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Carnitine metabolism during exercise in patients on chronic hemodial-
ysis. Patients on hemodialysis (HD) have impaired exercise perfor-
mance. Carnitine homeostasis is also abnormal in this population. As
carnitine is an important cofactor for muscle energy metabolism,
exercise performance and skeletal muscle carnitine metabolism were
characterized in eight HD patients, and in five age-matched controls.
Each patient underwent graded bicycle exercise testing to define
maximal performance, and prolonged exercise at 70% of their peak
work capacity. Muscle (vastus lateralis) total carnitine content (car-
nitine plus all acylcarnitines) at rest was lower in HD patients than in
controls (2320 1190 vs. 3800 940 nmol/g, P < 0.05). In patients on
HD, muscle carnitine content was inversely correlated to time on HD
(r = —0.74, P < 0.05), and positively correlated to peak exercise
performance (r = 0.77, P < 0.05). In patients on HD, 8 7% of the
muscle carnitine pool at rest was short-chain acylcarnitines (similar to
the distribution in controls), but 32 5% of the plasma carnitine pool
consisted of short-chain acylcarnitines. With high-intensity exercise in
patients on HD, muscle short-chain acylcarnitine content increased
from 130 130 to 1380 820 nmollg (P < 0.01). The change in muscle
short-chain acylcarnitine content with exercise was correlated with the
increase in muscle lactate content (r = 0.88, P < 0.01). In summary,
patients on HD had a lower muscle total carnitine content than control
subjects which was correlated to exercise performance. In the HD
patients during exercise, the load-dependent changes in muscle metab-
olism (lactate accumulation, acylcarnitine production) occurred over a
constricted range of work loads, but were qualitatively similar to the
responses observed in normal subjects.

Patients with chronic renal failure on hemodialysis (HD) have
a moderate to severe impairment in exercise performance. The
peak oxygen consumption in these patients averages 16 to 20
ml/kg/min [1—51, or approximately 50 to 70% of the age-
predicted maximal oxygen consumption in normal subjects [6].
When patients with chronic renal failure perform submaximal
exercise, blood lactate concentrations increase at work loads
not associated with a change in lactate metabolism in normal
subjects [7, 8]. These alterations in peak exercise performance
and exercise metabolism in patients with renal failure are

associated with a clinically significant reduction in the ability to
sustain even moderate levels of activity [9].

The etiology of the marked impairment in exercise capacity in
patients with renal failure is unknown, but may be multifacto-
Hal. The chronic anemia of renal failure is associated with a
reduced exercise capacity [10]. However, an increase in hema-
tocrit with erythropoietin results in only modest improvements
in exercise performance [4]. Structural changes in type II
(fast-twitch) muscle fibers [11] are associated with muscle
weakness which contributes to the exercise impairment [4, 12].
Patients with chronic renal failure also have abnormalities of
skeletal muscle metabolism including an impairment in fatty
acid oxidation [13], an important pathway for muscle energy
production during exercise. Finally, deconditioning and under-
lying cardiovascular disease in many patients may limit exercise
capacity.

Carnitine homeostasis is abnormal in chronic renal failure.
Carnitine is required for the mitochondrial oxidation of long-
chain fatty acids [14], and also interacts with short-chain
acyl-CoA's (intermediates of oxidative metabolism), to revers-
ibly form short-chain acylcarnitines [15]. In normal subjects,
skeletal muscle carnitine metabolism changes during exercise in
a fashion that is dependent on metabolic state, with an exercise-
induced accumulation of short-chain acylcarnitines observed at
work loads above the lactate threshold [16, 17]. In patients on
hemodialysis, the plasma concentration of short-chain acylcar-
nitines is increased [1, 13, 18], but changes in tissue carnitine
content and metabolism have been less well defined. Muscle
carnitine content is decreased in some hemodialysis patients [I,
19—21], but this observation has not been consistently replicated
[22, 23]. Further, it is not known if alterations in skeletal muscle
carnitine homeostasis and metabolism may be important in the
pathophysiology of the poor exercise tolerance in these pa-
tients. To evaluate this relationship, muscle and plasma car-
nitine metabolism was evaluated in patients on hemodialysis at
rest and after exercise.
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Methods

Subjects

Eight patients with end-stage renal disease on maintenance
hemodialysis, and five age-matched control subjects were en-
rolled. All subjects were initially evaluated with a history and

1613

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82400801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1614 Hiatt et a!: Carnitine metabolism in chronic renal failure

physical examination, and a screening exercise test to familiar-
ize them with the testing procedures. Control subjects had no
chronic, active diseases, were on no medications, and had a
normal physical examination.

Patients on erythropoietin were allowed to continue on this
medication as long as the dose and hematocrit were stable and
unchanged over the preceding three months prior to enrollment.
Patients taking other chronic medications were continued on
their drugs, but the doses remained unchanged during the
study. Patients whose exercise capacity was limited by symp-
toms of angina, congestive heart failure, chronic obstructive
pulmonary disease or arthritis were excluded. Diabetics were
excluded as glycemic control may affect carnitine metabolism
[24]. The study was approved by the University of Colorado
School of Medicine Human Subjects Committee, and informed
consent was obtained from all subjects.

Exercise measuretnents

All exercise was conducted on an electronically-gaited er-
gometer (Uniwork ergometer model 845, Quinton Instrument
Co., Seattle, Washington, USA) the morning after a dialysis
treatment with an average of five days between each test. Rates
of oxygen consumption (VO,) and carbon dioxide production
('CO,) were measured at rest and during exercise, using an
Ametek metabolic system (Ametek Thermox, Pittsburgh, Penn-
sylvania, USA). Before each test the analyzers were calibrated
with known concentrations of 02 and CO2. The respiratory
exchange ratio (RER) was calculated as the ratio of VCO,/V02.
Arm blood pressure (by auscultation) and heart rate (by an
electrocardiogram) were obtained every minute during exer-
cise. Cardiac status was continually monitored throughout the
exercise test by 12-lead electrocardiogram. During exercise,
perceived exertion was ascertained by the Borg scale with a
range of 6 (very, very light) to 20 (very, very hard) [25]. Blood
lactate concentrations were measured at rest and during each
minute of exercise. A lactate threshold was determined for each
patient as the work load and oxygen consumption where blood
lactate concentration began to progressively increase over
baseline values [9, 26].

Exercise testing validation

The exercise testing methods were initially validated in four
subjects on hemodialysis who had a similar age, hematocrit and
exercise performance as the patients subsequently enrolled in
the biopsy study. In the validation studies, patients performed
exercise on four separate occasions to peak exertion using
graded ergometer protocols that varied in the progression of
work loads. The exercise protocols used in the current studies
demonstrated coefficients of variation (within-subject standard
deviation divided by the mean) of 4% for peak oxygen con-
sumption, 5% for peak RER, 5% for peak heart rate and 4% for
perceived exertion in HD patients. In two of the graded tests in
the validation group blood lactate concentration was measured.
The coefficient of variation for the lactate threshold (expressed
as the percent of peak oxygen consumption) was 5%, whereas
the peak blood lactate concentration varied by 29%. Thus, the
protocols and instrumentation permitted a highly reproducible
assessment of exercise performance and metabolic characteri-
zation in this patient population.

Exercise protocols
Eight patients were enrolled to evaluate changes in skeletal

muscle carnitine metabolism on chronic hemodialysis. These
patients initially performed two graded exercise tests using the
200 kp. m/min, three-minute stage protocol, and the 100
kp . rn/mm, two-minute stage protocol. Peak exercise time and
the lactate threshold were defined from the 200 kp . rn/mm,
three minute stage test, but the peak oxygen consumption,
RER, and heart rate were averaged from the two graded tests.
Control subjects also performed graded bicycle exercise (200
kp . m/min, 3 mm stages) to define a lactate threshold and
maximal exercise performance. A "maximal" level of exertion
could be defined in control subjects as a plateau in oxygen
consumption. Since no plateau in oxygen consumption was
observed in HD patients, the performance parameters are
described as "peak".

The HD patients were then evaluated during an exercise test
at a constant work load that was above the individual's lactate
threshold. From these evaluations, a work load was selected for
the final study characterizing metabolic parameters. The work
load selected ensured that patients would exercise above their
lactate threshold (that is, reproducible metabolic state), and
that the exercise could be maintained for a defined period
without exhaustion.

Physical activity recall
Subjects were asked to recall their major occupational,

leisure and home activities over a typical week using a previ-
ously validated standard questionnaire [27]. The intensity and
duration of each activity were recorded in METs (1 MET = 3.5
ml oxygen/kg/mm), and the number of active MET hours per
week was calculated (1 MET hour = 1.02 Kcal/kg/hr).

Blood collection and preparation

A 20 g intravenous catheter was placed in a forearm vein,
with a three-way stopcock to facilitate blood drawing. Patency
of this system was maintained with heparinized saline. For each
sample, 5 ml of blood was withdrawn and immediately trans-
ferred to a heparinized tube on ice, The blood was centrifuged
in chilled tubes at 600 x g for three minutes, with plasma
aliquots stored at —80°C until subsequent analysis. Blood for
lactate analysis (25 s1) was immediately deproteinized in 3%
perchioric acid and stored on ice.

In all subjects, three resting samples of blood were drawn five
minutes apart for the analysis of carnitine, acylcarnitines,
/3-hydroxybutyrate and glucose, with the average results re-
ported as "Rest" values. In patients on hemodialysis studied
during the constant-load protocol, additional blood samples
were drawn for analysis immediately prior to the end of
exercise, and at the end of exercise. The average of the two
samples are reported as the "Exercise" value. In the recovery
period, blood was also obtained at 5, 15 and 30 minutes after
exercise and reported as the "Recovery" values. Blood for the
measurement of lactate was drawn every minute during exer-
cise, and five minutes after exercise.

Muscle biopsy

A resting biopsy of the vastus lateralis muscle was performed
in the control subjects and in patients on hemodialysis. After a
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Table 1. Characteristics of patients on chronic hemodialysis

Weight Dialysis

Erythropoietin
Dose

Subject Sex/age kg years Etiology Hct a Months PAR

I M138 68.6 16.0 Congenital 33% 1000 7 146
2 M/58 70.0 0.5 Hypertension 23% — — 180
3 F/25 53.6 6.0 SLE 25% 5000 6 146
4 M/51 85.5 0.6 GN 34% — — 119
5 M/60 67.3 10.5 Idiopathic 33% 3600 11 146
6 M/49 72.2 2.8 PKD 33% — — 113
7 M/46 66.9 16.0 GN 27% 4000 9 164
8 M/67 66.4 10.5 ON 33% 1600 5 115

Abbreviations are: SLE, systemic lupus erythematosus; GN, glomerulonephritis; PKD, polycystic kidney disease. PAR refers to the physical
activity recall questionnaire that records the level of activity in MET hours per week. The erythropoietin dose is in units per dialysis.

3 ml subcutaneous injection of 1% lidocaine, a 5 mm biopsy
needle (Bergstrom muscle biopsy cannula, DePuy Inc., Warsaw
Indiana, USA) was used to remove approximately 40 to 50 mg
of tissue. After constant-load exercise, a second biopsy was
performed in the hemodialysis patients through a separate
incision, located 5 mm proximal to the site of the resting biopsy.
Muscle tissue was immediately frozen in liquid nitrogen and
stored at —80°C.

Assay methods
Carnitine was measured by a radioenzymatic assay [28], as

previously described [29]. The carnitine concentration in stan-
dard solutions was determined by the method of Marquis and
Fritz [30]. Samples were prepared in 3% perchloric acid and
centrifuged at 10,000 x g for two minutes. The perchloric acid
supernatant, which contains carnitine and short-chain acylcar-
nitines, was assayed for carnitine. An additional aliquot of the
supernatant was then subjected to alkaline hydrolysis to con-
vert short-chain acylcarnitines to carnitine, and carnitine was
again measured to determine total acid soluble carnitine. Short-
chain acylcarnitine concentration (acyl groups less than 10
carbon atoms) was derived from the difference in the concen-
trations of total acid-soluble camitine and carnitine in the
supernatant. The ratio of short-chain acylcarnitine concentra-
tion to total acid soluble carnitine concentrations (SC/TAS) was
calculated, and provides a useful marker of changes in carnitine
metabolism [15]. Long-chain acylcarnitine concentration (acyl
moiety of 10 or more carbons) was measured as carnitine after
alkaline hydrolysis of the perchloric acid pellet. Total carnitine
refers to the sum of the camitine, short-chain acylcarnitine and
long-chain acylcarnitine concentrations. All assays were per-
formed in duplicate with the average result reported.

Lactate was assayed in deproteinized blood, or muscle,
prepared in perchloric acid [31]. Plasma J3-hydroxybutyrate was
measured by the method of Olsen [32], and glucose by a glucose
oxidase method adapted to kit form by Sigma Chemicals (St.
Louis, Missouri, USA).

Statistical analysis
Student's t-test for paired data, or a within-subjects analysis

of variance (ANOVA) for multiple measurements over time was
used for within-subject comparisons. An unpaired t-test was
used to compare results between the control and patient groups.
Linear regression was calculated for correlation between van-

Table 2. Peak exercise performance of control subjects and patients
on chronic hemodialysis

Peak values Control Hemodialysis

Perceived exertion 20 0 19 1

Work load kp rn/mm 840 90 438 92°
V02 mi/kg/mm 25.0 3.0 16.0 2.2a
Heart rate beats/mm 142 14 113 ii°
RER vco2iVo2 1.12 0.07 1.26 o.o7
Blood lactate mM 3.7 1.6 2.5 0.8

Subjects were tested on a graded bicycle ergometer protocol to peak
exertion. The peak values for rates of oxygen consumption (VO,), the
respiratory exchange ratio (RER), heart rate and blood lactate concen-
tration and perceived exertion were obtained during the last minute of
exercise.

P < 0.01 for value in patients on hemodialysis compared to value
for controls using an unpaired t-test

ables using the Pearson's product moment correlation coeffi-
cient. Data are presented as mean SD and analyses consid-
ered statistically significant when P <0.05.

Results

Patient characteristics
End-stage renal disease was diagnosed in all patients, and

was secondary to the diseases listed in Table 1. The patients
had been on hemodialysis treatment for an average of 7.9 6.4
years, with a range of seven months to 16 years. Five of the
eight patients were receiving stable erythropoietin doses at an
average dose of 3000 U/dialysis. Patients on erythropoietin had
a similar activity level by physical activity recall and peak
oxygen consumption as did the patients not on this medication.
The five control subjects were age-matched (48 12 years) with
the HD patients (48 14 years). However, controls had higher
hematocrits (44 4%) than HD patients (30 4%), and
physical activity levels (282 86 MET hr/week) than the HD
patients (141 24 MET hr/week).

With graded exercise, all subjects stopped at a perceived
exertion level of 19 to 20 on the Borg scale. However, control
subjects achieved a greater exercise work load, exercise dura-
tion, heart rate and oxygen consumption than the peak values
for the hemodialysis patients (Table 2). In the control and HD
subjects a lactate threshold was defined during graded exercise
to facilitate the evaluation of carnitine metabolism in a repro-
ducible metabolic state [9]. The HD patients had a lactate
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Table 3. Plasma and muscle carnitine and acylcarnitine contents at
rest in hemodialysis patients

Muscle nmol/g

Carnitine 42.2 8.3 28.7 548 3420 910 2190 1190
Shortchain 6.5 6.4 13.8 4.? 340 1 190 130 1308

ncylcarnitines
SCITAS ratio 0.13 0.13 0.32 0.058 0.09 0.06 0.08 0.07
Long-chain 6.0 1.4 5.8 1.9 41 16 21 118

acylcarnitines
Total carnitine 54.7 7.2 48.3±9.5 3800 940 2320 11908

Patients on hemodialysis (HD) were studied the day following the last
dialysis, after an overnight fast. Control subjects were also studied after
an overnight fast. Muscle biopsies of the vastus lateralis were per-
formed at rest. The ratio of short-chain acylcarnitine content to total
acid soluble carnitine content (SCITAS ratio) provides an index of the
change in acylation of the carnitine pool.

a p .c 0.05 for patients on hemodialysis compared to controls

threshold during graded exercise that occurred at 82 12% of
peak oxygen consumption and 75 18% of the peak work load.
The average peak blood lactate concentrations were not differ-
ent between groups (P = 0.19), but patients on hemodialysis
had a higher RER at peak exercise than control subjects.

Carnitine metabolism at rest

At rest, the patients on hemodialysis had a lower plasma
concentration of carnitine, a higher plasma concentration of
short-chain acylcarnitines, the ratio of short-chain acylcarnitine
concentration to total acid soluble carnitine concentration (SC!
TAS ratio) as compared to control subjects (Table 3). The
plasma concentrations of long-chain acylcarnitines and total
carnitine were similar between groups as was the blood lactate
concentration. The plasma concentrations of glucose and p-hy-
droxybutyrate (Table 4) were within the expected ranges for
normal subjects [33—35].

At rest, patients on hemodialysis had lower muscle contents
of short-chain acylcarnitines, long-chain acylcarnitines and
total carnitine (all P C 0.05) as compared to control subjects
(Table 3). However, in contrast to the plasma carnitine pool,
the skeletal muscle SC/TAS ratio was similar between patients
and control subjects. The duration on chronic hemodialysis was
inversely correlated with the resting skeletal muscle total car-
nitine content (r = —0.74, P < 0.05, Fig. 1). Patients on
erythropoietin had a muscle total carnitine content similar to
the patients not on this medication (data not shown).

Constant-load exercise in patients on hemodialysis

In patients on hemodialysis, the physiologic and metabolic
responses to exercise were determined during a constant-load
exercise protocol at an intensity above each individual's lactate
threshold. Exercise above the lactate threshold was selected as
it is associated with a series of well characterized, qualitative
changes in carnitine and fuel metabolism [16, 36]. This exercise
test was terminated prior to exhaustion (time to exhaustion at
the selected work load determined by previous testing in each
individual), with an average duration for the group of 9.4 2.5
minutes. The mean exercise work load was 300 93 kp m/
mm, which averaged 68% of the peak work load achieved
during the graded protocols. Heart rate during the constant-load

protocol averaged 110 17 beats/mm, which was 97% of the
peak heart rate as determined from the graded tests. The
average oxygen consumption during the endurance exercise

HI) was 14.7 2.4 mI/kg/mm, which was 90% of the peak oxygen
consumption.

The systemic metabolic responses to exercise were charac-
terized in the eight hemodialysis patients during the constant-
intensity exercise by the respiratory exchange ratio (RER),
blood lactate concentration, and the plasma concentrations of
glucose, and f3-hydroxybutyrate (Table 4). The mean RER at
the conclusion of constant-intensity exercise was 1.11 0.08,
and the blood lactate concentration was greater than 2.0 mM in
all patients (confirming that the work load selected was above
the individual's lactate threshold), with an average peak value
of 3.3 1.1 mM. During exercise and recovery, the plasma
concentration of /3-hydroxybutyrate remained unchanged. At
rest the plasma glucose concentration was 83.4 15.1 mgldl
which decreased after 15 minutes (74.4 8.4 mg/cu) and 30
minutes (73.9 7.4 mg/dl) of recovery post-exercise.

At the conclusion of the constant-load exercise above the
lactate threshold, plasma concentrations of carnitine, short-
chain acylcarnitine and long-chain acylcarnitine were un-
changed from values obtained at rest (data not shown). In
contrast, the muscle carnitine pool was redistributed to short-
chain acylcarnitines at the end of the exercise, with the muscle
short-chain acylcarnitine content increased to 1510 780

nmollg. At the end of exercise, the muscle contents of carnitine
(1560 720 nmol/g), long-chain acylcarnitines (20 15 nmolig)
and total carnitine (3090 1050 nmollg) were unchanged from
resting values. The muscle SC/lAS ratio increased from 0.08
0.07 at rest to 0.48 0.18 (Pc 0.01) after exercise, reflecting
the accumulation of short-chain acylcarnitines. The muscle
lactate content also increased from 1.7 1.2 jsmol/g at rest to
5.0 4.7 LmolIg after exercise. The increases in muscle lactate
and short-chain acylcarnitine contents during exercise were
positively correlated (y 179 x + 793, r 0.88, P < 0.01).

Predictors of exercise performance
The hematocrit in patients on hemodialysis was not corre-

lated with peak exercise time (r = 0.26, P = NS) or peak oxygen
consumption (r 0.04, P = NS) during the graded test. In
contrast, the resting total carnitine content in muscle was
correlated with peak exercise duration during the graded test
(r = 0.81, P <0.05, Fig. 2), but muscle carnitine total content
was not correlated with peak oxygen consumption (r 0.26, P

NS).

Discussion

Patients on hemodialysis have a marked impairment in peak
and endurance exercise performance [1—5]. Although multiple
factors may contribute to this exercise impairment, attempts to
correct the low blood oxygen content with erythropoietin
improves, but does not normalize exercise performance [4], In
the current study, peak exercise time and oxygen consumption
were not related to the degree of anemia. These observations
are consistent with the concept that alterations in skeletal
muscle metabolism may contribute to the limited exercise
performance [1, 37]. In this context, the state of the muscle
carnitine pool at rest and with exercise provides a marker of
muscle metabolism in these patients.

Plasma —
Control RD Control
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Table 4. Metabolic parameters during constant-load exercise in patients with chronic renal failure on hemodialysis

Recovery
Rest Exercise 5 mm 15 mm

Respiratory exchange ratio (VCO2/V02) 0.86 0.12 1.11 0.08 — —
Blood lactate mu 0.9 0.2 3.3 l.P 3.4 l.V —
Plasma fJ-hydroxybutyrate mw 0.38 0.15 0.39 0.16 0.38 0.16 0.38 0.16
Plasma glucose mg/dl 83.4 15.1 78.1 8.4 77.0 8.6 74.4 8.4a

Patients on hemodialysis performed exercise at a constant work load that was at an intensity above their individually determined lactate
threshold.

a p C 0.05 for change in exercise or recovery values compared to rest in patients on hemodialysis

In the present study it was critical to characterize not only the
reproducibility of the peak exercise measurements, but also the
presence of a lactate threshold, in order to define an exercise
intensity for each patient that reflected a specific metabolic
state of exercise. Validation studies demonstrated that patients
on hemodialysis had peak exercise measurements that were
highly reproducible and independent of the type of graded
protocol used (Methods). A lactate threshold could be defined
for each subject that was also reproducible. Peak blood lactate
concentrations were in the range previously reported for pa-
tients on hemodialysis [12], but were more variable than the
threshold values. However, peak lactate concentrations may be
influenced by multiple factors such as the type of exercise
protocol used and the duration of exercise. Thus, determination
of the work Load defining the lactate threshold was used to
design subsequent protocol work loads, with peak lactate
concentrations confirming that the lactate threshold had been
exceeded (high intensity exercise).

Carnitine metabolism in hemodialysis patients is character-
ized by accumulation of short-chain acylcarnitines in plasma,
and a decreased plasma unesterified carnitine concentration
[20,21,38]. This redistribution of the plasma carnitine pool was
confirmed in the current studies. However consistent with
previous reports [1, 20, 21], there was no accumulation of
short-chain acylcarnitines in muscle at rest, and the muscle
SC/TAS ratio in the hemodialysis patients was similar to control

values and to previously reported values for normal subjects
[16]. With exercise HD patients had a large increase in muscle
short-chain acylcarnitine content without a similar change in
plasma short-chain acylcarnitine concentration. These findings
support the concept that changes in muscle carnitine metabo-
lism with exercise are poorly reflected in plasma [16], and that
accumulations of short-chain acylcarnitines in the plasma at
rest in hemodialysis patients are secondary to alterations in
liver [29], or renal carnitine metabolism.

Patients on hemodialysis had lower short-chain acylcarnitine,
long-chain acylcarnitine and total carnitine contents in the
vastus lateralis muscle at rest as compared to control subjects.
Previous reports have shown that the amount of carnitine lost
per week from hemodialysis was less than the amount of
carnitine excreted by normal subjects over the same time period
[39]. More recent data suggest that the total body clearance of
both carnitine and acylcarnitines are similar in dialysis patients
and healthy subjects [22]. However, the duration of hemodial-
ysis in this study was correlated with a lower total carnitine
content in muscle. This finding suggests that hemodialysis is
associated with changes in muscle metabolism and carnitine
honieostasis that require several years to become manifest as
decreased muscle carnitine content.

The muscle total carnitine content at rest was positively
correlated with exercise duration on the graded ergometer
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