to hold for the
defining flags F• and G• . We state these conditions in Lemma 7 and prove that they hold for generic
flags: this is quite straightforward, and the list of conditions is in fact longer to state than to check.
Then we compute the invariants in Proposition 14.

Notation 1. Denote by

• Fn the variety of complete flags in C
2n+1;

• Λn the variety of antisymmetric 2-forms with maximal rank on C
2n+1.

Lemma 7. Assume n � 2. Then the set of triples (F•, G•,ω) ∈ Fn × Fn × Λn such that the following hold

(C1) ∀0 � p � 2n + 1, ω|F p has maximal rank;
(C2) ∀0 � p � 2n + 1, ω|G p has maximal rank;
(C3) ∀0 � p,q � 2n + 1, F p ∩ Gq has the expected dimension;
(C4)i dim(F2n+1−i ∩ Gi+3 ∩ F ⊥

1 ∩ G⊥
1 ) = 1; (0 � i � 2n − 2);

(C5)i dim F2n−i ∩ Gi+3 ∩ G⊥
1 = 1 and dim(F2n−i ∩ Gi+3 ∩ G⊥

1 )⊥ ∩ F2 = 1; (0 � i � 2n − 2);
(C6)i dim F2n+1−i ∩ Gi+2 ∩ F ⊥

1 = 1 and dim(F2n+1−i ∩ Gi+2 ∩ F ⊥
1 )⊥ ∩ G2 = 1; (2 � i � 2n − 4);

(C7)i dim(F2n−i ∩ Gi+2)
⊥ ∩ F2 = 1; (2 � i � 2n − 4);
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(C8)i dim(F2n−i ∩ Gi+2)
⊥ ∩ G2 = 1; (2 � i � 2n − 4);

(C9) F1 �⊂ G⊥
1 ;

(C10) G1 �⊂ F ⊥
1 ;

(C11)i F2n−1−i ∩ Gi+3 ∩ G⊥
1 = 0; (0 � i � 2n − 6);

(C12)i F2n+1−i ∩ Gi+1 ∩ F ⊥
1 = 0; (4 � i � 2n − 2);

is a dense open subset in Fn × Fn × Λn.

Proof. Fn × Fn × Λn is a (quasi-projective) irreducible variety. Moreover all conditions are clearly
open. So it is enough to show that each of them is non-empty.

(C1), (C2) and (C3) Obvious.
(C4)i Since n � 2, we may choose the flags F• and G• such that the subspace A := F2n+1−i ∩ Gi+3

has dimension 3 and A together with the lines L := F1 and L′ := G1 are in direct sum. Then
there exists a form ω ∈ Λn such that A ∩ L⊥ ∩ L′⊥ has dimension 1.

(C5)i As before we may choose F• and G• such that A := F2n−i ∩ Gi+3 has dimension 2 and A,
L := G1 and B := F2 are complementary. So we may construct ω ∈ Λn such that (A ∩ L⊥)⊥ ∩ B
has dimension 1. First construct ω0 on A ⊕ B ⊕ L. Let a ∈ A \ 0 and b ∈ B \ 0. There exists
ω0 a symplectic form on A ⊕ B such that ω0(a,b) �= 0. Then we extend ω0 to ω defined on
A ⊕ B ⊕ L by setting ω(a, l) = 0, ω(a′, l) �= 0 and for instance ω(β, l) = 0 for all β ∈ B , where l
generates L and a,a′ generate A.

(C6)i As in (C5)i .
(C7)i We may choose F• and G• such that L := F2n−i ∩ Gi+2 has dimension 1 and is in direct sum

with A := F2. But then there exists ω ∈ Λn such that A �⊂ L⊥ .
(C8)i As in (C7)i .
(C9) G⊥

1 is a general hyperplane, so it does not contain F1.
(C10) As in (C9).
(C11)i F2n−1−i ∩ Gi+3 is a line and G⊥

1 is a general hyperplane, so their intersection is zero.
(C12)i As in (C11)i . �

We can now define the varieties we will use to compute the invariants, which will be restrictions
of the Schubert varieties of the usual Grassmannian:

Lemma 8. Let 0 � j � n − 1 and 0 � i � 2n − 1 − 2 j be integers. Let

Xi, j := {Σ ∈ Gr | Σ ∩ F j+1 �= 0, Σ ⊂ F2n+1−i− j},
be a subvariety of Gr := Gr(2,2n + 1), where F• is a complete flag satisfying condition (C1). Then:

1. Xi, j and IG intersect generically transversely.
2. Let Yi, j := Xi, j ∩ IG. We have

[Yi, j]IG =

⎧⎪⎪⎨⎪⎪⎩
τ2n−1− j,i+ j + τ2n− j,i+ j−1 if j �= 0 and i �= 2n − 1 − 2 j,

τ2n− j,2n−2− j if j �= 0 and i = 2n − 1 − 2 j,

τ2n−1,i if j = 0 and i �= 2n − 1,

0 if j = 0 and i = 2n − 1,

where we denote by [V ]IG (respectively by [V ]Gr) the class of the subvariety V in IG (respectively in Gr).

Proof. 1. In the Schubert cell Ci, j ⊂ Xi, j , a direct computation shows that Tp Xi, j �⊂ Tp IG as soon as
F j+1 �⊂ F ⊥

2n+1−i− j , which is true by condition (C1). So Ci, j ∩ IG is transverse. Applying again (C1), we
notice that Ci, j ∩ IG is an open subset of Xi, j ∩ IG.
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2. We have [Xi, j]Gr = σ2n−1− j,i+ j . Moreover, the previous item implies that [Yi, j]Gr = σ1[Xi, j]Gr.
So

[Yi, j]Gr =

⎧⎪⎪⎨⎪⎪⎩
σ2n−1− j,i+ j+1 + σ2n− j,i+ j if j �= 0 and i �= 2n − 1 − 2 j,

σ2n− j,2n−1− j if j �= 0 and i = 2n − 1 − 2 j,

σ2n−1,i+1 if j = 0 and i �= 2n − 1,

0 if j = 0 and i = 2n − 1.

Moreover, [Yi, j]Gr = j�[Yi, j]IG, [Yi, j]IG = ∑�n−1− i
2 �

p=0 αpτ2n−1−p,i+p and j�τa,b = σa,b+1 for a+b � 2n−1,
so we can determine the αp by identifying both expressions. �

We now assume all genericity conditions (C1)–(C12) are satisfied and prove

Proposition 14. Let 0 � i � 2n − 2, 0 � 2 j � 2n − 2 − i and 0 � 2l � i be integers. Set Y1 := Yi, j(F•)
and Y2 := Y2n−2−i,l(G•), where the complete flags F• and G• as well as the form ω verify the transversality
conditions of Lemma 7. Then

1. The intersections Y1 ∩O and Y2 ∩O are transverse. Moreover

Y1 ∩O =
{∅ if i or j �= 0,

{F1 ⊕ K } if i = j = 0,

Y2 ∩O =
{∅ if i �= 2n − 2 or l �= 0,

{G1 ⊕ K } if i = 2n − 2 and l = 0.

2. If j or l � 2, there exists no line passing through Y1 and Y2 . Else there exists a unique line passing through
Y1 and Y2 . Therefore the Gromov–Witten invariant I1(τa,b, τc,d) equals 1 if a = c = 2n − 1 and b + c =
2n − 2, and 0 in the other cases.

Proof. 1. Y1 ∩ O = {Σ ∈ IG | Σ ∩ F j+1 �= 0, K ⊂ Σ ⊂ F2n+1−i− j}, so if i + j �= 0, then K ⊂ F2n+1−i− j ,
which, according to (C1), implies that Y1 ∩ O = ∅, so the intersection is transverse. Moreover if i +
j = 0 we get Y1 ∩ O = {F1 ⊕ K }. Denote by Σ0 the point K ⊕ F1. To prove transversality at Σ0 we
use the embedding in the usual Grassmannian Gr := Gr(2,2n + 1). It is well known that TΣ0 Gr =
Hom(Σ0,C

2n+1/Σ0). Now express TΣ0 Y1 and TΣ0O as subspaces of TΣ0 Gr:

TΣ0 Y1 = {
φ ∈ TΣ0 Gr

∣∣ φ( f1) = 0
}
,

TΣ0O = {
φ ∈ TΣ0 Gr

∣∣ φ(k) = 0
}
,

where f1 and k generate F1 and K . We see that these subspaces are complementary in TΣ0 Gr. Com-
puting dim Y1 = 2n − 2 and dimO = 2n − 1 we conclude that they generate TΣ0 IG. We can proceed
in a similar fashion for Y2 ∩O.

2. We first study the case where j or l � 2. Let D := D(V , W ) be a line meeting Y1 and Y2. Then
we must have V ⊂ F2n+1−i− j ∩ Gi+3−l . But according to (C3), this subspace is either zero or it has
codimension 2n + 4 − j − l. So for j + l � 3, it is zero and there is no line. If j = 2 and l = 0 (and
symmetrically if j = 0 and l = 2), we must have V ⊂ F2n−1−i ∩ Gi+3 ∩ G⊥

1 = 0, which is impossible by
(C11)i (respectively by (C12)i ). So for a line to exist we must have j and l � 1.

Now assume j, l � 1. There are four cases to study:

a) j = l = 0;
b) j = 1, l = 0;
c) j = 0, l = 1;
d) j = l = 1.
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a) Let A = F2n+1−i ∩ Gi+3. We have dim A = 3 by (C3). But V ⊂ A and V ⊂ F ⊥
1 ∩ G⊥

1 since F1, G1 ⊂
W and W ⊂ V ⊥ . By (C4)i , we have dim A ∩ F ⊥

1 ∩ G⊥
1 = 1, hence V = A ∩ F ⊥

1 ∩ G⊥
1 . So W ⊃ V +

(F1 ⊕ G1) (F1 and G1 are in direct sum by (C3)). To show equality, it is enough to prove that the
sum is direct. If not then there exists a non-zero vector of the form af1 + bg1 in V , where f1 and g1
generate F1 and G1. So af1 + bg1 ∈ A ⊂ F2n+1−i , which implies bg1 ∈ F2n+1−i , hence b = 0 or i = 0.
If b = 0, then V = F1, and consequently F1 ⊂ G⊥

1 , which is impossible by (C9). So i = 0. But then
af1 + bg1 ∈ G3, so af1 ∈ G3 and also a = 0. Hence V = G1 ⊂ F ⊥

1 , which is excluded by (C9).
b) Let A = F2n−i ∩ Gi+3. By (C3), dim A = 2. By (C5)i , dim A ∩ G⊥

1 = 1, so V = A ∩ G⊥
1 . Moreover

dim V ⊥ ∩ F2 = 1. We have W ⊃ V + G1 + V ⊥ ∩ F2. To determine W , it is enough to show that the sum
is direct. First, V + G1 is direct, because if it was not we would have V = G1, so G1 ⊂ F2n−i , which
is impossible by (C3). Finally the sum V ⊕ G1 + V ⊥ ∩ F2 is direct, or we would have V ⊥ ∩ F2 ⊂ Gi+3.
But dim F2 ∩ Gi+3 = 0 by (C3) since i � 2n − 4.

c) This case is similar to 2b); the proof uses (C3) and (C6)i .
d) By (C3), we get dim F2n−1 ∩ Gi+2 = 1, so V = F2n−1 ∩ Gi+2. We must have dim W ∩ F2 �= 0.

But V �⊂ F2, or else we would get Gi+2 ∩ F2 �= 0, which is impossible by (C3) since i � 2n − 4. Now
W ⊂ V ⊥ implies W ∩ F2 ⊂ V ⊥ ∩ F2, which has dimension 1 by (C7)i . So W ⊂ V ⊥ ∩ F2 ⊕ V . Similarly,
using (C8)i , we get W ∩G2 = V ⊥ ∩G2, so W ⊃ V ⊕ V ⊥ ∩ F2 + V ⊥ ∩G2. Now we only have to show that
this sum is direct. If not, then there exists a non-zero vector of the form av + bf2 in V ⊥ ∩ G2, where
v and f2 generate V and V ⊥ ∩ F2. As v ∈ Gi+2, we obtain bf2 ∈ Gi+2, so b = 0 because i � 2n − 4.
Hence V ⊥ ∩ G2 = V and consequently V ⊂ G2 and dim F2n−i ∩ G2 � 1, which is impossible since i � 2.

The final formula for I1(τa,b, τc,d) follows from a straightforward calculation. �
2.4. Computation of some invariants in M0,3(IG,1)

In the previous section we computed the two-pointed invariants in IG, which is equivalent to
computing the quantum terms of the product by the hyperplane class τ1. Indeed, the divisor axiom
[KM94, §2.2.4] yields

I1(γ1, γ2, τ1) = I1(γ1, γ2),

where γ1 and γ2 are any cohomology classes. Hence to obtain a quantum Pieri rule for IG(2,2n + 1),
we are left to compute the quantum product by τ1,1. So we have to determine all invariants of the
form I1(τ1,1, τλ, τμ) with |λ| + |μ| = 6n − 5, that is to compute the number of lines through the
following subvarieties:

Y1 = {Σ ∈ IG | Σ ∩ F j+1 �= 0, Σ ⊂ F2n+2−i− j},
Y2 = {Σ ∈ IG | Σ ∩ Gl+1 �= 0, Σ ⊂ Gi+3−l},
Y3 = {Σ ∈ IG | Σ ⊂ H},

where 0 � i � 2n − 1, 0 � 2 j � 2n − 1 − i and 0 � 2l � i are integers, F• and G• are isotropic flags and
H is a hyperplane.

As before we use a genericity result which is proved in a similar way as Lemma 7:

Lemma 9. Assume n � 2. Then the set of 4-uples (F•, G•, H,ω) ∈ Fn ×Fn ×P
2n ×Λn satisfying the following

conditions

(C1) ∀0 � p � 2n + 1, ω|F p has maximal rank;
(C2) ∀0 � p � 2n + 1, ω|G p has maximal rank;
(C3) ω|H is symplectic;
(C4) ∀0 � p,q � 2n + 1, F p ∩ Gq has the expected dimension;
(C5) ∀0 � p,q � 2n + 1, F p ∩ Gq ∩ H has the expected dimension;
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(C6)i dim(F2n+2−i ∩ Gi+3 ∩ H ∩ F ⊥
1 ∩ G⊥

1 ) = 1; (1 � i � 2n − 2);
(C7)i dim F2n+1−i ∩ Gi+3 ∩ H ∩ G⊥

1 = 1 and dim(F2n+1−i ∩ Gi+3 ∩ H ∩ G⊥
1 )⊥ ∩ F2 = 1; (0 � i � 2n − 3);

(C8)i dim F2n+2−i ∩ Gi+2 ∩ H ∩ F ⊥
1 = 1 and dim(F2n+2−i ∩ Gi+2 ∩ H ∩ F ⊥

1 )⊥ ∩ G2 = 1; (2 � i � 2n − 1);
(C9)i dim(F2n+1−i ∩ Gi+2 ∩ H)⊥ ∩ F2 = 1; (2 � i � 2n − 3);
(C10)i dim(F2n+1−i ∩ Gi+2 ∩ H)⊥ ∩ G2 = 1; (2 � i � 2n − 3);
(C11) F1 �⊂ G⊥

1 ;
(C12) G1 �⊂ F ⊥

1 ;
(C13)i F2n−i ∩ Gi+3 ∩ H ∩ G⊥

1 = 0; (0 � i � 2n − 5);
(C14)i F2n+2−i ∩ Gi+1 ∩ H ∩ F ⊥

1 = 0; (4 � i � 2n − 1);
(C15)i F2 ∩ Gi+3 ∩ G⊥

1 = 0; 0 � i � 2n − 3;
(C16)i G2 ∩ F2n+2−i ∩ F ⊥

1 = 0; 2 � i � 2n − 1;

is a dense open subset of Fn × Fn × P
2n × Λn.

Under these assumptions we can prove

Proposition 15.

1. The intersections Yi ∩O are transverse. Moreover

Y1 ∩O=
⎧⎨⎩

∅ if i + j � 2,

{F1 ⊕ K } if i = 1 and j = 0,

{K ⊕ L | L ⊂ F2} if i = 0 and j = 1,

Y2 ∩O=
{∅ and i �= 2n − 2 or l �= 0,

{G1 ⊕ K } if i = 2n − 2 and l = 0,

Y3 ∩O= ∅.

2. If j or l � 2, there is no line meeting Y1 , Y2 and Y3 .
3. If j and l � 1, there is a unique line meeting Y1 , Y2 and Y3 . Therefore the Gromov–Witten invariant

I1(τ1,1, τa,b, τc,d) equals 1 if a = c = 2n − 1 and b + c = 2n − 3, and 0 in the other cases.

Proof. 1. The case of Y2 ∩O has already been treated in the proof of Proposition 14. If Σ ∈ Y1 ∩O, we
must have K ⊂ F2n+2−i− j , so i + j = 1. If i = 1 and j = 0, then Y1 ∩O = {K ⊕ F1}, and transversality
is proven as in Proposition 14. If i = 0 and j = 1, then Y1 ∩O = {K ⊕ L | L ⊂ F2}. Take Σ0 = K ⊕ 〈 f2〉
where f2 is a non-zero element in F2. Again we express TΣ0 Y1 and TΣ0O as subspaces of TΣ0 Gr,
where Gr is the usual Grassmannian:

TΣ0 Y1 = {
φ ∈ TΣ0 Gr

∣∣ φ( f2) ∈ F2/〈 f2〉, φ(k) ⊥ f2
}
,

TΣ0O= {
φ ∈ TΣ0 Gr

∣∣ φ(k) = 0
}
,

with k a generator of K . We see that the intersection of TΣ0 Y1 and TΣ0O has dimension 1. Computing
dim Y1 = 2n − 1 and dimO = 2n − 1 we conclude that they generate TΣ0 IG. Finally, Y3 ∩O = ∅ since
K �⊂ H by (C3).

2. By (C5), F2n+2−i− j ∩ Gi+3−l ∩ H = 0 as soon as j + l � 3. Moreover if j = 2 and l = 0 then we
get W ⊃ G1, hence V ⊂ F2n−i ∩ Gi+3 ∩ H ∩ G⊥

1 . But this space is zero by (C13)i , so there is no line. By
(C13)i , we get the same result when j = 0 and l = 2.

3. There are four cases:
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a) j = l = 0;
b) j = 1, l = 0;
c) j = 0, l = 1;
d) j = l = 1.

a) We have V = F2n+2−i ∩ Gi+3 ∩ H ∩ F ⊥
1 ∩ G⊥

1 by (C6)i . Moreover W ⊃ V + F1 + G1. To obtain
equality we only have to show that the sum is direct. First V �= F1 since F1 �⊂ G⊥

1 by (C11). Finally if
G1 ⊂ V ⊕ F1, as V ⊂ F ⊥

1 , we would have G1 ⊂ F ⊥
1 , which is impossible by (C12).

b) We have V = F2n+1−i ∩ Gi+3 ∩ H ∩ G⊥
1 by (C7)i . Moreover W ⊂ V + G1 + F2 ∩ V ⊥ . We prove

now that this sum is direct. First V �= G1, or we would have G1 ⊂ H , which is excluded by (C5). Now
F2 ∩ V ⊥ �⊂ V ⊕ G1 since F2 ∩ Gi+3 ∩ G⊥

1 = 0 for i � 2n − 3 by (C15)i .
c) V = F2n+2−i ∩ Gi+2 ∩ H ∩ F ⊥

1 by (C8)i . Moreover W ⊃ V + F1 + G2 ∩ V ⊥ (by (C9)i and (C10)i ),
and this sum is direct (same argument than in the previous case, using condition (C16)i).

d) V = F2n+1−i ∩ Gi+2 ∩ H , W ⊃ V + W ∩ F2 + W ∩ G2 = V + F2 ∩ V ⊥ + G2 ∩ V ⊥ . This sum is
direct; indeed, F2 ∩ V ⊥ �= G2 ∩ V ⊥ car F2 ∩ G2 = 0 by (C4); in addition V �⊂ F2 ∩ V ⊥ ⊕ G2 ∩ V ⊥ , or
we would get G2 ∩ F2n+1−i �= 0, which is impossible by i � 2.

The final formula for I1(τ1,1, τa,b, τc,d) follows from a straightforward calculation. �
2.5. Quantum Pieri rule

We can now prove Theorem 1:

Proof of Theorem 1. We start with the invariants I1(τ1, τa,b, τc,d), which are equal to the two-pointed
invariants I1(τa,b, τc,d) because of the divisor axiom. The first item of Proposition 14 enables us to
apply the Enumerativity Theorem 2. Then we use the second item of Proposition 14. For j = l = 0 we
get that for all 0 � i � 2n − 2, we have I1(τ2n−1,i, τ2n−1,2n−2−i) = 1. Then setting j = 0 and l > 0 we
recursively get I1(τ2n−1,i, τ2n−1−l,2n−2−i+l) = 0 (for all i and l > 0). Finally, setting j and l > 0 we get
I1(τ2n−1− j,i+ j, τ2n−1−l,2n−2−i+l) = 0 (for all i and j, l > 0). Hence:

I1(τ1, τa,b, τc,d) =
{

1 if a = c = 2n − 1,

0 if a or c < 2n − 1.

Similarly, Proposition 15 and Theorem 2 imply

I1(τ1,1, τa,b, τc,d) =
{

1 if a = c = 2n − 1,

0 if a or c < 2n − 1.

Using the classical Pieri rule and Poincaré duality, we get our result. �
Using the quantum Pieri formula we can fill out the Hasse diagram from Fig. 1 to obtain the

quantum Hasse diagram of IG(2,7) in Fig. 4. As a comparison see the quantum Hasse diagram of
IG(2,6) in Fig. 5.

2.6. Quantum presentation

Proposition 16 (Presentation of QH∗(IG(2,2n + 1),Z)). The ring QH∗(IG(2,2n + 1),Z) is generated by the
classes τ1 , τ1,1 and the quantum parameter q. The relations are

det(τ11+ j−i )1�i, j�2n = 0,

1

τ1
det(τ11+ j−i )1�i, j�2n+1 + q = 0.
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Fig. 4. Quantum Hasse diagram of IG(2,7).

Fig. 5. Quantum Hasse diagram of IG(2,6).

Proof. Siebert and Tian proved in [ST97, Prop. 2.2] that the quantum relations are obtained by eval-
uating the classical relations using the quantum product. Define δ2n and δ′

2n+1 as in the proof of

Proposition 11 and denote by δ2n and δ′
2n+1 the same expressions with the cup product replaced by

the quantum product.
Now we consider the quantum products Πa := (τ1)

2(n−a) � (τ1,1)
a for 0 � a � n. For reasons of

degree it has no q-term of degree greater than 1. First we prove that Πa has no q-term if a �= 0,1. To
prove this, we decompose Πa for a > 0 as

Πa = τ1,1 �
(
(τ1)

2(n−a)(τ1,1)
a−1).

Notice that for degree reasons, (τ1)
2(n−a)(τ1,1)

a−1 has no q-term. Moreover, if a � 2, the classical
Pieri formula 4 implies that this product contains only classes τc,d with c < 2n − 1. Then we use the
quantum Pieri formula 1 to conclude that there is no q-term in Πa . We are now left with computing
the q-term of Π0 and Π1. Set αp := (τ1)

p for p � 2n − 1. αp has no q-term. We have Π0 = τ1 �α2n−1
and Π1 = τ1,1 � α2n−2. We compute recursively the coefficients of τp and τp−1,1 for p � 2n − 3 in αp

using the classical Pieri rule. We find

αp = τp + (p − 1)τp−1,1 + terms with lower first part.
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Then

α2n−2 = τ2n−1,−1 + (2n − 2)τ2n−2 + terms with lower first part

and

α2n−1 = (2n − 1)τ2n−1 + terms with lower first part.

Finally we use the quantum Pieri rule to deduce that

Π0 = classical terms + (2n − 1)q,

Π1 = classical terms + q.

But

δ2n = Π0 − (2n − 1)Π1 + linear combination of Πa ’s with a � 2,

δ′
2n+1 = Π0 − 2nΠ1 + linear combination of Πa’s with a � 2,

hence δ2n = δ2n and δ′
2n+1 = δ′

2n+1 − q. �
2.7. Around a conjecture of Dubrovin

In 1994, Dubrovin stated a conjecture relating properties of the quantum cohomology of Fano
varieties and properties of their derived category:

Conjecture 1. (See Dubrovin [Dub98, Conj. 4.2.2].) Let X be a Fano variety. The big quantum cohomology of X
is generically semisimple if and only if its derived category of coherent sheaves Db(X) admits a full exceptional
collection.

Let us recall some definitions involved in the statement of this conjecture:

Definition 2.

1. An (ordered) collection (E1, . . . , Em) of objects in Db(X) is exceptional if HomDb(X)(Ei, E j) = 0
for all i > j and HomDb(X)(Ei, Ei) =C for all i.

2. A collection (E1, . . . , Em) of objects in Db(X) is full if it generates the derived category, i.e. if the
smallest triangulated subcategory of Db(X) containing the collection is Db(X) itself.

3. A finite-dimensional associative algebra is semisimple if it has no non-trivial nilpotent ideals.
Moreover, the (big or small) quantum cohomology ring QH∗(X) of a smooth projective variety
X is said to be generically semisimple if it is semisimple as an algebra for generic values of the
quantum parameters.

In this section, we check the conjecture for odd symplectic Grassmannians of lines. We first show
that the (small) quantum cohomology ring of IG(2,2n + 1), localized at q �= 0, is semisimple. To do
this we adapt the presentation of Proposition 16 to make the symmetries more apparent:
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Theorem 3.

1. The ring QH∗(IG(2,2n + 1),Z) is isomorphic to RS2 , where

R = Z[x1, x2,q]/(h2n(x1, x2),hn
(
x2

1, x2
2

) + q
)

and x1 and x2 are the Chern roots of the tautological bundle S and hr(y1, y2) is the r-th complete sym-
metric function of the variables y1 , y2 .

2. QH∗(IG(2,2n + 1),Z)q �=0 is semisimple.

Proof. 1. We use the recurrence relation (3) from Proposition 11 to prove that δr = hr(x1, x2) for all r.
Then

δ′
2n+1 = h2n+1(x1, x2)

x1 + x2
= hn

(
x2

1, x2
2

)
.

2. It is enough to prove the semisimplicity of R localized at q �= 0. We may assume q = −1.
Using (x1 − x2)h2n(x1, x2) = x2n+1

1 − x2n+1
2 and noticing that we must have x2 �= 0, the first relation

implies that x1 = ζ x2, where ζ �= 1 is a (2n + 1)-th root of unity. Replacing in the second relation
hn(x2

1, x2
2) − 1 = 0, we get x2n

1 = 1 + ζ . Since ζ �= −1, this equation has 2n distinct solutions. So we
have 2n distinct solutions for x1, and for each x1 we have 2n distinct solutions for x2, which gives us
(at least) 4n2 distinct solutions for the pair (x1, x2). But the number of solutions, counted with their
multiplicity, should be equal to twice the rank of H∗(IG(2,2n + 1),Z), which is equal to 2n2. So there
are no other solutions, and all solutions are simple. Hence the semisimplicity. �

Since semisimplicity of the small quantum cohomology implies generic semisimplicity of the big
one (see [Cio05, Lem. 3]), Theorem 3 proves that the big quantum cohomology of IG(2,2n + 1) is
generically semisimple. So to confirm Dubrovin’s conjecture in this case it is enough to find a full
exceptional collection.

In [Kuz08], Kuznetsov computed full exceptional collections for the symplectic Grassmannian of
lines. His method can easily be adapted to the odd symplectic case. Here we denote the tautologi-
cal bundle by U instead of S to avoid confusion with symmetric powers. We denote by Y I

2n+1 the
following collection of integer pairs, ordered lexicographically:

Y I
2n+1 := {

(k, l) ∈ Z
2
∣∣ 0 � k � 2n − 1 and 0 � l � n − 1

}
.

Theorem 4. The collection C I := {SlU∗(k) | (k, l) ∈ Y I
2n+1} is a full exceptional collection inDb(IG(2,2n+1)).

Proof. We use the Lefschetz full exceptional collection for the Grassmannian Gr(2,2n + 1) intro-
duced by Kuznetsov. This collection is different from the collection previously obtained by Kapranov
in [Kap88] and more suitable for restriction to a hyperplane section.

Let

Y2n+1 := {
(k, l) ∈ Z

2
∣∣ 0 � k � 2n and 0 � l � n − 1

}
.

Then C := {SlU∗(k) | (k, l) ∈ Y2n+1} is a full exceptional collection in Db(Gr(2,2n + 1)) (cf. [Kuz08,
Thm. 4.1]). Since C is a Lefschetz exceptional collection, it follows from [Kuz08, Prop. 2.4] that C I is
an exceptional collection for IG(2,2n + 1). As in the even case, it remains to show by induction that
it is full. We first introduce

Ỹ I
2n−1 = {

(k, l) ∈ Z
2
∣∣ 0 � k � 2n − 1 and 0 � l � n

}
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and prove

Lemma 10. For all (k, l) ∈ Ỹ I
2n−1 , the vector bundle SlU∗(k) lies in the subcategory of the derived category

Db(IG(2,2n + 1)) of IG(2,2n + 1) generated by the Lefschetz collection C I .

Proof. We have Ỹ I
2n−1 \ Y2n−1 = {(0,n), . . . , (2n − 1,n)}. Moreover, we have the following exact se-

quences on Gr(2,2n + 1) for 0 � p � n from [Kuz08, Eq. (11)]:

0 → S2n−1−pU∗ → W ⊗ S2n−2−pU∗(1) → ·· · →
2n−2−p∧

W ⊗ U∗(2n − 2 − p)

→
2n−1−p∧

W ⊗ U∗(2n − 1 − p) →
p∧

W ∗ ⊗O(2n − p) →
p−1∧

W ∗ ⊗ U∗(2n − p)

→ ·· · → S pU∗(2n − p) → 0.

These exact sequences can be restricted to IG(2,2n + 1).
For p = n, we get a resolution of SnU∗(n) by objects of the subcategory generated by C . Tensoring

by O(i) for 1 � i � n − 1, we also get resolutions for SnU∗(n + 1), . . . , SnU∗(2n − 1). Then for p =
n − 1, we get a resolution of SnU∗ , and again, after tensoring by O(i) for 1 � i � n − 2, we obtain
resolutions of SnU∗(1), . . . , SnU∗(n − 2). To conclude the proof, we are left with finding a resolution
of SnU∗(n − 1) by objects of the subcategory generated by C . Let W ⊃ W be a (2n + 2)-dimensional
vector space endowed with a symplectic form ω extending ω. On Grω(2, W ), we have the following
bicomplex from [Kuz08, Prop. 5.3]:

SnU∗

W ∗ ⊗ Sn−1U∗(1) SnU∗(1)

∧2 W ∗ ⊗ Sn−2U∗(2) W ∗ ⊗ Sn−1U∗(2) SnU∗(2)

· · · · · · · · ·

∧n−1 W ∗ ⊗ U∗(n − 1)
∧n−2 W ∗ ⊗ S2U∗(n − 1) · · · SnU∗(n − 1)

∧n W ∗ ⊗O(n)
∧n−1 W ∗ ⊗ U∗(n) · · · W ∗ ⊗ Sn−1U∗(n) SnU∗(n)

whose associated total complex is exact. Restricting this complex to

Grω(2, W ) ⊂ Grω(2, W ),

we get a complex such that every entry except SnU∗(n − 1) is an object of the subcategory generated
by C . Hence SnU∗(n − 1) also belongs to the latter category. �
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We will need a further lemma for the inductive step:

Lemma 11. Let V ⊂ W be a (2n − 1)-dimensional vector space such that ω|V has maximal rank. Let X :=
IG(2, W ), XV := IG(2, V ) and iV : XV ↪→ X be the natural embedding. We get the following Koszul resolution
for iV ∗OXV :

0 → OX (−2) → UX (−1) ⊕ UX (−1) → OX (−1)⊕3 ⊕ S2UX → UX ⊕ UX

→ OX → iV ∗OXV → 0.

Proof. To each vector space V as above corresponds a section φV of U∗ ⊕U∗ on IG(2, W ); moreover,
the zero locus of φV is IG(2, V ) ⊂ IG(2, W ). Since

dim XV = 4n − 7 = dim X − 4 = rk
(
U∗

X ⊕ U∗
X

)
,

any such section φV is regular, hence the sheaf i∗OXV admits a Koszul resolution of the above
form. �

We may now use induction on n to prove the theorem. For n = 1, the result is obvious. Now
assume that n � 2, that the result is proved for n − 1, and that the Lefschetz collection for n is not
full. Then there exists an object F ∈ Db(IG(2,2n + 1)) which is right orthogonal to all bundles in the
collection, i.e. such that:

0 = RHom
(

SlU∗(k), F
) = H•(X, SlU∗(−k) ⊗ F

)
for all (k, l) ∈ Ỹ I

2n−1. Let V be such as in Lemma 11 and iV : XV ↪→ X be the embedding. We will

prove i∗V F = 0. Let (k, l) ∈ Ỹ I
2n−1. Tensoring the resolution of Lemma 11 by SlU∗(−k) ⊗ F , we get

0 → SlU(−2 − k) ⊗ F → (
Sl+1U(−1 − k) ⊗ F ⊕ Sl−1U(−2 − k) ⊗ F

)⊕2

→ (
SlU(−1 − k) ⊗ F

)⊕4 ⊕ Sl+2U(−k) ⊗ F ⊕ Sl−2U(−2 − k) ⊗ F

→ (
Sl+1U(−k) ⊗ F ⊕ Sl−1U(−1 − k) ⊗ F

)⊕2 → SlU(−k) ⊗ F

→ SlU(−k) ⊗ F ⊗ iV ∗OXV → 0.

Moreover

SlU(−k) ⊗ F ⊗ iV ∗OXV
∼= iV ∗

(
iV

∗(SlU(−k) ⊗ F
)) ∼= iV ∗

(
SlU(−k) ⊗ iV

∗(F )
)
.

If (k, l) ∈ Y I
2n−1, then (k + 2, l), (k + 2, l − 1), (k + 1, l + 1), (k + 1, l), (k + 2, l − 2), (k, l + 2), (k, l + 1),

(k+1, l−1) and (k, l) are in Ỹ I
2n−1. Hence the cohomology of the five first terms of the above complex

vanishes, and

RHomV
(

SlU∗(k), iV
∗ F

) = H•(XV , SlU∗(−k) ⊗ iV
∗ F

) = 0

for all (k, l) ∈ Y I
2n−1. By the induction hypothesis, we get iV

∗ F = 0.

Lemma 12. If, for some F ∈Db(IG(2,2n+1)), we have iV
∗ F = 0 for every (2n−1)-dimensional vector space

V for which the conditions of Lemma 11 hold, then F = 0.
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Proof. If F �= 0, let q be the maximal integer such that the cohomology sheaf Hq(F ) is non-zero.
Consider P ∈ Supp(Hq(F )). As long as n � 2, there exists a (2n−1)-dimensional subspace V such that
P ⊂ V and ω|V has maximal rank. It follows that P ∈ Supp(i∗V Hq(F )), hence i∗V Hq(F ) �= 0. The functor
i∗V being right exact, by choice of q we obtain that Hq(i∗V F ) is also non-zero, hence i∗V F �= 0. �

This concludes the proof of the theorem. �
It should be mentioned that it is not known whether the Dubrovin conjecture holds for the sym-

plectic Grassmannian of lines. Indeed, although Kuznetsov has found a full exceptional collection for
these varieties, Chaput and Perrin proved in [CP09, Thm. 4] that their small quantum cohomology is
not semisimple. What happens for the big quantum cohomology is still unknown.
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