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A b s t r a c t - - S o m e  sufficient condlt]ons are estabhshed for the oscillation of a class of neutral 
parabolic differential equations of the form, 

oN (u(x,t) -- k~=l)~ku(x,t -- Pk)) 
OtlV -a ( t )&u+ Ep~(x, t )u(x , t - -a~)-  qj (x,t)u(x,t-Tj) 

z=l  ...=1 

+h(t) f ( u ( x , t - r l ) ,  ,u(x,t-rt))=O, (x,t) e~x[to,+oo)=G, t 0 E R  +, 

where N is an odd number, f~ is a bounded domain in R M with a smooth boundary 0f~, and A is 
the Laplacian operation with three different boundary conditmns. We obtained some new oscillatory 
conditions for the odd-order neutral parabolic dlfferentml equation. To some extent, our results are 
new oscillatory conditmns, and extended some oscillatory results of some references ~) 2005 Elsewer 
Ltd. All rights reserved 

K e y w o r d s - - O s c f l l a t i o n ,  Neutral, Parabolic, Differential equation, Eventually positive solution. 

1 .  I N T R O D U C T I O N  

C o n s i d e r  t h e  fo l lowing n e u t r a l  p a r a b o l i c  d i f fe ren t ia l  e q u a t i o n ,  

k=l -a(t)/Xu+ y'~p~(x,t)u(x,t-o'~)- q:(x,t) u(z , t -r3)  
Ot ~ t=l 3=1 

+h(t) f ( u ( x , t - r l )  . . . .  u(x, t-rl))=O, (~,t) e a x [ t o , + ~ ) - - a ,  t o e R  +, 

(1 .1)  
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where N is an odd number, n < m, a, p~, q3 are nonnegative coefficients representing the 
phenomena which underline the diffusion process, ~ = 1, . ,n,  2 = 1 , . . . , m .  For example, in 
population dynamics the term aAu corresponds to diffusion due to local concentration, while p,u 
and q3u, correspond to death and birth rates, and f is nonlinear item, respectively, ~ = 1 , . . . ,  n, 
3 = 1 , . . . , m .  

We'll assume throughout  this paper tha t  the following hold. 

(HI) a E C([to, oa),R+), pk 6 [0, oc), p~, q~ E C(R M x [ t0 ,oc) ,R+),  at, Tj, r k, E [0, 00), t o E /~ 

for k = 1 , . . . , r ,  i = 1 , . . . , n ,  2 = 1 , . . . , m ,  and k' = 1 , . . . , I .  
(H2) There exists a parti t ion of the set { 1 , . . . ,  m} into n disjoint subsets J1, d 2 , . . . ,  Jn, such 

tha t  3 E J~ implies tha t  T 3 < at, i = 1 , . . . ,  n. 
(H3) P~ (t) = minzea p~ (x, t) and Q3 (t) = maxsea  q3 (x, t) satisfy the condition, 

(t) > y ~  Qk (t + Tk -- ~ , ) ,  for t _> to + ¢, -- ~k a n d ~  = 1 , . . . ,  n. 
kE& 

r { t N _ l . . j ; ~  p f t l - '~Qk(s )  d s d h . . ,  d t N _ l = C < l f o r  (H4) Ek=l  Ak + lh'nt--*~ ]; ,# • E,=~ Ek~J, J , l -~ ,  
t k to +cry, I~ _> 0, ~ = 1 , . . . , r .  

(Hs) h(t) C C([to, oc), R+), f C C(C(R M x [ t o -  r, co), R) x . . .  x C(R M x [ t o -  rz, ec), R), R), f 
is increasing respect to u, > 0, u J  >_ 0 for i = 1 , . . . ,  l, f is convex, - f  >_ f ( - u l , . . . ,  -ul) ,  
there exists a t > T, such that  P, (t) -}-~ke J, Qk (t + rk - a , )  # 0, or h f  # O, for all T > to. 

(Ha) There exists 0 < K1 < K2 z , j  = 1 , . . .  ,l and such that  Klu,  <_ f (u l  . . . .  ,ul) <_ K2uj for 
each u, > 0, z = 1 , . . . , I .  

We consider the following boundary conditions, 

u(x , t )  = O, (x,t) e Oft x [ t0,ec),  ( B J  

0~ (~, t) 
o~r  : 0, ( z , t )  e o f t  × [to, ~ ) ,  (B~) 

0~ (~, t) 
0l~r + vu = 0, (x, t) e cqf~ X [t0, cx~), (B3) 

where N is a unit exterior normal vector to 0f~ and u(x, t) is a nonnegative continuous function 
on Oft x [to, co), 

cr = max {Pk, a~, n, rk,}, 
l<k<r  

l<3<m 
l<k '< /  

and the initial da ta  of the form, 

u ( x , t ) = ~ ( x , t ) ,  for - a < t < t 0 ,  x C f ~ .  (1.2) 

Let N = 1, f - 0, and )~k = 0, k = 1 , . . . ,  r ,  then equation (1.1) have the following special 
form, 

n m 

Ou(x,t) a ( t ) A u + E P , ( x , t ) u ( x , t _ a , ) ~ - : ~ q , ( x , t ) u ( x , t _ r j = O .  (1.3) 
Ot ~=1 j = l  

The oscillatory behavior of solutions for parabolic equation with functional arguments has been 
dealt in a few recent studies, we can refer to [1-6]. 

Recently, Kubiaczyk and Saker [1] investigated equation (1.3) with boundary  conditions (B J -  
(B3), and they obtained some oscillatory results. But  Theorems 2.3, 3.3, and 4.3 in [1] are not 
correct. 

For example, we consider 

Ou (~,t) o ~  (x,t) 2_~ (~,t -~ 
Ot Ox - - - -~ - - -  + e - 1 ) -  u ( x , t - - 2 ) = 0 ,  x E  (0,1) ,  t _ > l ,  (*) 

with boundary condition, us[~=o = us]s=1 = 0. 
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It is easy to see tha t  P(t) = 2/e, Q(t) = 1/e 2, R(s) = 2/e - 1/e 2, and f :+l(2/e  - 1/e 2) ds = 

2/e  -- 1/e 2 > 0, f t7  M(t)e(1-f:+l R(~)d~) dt = f tT(2/e- -  1/e2)e (1-2/~-'/~2) dt = oo. The conditions 

of Theorem 2.3 of [1] are satisfied, but  one solution of (*), u(x, t) = e - t  ~s nonoscillatory. 
More recently, Ouyang, Zhou, and f i n  [11] have corrected Theorem 2.3, 3.3, and 4.3 in [1]. 

They  have obtained some new sufficient conditions for the oscillation of (1.3), (B1)-(B3). 
In the present paper, we investigate equation (1.1) with boundary  conditions (B~)-(B3), we 

obtain some sufficient conditions for the oscillation of (1.1), (B1)-(B3). These results general- 
ize [1] and some related results of other references. By the time, we obtain some real oscillatory 
conditions for a class of high order neutral  parabolic differentml equations. 

The  paper is organized as follows. In Section 2, we establish some oscillation conditions for the 
solutions of equation (1.1) with boundary condition (B1)-(B3), respectively, in end, we correct 
Theorem A, which is Theorem 2.1, 3.1, and 4.1, respectively, and give some examples to explain 
the oscillation of (1.3), (1.1) with the above boundary conditions. 

THEOREM A. Assume that (H1)-(H4) hold, setting 

[~, (t) = P, (t) - ~ ~ (t + ~ - ~,) z (t - ~,)  , 
keJ~ 

such that  

and 

~ ft+a~ 0 <_ [~,(t)ds, 
z--i .It  

t>_to 

it, (t) e - ,- '  • dt = co. 
z=l  

Then, every solutlon of  problem (1.3), (B,)  (* = 1 ,2 ,3)  oscillates, where P, = P,, Qk = Qk for 
boundary condition (B2), (B3), 15 = p, exp{al  ftt_o, a(s)ds}, Q,k = Qk exp{al  ftt_,k a(s)ds} for 
boundary condition (B1). 

For the reader 's convenience, we recall some definitions. 

DEFINITION 1.1. A function u(x, t )  C CN (G) n CI(G) Js said to be a solution o£ the problem 
(1.1)-(B~) (z = 1, 2, 3) if it satisfies (1.1) in the domain G and satisfies the boundary conditions, 
(B,) (~ = 1, 2, 3). 

DEFINITION 1.2. The solution u(x, t) of problem (1 1) is said to be oscillatory in the domain 
G = f~ x [to, co) if  for anypositive number it, there exists a point (x l , t l )  E f~ x [#, co), such that 
the equality u(xl ,  t l)  = 0 holds. 

If every solution of equation (1.1) is oscillatory, then equation (1.1) is called oscillatory. 

DEFINITION 1.3. A function u(x, t) ~s called eventually positive (negative) if  there exits a number 
tl ~_ to, such tha t  u(x, t) > 0 (< 0) for every (x, t) 6 ~t × [#, co). 

REMARK. If a solution is nonoscillatory, then it is eventually positive or eventually negative. 

2. OSCILLATION OF B O U N D A R Y  
VALUE PROBLEM (1.1), (B1)-(B3) 

First, we consider the following Dirichlet boundary  value problem in the domain f~, 

A u  q- olu ~ 0, 

u : 0 ,  

in (x, t) e fl × [to, co ) ,  

on (z,  t) e 0f l  × [to, co ) ,  

(2.1) 
(2.2) 

in which a is a constant. 
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It is well known from [7] that the smallest eigenvalue a l  of problem (2.1) is positive and the 
corresponding eigenfunction ¢(x) > 0 for x C ft. 

Let u(x, t) be a solution of problem (1.1),(Ba), we define throughout this paper, 

u(t)  = fa ~ (~' t) ¢ (~) d~ 
f~ ¢ (~) d~ (~.3) 

Let u(x, t) be a solution of problem (1.1),(B,), i = 2, 3, we define, 

v (t) - f~ ~ (x, t) dx 
f~ dx (2.4) 

LEMMA 2.1. Suppose that (H1)-(H3), (Hs) hold. f f  any solution of differential inequality, 

r ) (N) n 

z (t) - ~ Xkz (t - pk) + aia  (t) z (t) + y ~  P, (t) z (t - a,) 
k=l ~=1 

m 
- ~ O,  (t) z (t - T,) + h (t) f (z (t - r ~ ) , . . .  , z  (t - ,-~)) < 0, 

2=1 

(2.5) 

isn't eventualIy positive, then every solutlon of (1.1),(B1) is oscillatory. 

PROOF. Assume that there exists a nonoscillatory solution u(x,t)  of the problem (1.1),(B1). 
Without loss of generality, let u(x, t) be an eventually positive solution of problem (1.1), (B1) 
(if it is eventually negative, we can let v(x, t) = -u (x ,  t), and using (Hs), the proof is similar), 
then there exists a number tt > to - ~, such that u(x,t)  > 0, u(x , t  - a,) > 0, u(x , t  - "5) > O, 
u (x , t - -pk )  > 0, u(x , t - - rk , )  > 0, ~ = 1 , . . . , n ,  3 = 1 , . . . ,m ,  k = 1 , . . . , r ,  k' = 1, . . . ,1 .  

Multiplying both sides of equation (1.1) by ¢(x), and integrating both sides over the domain ft 
with respect to x, we have 

dt N u¢ - ~ Aku (x, t - pk) ¢ dx - a (t) A u ¢  dx 
k = l  

n m 

+h(t)fn¢f(~('x,t-r,),...,~(x,t-r~)) d x = 0 ,  t > t t .  

(2.6) 

From (H3), (2.6) becomes 

dt N u ¢ - - ~ - ~ A k u ( x , t - - p k ) ¢  d x - a ( t )  AuCdx  
k = l  

+ E P* (t) ~ Cu (x, t - cry) dx - E Q3 (t) Cu (x, t - Tj) dx 
*=1 3=1 

+ h ( t ) / a  Cf ( u ( x , t -  r l ) , . . . , u ( x , t -  rl)) dx < O, t > Iz. 

Using Green's formula, we get 

L a (t) Au¢ dx = - a l / f l  u¢ dx, t > t z .  

(2.7) 

(2.s) 
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Combining (2.7), (2.8), and using Jensen's inequality, we obtain 

dtg u b - - E A k u ( x , t - - p k ) ¢  dx+ala( t )  uCdx 
k = l  

+~~P,( t )  f a C u ( x , t - ~ 4  ) d x -  Q, (t) C u ( x , t - 5 )  dx 
4=1 3=1 

+h(t): \ TCgx ,..., ~ ~e~ < o, t>_# 

According to (2.3), it follows 

dtN U(t ) -~__)~kU(t-pk)  +aa(t) U(t)+ ~_,P4( t )U( t -a4)-~_~Q,( t )U( t -~-3)  
k = l  4=1 3=1 

+h(t )  f ( V ( t - r l ) , . . . , U ( t - r z ) )  < 0, t > #. 

(2.9) 

Because u(x, t) is positive, from (2.3) again, we have that U(t) is positive eventually. This means 
that U(t) is an eventually positive solution of (2.5), this contradicts the assumption. The proof 
is complete. 

Using (2.3), (2.4), and the proof of Lemma 2.1, it is easy to show the following. 

COROLLARY 2.1. Suppose that (Ht)-(Ha), (tt5) hold. If any solution of differential inequality, 

( L z (t) - Z ~ z  (t - pk) + P4 (t) z (t - o4) - ~ q ,  (t) z (t - , , )  
k--1 ~=I 2=1 

+ h  (t) f (z (t - ~ ) , . . .  , z  (t - ~z)) <__ 0, 

(2.1o) 

isn't eventually positi.e, then every solution of (1.1), (BI)-(B3) is oscillatory. 

Now, we give another main oscillatory condition of the problem (1.1), (B1)-(B3). 

THEOREM 2.1. Suppose that (H1)-(Hs) hold. If any solution of the following differential equa- 
tion, 

k = l  z=l kcJ~ 

+ h  (t) f (z (t - r l ) , . . .  , z  (t - r~)) = 0, t >_ ~. 

isn't eventually positive, then every solution of the problem (1.1), (B1)-(B3) is oscillatory. 
PROOF. We only need to prove that every solution of problem (1.1),(B1) is oscillatory, the proof 
of problem (1.1), (B2), (B3) is similarly, and thus, we omit it. Assume that problem (1.1),(B1) 
has a nonoscillatory solution u(x, t), without loss of generally, we let u(x, t) be eventually positive 
(if it is eventually negative, we let -u(x,  t) = v(x, t), and using (Ha), the proof is similar). Then, 
there exists a # > to -o-, such that u(x,t) > O, u(x,t -cr4) > O, u(x,t- 'r3) > O, u (x , t -pk )  > O, 
and u(x,t - r k , )  > O, i = 1 , . . .  ,n, 3 ---- 1,... ,m, k = 1,... ,r, k' ---- 1,... ,l. 

From Corollary 2.1, we get that (2.10) has an eventually positive solution z(t). Let 

r 

y (t) = z (t) - Z : , k z  (t - pk) 
k = l  

t___#. 

(2.12) 
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It is easy to know by (H4) that  y(t) < z(t) and y(t) > 0. In fact, it is obvious tha t  y(t) < z(t). 
Now, we prove y(t) > 0. Combining (2.10) and (2.12), 

¢~) (t) + ~ P, (t) - ~ Q~ (t + ~-~ - ~,,) z (t - ~,,) (2.1a) 
~=1 kEJ ,  

÷h ( t )  f ( z  (t - r l )  , . . . ,  Z (t -- rl)) ~ O. 

Thus, y(N)(t) < 0, so y(~)(t) is eventually monotone, z = 1 , . . . ,  N - 1. We consider the following 

t w o  c a s e s .  

CASE 1. y'(t) < O. 
Assume that  there exists a t~, such that  y(t~) = a < 0, because y(t) is monotone decrease 

strictly, then there exists a t~ > t~, such that  y(t~) = / 3  < 0, it means tha t  y(t) < y(t~) = t5 < 0 
for t > t;~, by (H4), we obtain 

z (t) = y (t) + ~ ~kz (t - pk) 
k = l  

f f t  iN--1. ~t2~.~ t~-rk (2.14) 
+ "" E f Qk( s+rk ) z ( s )dsd t l . . . d tN_ l ,  

"/'* ~=1 kEJ~ Jtl-°'z 
</3-1--c max z ( s ) < ~ ÷  max z(s).  t-cr<_s<_t t-a<_s<_t 

By [8, Lemma 1.5.2], it is easy to show that  z(t) 5_ O, this is a contradiction. 

C A S E  2 .  y'(t) > O. 
If there exists a t~ such tha t  y(t~) >_ O, then there exists a t~ > t~, such that  y(t~) > 0, so 

for all t > t~, we have y(t) > 0. Now, we assume, for the converse, tha t  y(t) < O, for all t > t~, 
one argues that  y"(t) < 0, because n is an odd number, repeats the argument  to obtain tha t  

y(n) (t) > 0, which contradicts to tha t  y(~)(t) < 0. Thus, y(t) > 0 for all t > t~. 
From (2.13), (Hh), and y(t) <_ z(t), y(t) > 0, we obtain 

Y(N)(t)+~-~(  P ~ ( t ) - ~ = l  

+h (t) f (y (t - r l ) , .  

have an eventually positive solution y(t). 

Qk (t + ~-~ - o d )  y (t - o,) 
kEJ~ 
. . ,y( t -r l ))<_O, t>_~, 

(2.15) 

z = l  kEJ~ 
+h(s) f ( y ( s - r l ) , . . . , y ( s - r ~ ) ) )  ds, t >_ T. 

(2.16) 

Integrating both sides of (2.16) respects to t N* times, it follows 

Y(t) >-- /T  (t-- s)N*-l-(~-7--_-~)f, iC~ (u-- s)N-N*-l-~N-----NT-----~) ~" 

xy (u-- ~)  + h(u) f ( y ( u -  r l ) , . . .  , y ( u -  rl)) ) duds, t > T, 
(2.17) 

Now we prove tha t  (2.11) has an eventually positive solution. 
Since y(g)(t) < O, y(t) > 0, and n is an odd number, then there exists an even number N* 

(0 < N* < N - 1), such that  y(~)(t) > O, 0 < i < N*, (-1)~y(0(t)  > 0, N* < ~ < N. Integrating 

both sides of (2.15) respects to t N - N* times, we obtain 
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where T >/z, and such that (2.10) and (2.16) hold and t - a > T - #, y(T - /z )  > 0 for t > T. 
Set 

K = { v E C ( T - # , o o ) , R + : 0 _ < v ( t ) _ < l  f o r t > T - # } .  

According (2.17) and the definities of K,  we can define an operator S on K as follows, 

(Sv) (T), T -  #_< t < T, 

r '  (_t:  s) ~ ' -~  r ~  ± 2  s) ~ - ~ ' - ~  
y(t)  JT ( n * - l ) !  3t ( N - N * - 1 ) !  

(s~) (t) 

+ h ( u ) f ( v ( u - - r l ) y ( u - - r l ) , . . . , v ( u - - r l ) y ( u - - r l ) ) )  duds, t >_T. 

Using the similar method of the proof of Theorem 1 in [10], we can derive 

P, (t) - X :  Qk (s + ~k - ~,) -- 0, 
k E J ,  

fors_>t*,  ~ = l , . . . , n ,  

and 
h(s) f ( w  ( s - r l ) , . . . , w ( s -  rl)) -= 0, for s_> t*, 

this contradicts (Hh). The proof is complete. 

Let 

(HT) There exist P~(t), Q3 (t),z = 1 , . . . ,  n; 3 = 1 , . . . ,  m, such that P~(t) _< P~(t), Q3 (t) >_ Q3 (t), 
-- 1 , . . .  ,n, j = 1, . . .  ,m, and P~(t) > E k e  J, Q k (  S -~ Tk - -  0",). 

(H8))-~k=l Ak +l i~n,_~ f ; f ;N-1 . . . f ;2  ~-:~=l~-~kej, f t t--[~Qk(s+rk)dsdtl . . .dtN_l <1.  

Then, Theorem 2.1 can be improved as follows. 

COROLLARY 2.2. Suppose that (H1)-(H3), (Hh), (HT), (Hs) hold. If any solution of the following 
differentiM equation, 

~=1 kEJ~ 

+h(t )  f (z ( t -  r l ) , . . . , z  ( t -  rl)) --- 0, 

isn't eventually positive, then every solution of problem (1.1), (B1), (B2), (B3) is oscillatory. 

REMARK 2.1. Corollary 2.2 improves the Theorem 4.3 in [1]. 

Let 

I t ( t )= min R~(t)= min ( P ~ ( t ) - - E Q k ( t + ' r k - - c h ) )  " l < ~ < n  l<~<n (2.19) 
- - kCJ~ 

Then, we have the following. 

THEOREM 2.2. N > 1, Suppose that H1-H6 hold. If 

j [ ~  (~) dt = to > o, (2.20) 

o r  

f j  h(t) = ~,  to dt > O, (2.21) 

hold. If u(x, t) is a solution of (1.1), B1-B3, then there exists at least one of the following holds. 

(1) u(x,t) is oscilIatory. 
(2) If u(x, t) is a nonoscfllatory, then limt--,~ u(x, t) = O. 
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PROOF. We only need to prove that the solution of problem (1.1), B1 satisfies (1) or (2), the 
remaining is similar. Assume that the solution u(x, t) of problem (1.1), B1 don't satisfies (1) 
and (2), that is, u(x, t) is nonosclllatory and limt--.oou(x, t) ¢ O. Without loss of generality, 
assume that u(x, t) is eventually positive (if it has an eventually negative solution, the proof is 
similar). By the assumption, we have that lim~oou(x, t) = a > 0. Using Lemma 2.1, we obtain 

that z(t) = U(t) = fn ~(~,t)¢(~)d~ is a positive solution of fn ¢(~) d~ 

(z(t)--~kz(t--flk))(N)+.la(t)z(t)+~P,(t)z(t--.,)--~Qk(t)z(t--~-,) 
k=l  z=l ?=1 

+h(t) f(z(t-rl) , . . . ,z(t-rz))  _< 0, 

and that lim._+~z(t) > a > 0. Let 

r 

y (t) = ~ (t) - Z ~ z  (t - p~) 

k= l  (2.22) 

// /. r 
Jt~ " " " ,=1 kEJ~ J t l - a ~  

Using (H4) and the proof of Theorem 2.1, it is easy to show that 0 < y(t) < z(t). From (2.22), 
(H4) and lim-~ooz(t) > a > 0, it is obvious that l im_~y( t )  = b > 0, it satisfies 

/ 
(y (t)) (N) + ala (t) (y  

ftftN-, ~t2 n E ft,-.~ 
+ "'" E 

Jlt  Jiz i=l  kEJ,  t t - a ~  

+ E P, (t) - E Q 
,=1 kEJ,  

+h (t) f (y (t - ~1) 

It is obvious that y(t) is a positive solution of 

r 

(t) + Z ~kz (t - pk) 
k=l  

Qk (s + Tk) z (s) dsdt l . . ,  dtN-1) 

(t + Tk -- 0 , ) )  y (t - 00  

, . . . , y ( t - r O )  <_ o. 

~=1 k E J, 

+h( t )  f ( y ( t - r l ) , . . . , y ( t - r l ) ) )  _< 0. 

Because y(t) is eventually positive, it follows that y(k)(t) is eventually monotone, ~ = 1 , . . . ,  N - 1 .  
If y'(t) > 0, integrating both sides of (2.23) from t to T, it follows 

y<~-~) (t) - y(~-~)  (T) 

that is, 

~--~. Qk (s + ~-k - a,)] + 
kEJ~ 

[ P, (s) - E Qk (s + Tk 
kEJ~ 

Klh is)) y (s - ~) ds (2.24) 

- a , ) ] + K l h ( s ) )  ds, t>  T, 

] ) v~ (~) - ~ Q~ (~ + ~-~ - ~,) + K~h (s) d~ 
~=1 kEJ, 

< y ( T  - ~)  

(2.2~) 
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Taking limitation of both sides of (3.8), using the fact that y(N-~)(t) is eventually positive, and 
according (2.20), (2.21), we derive a contradiction. If y'(t) < 0, then y(t) is eventually decreasing, 
and we have limt--.oo y(t) = limt--.ooy(t) = b > 0. Integrating both sides of (2.23) respect to t in 
T to t, we obtain 

kea (2.26) 

1 [-Y (n-l) ] ~ (t)  -~- y ( n - 1 )  (T )  , t > T. 

Taking limitation both sides of (2.26), it follows 

thm P ~ ( s ) - - E Q k ( s + T k - - ~ )  + K l h ( s )  ds<-~y" "(T),  t > T .  (2.27) 
~=1 kEJ~ 

This contradicts to (2.20), (2.21). The proof is completed. 

Theorem 2.2 can be rewritten as follows. 

COROLLARY 2.3. N > 1, Suppose that H~-H6 and (2.20) or (2.21) hold. If (1.1), BI-B3 has a 
nonoscillatory solution u(x, t), then limt~oo u(x, t) = O. 

3. A P P L I C A T I O N  

Using Theorem 2.1, we consider the special case. N = 1, f - 0, we can obtain some special 
results for the oscillation of problem (1.1) with boundary condition (B1) or (B2) or (B3). 

THEOREM 3.1. Suppose that (H1)-(H4), (H5), (HT), hold and further assume that 

(H9) limt-~oo ft+~, [~, (s) ds > O; dt 
- -  n Ft--'rk 

(H10) limt-~o~ Y~,=I Y~keg, Jt-~, Qk(s) ds = c < 1 for t >_ to + a; 
(H,1) fi°~(E,~=, R,(t)ln(eE3~=_l ftt+°~ R3(s)ds)) dt = c~, where/~,(s) =/5,(t)  - Ek~J, 0k(t + 

~'k -a , ) ) ,  and P,,Qk is de/~ned by Theorem A, i = 1 ,2 , . . .  ,n, k = 1, . . .  ,J~. Then, every 
solution of equation (1.3) with boundary condition (B1) or (B2) or (B3) oscillates. 

PROOF. We only prove that every solution of equation (1.3) with boundary condition (B2) oscil- 
lates, the proof of the remaining is similar. It is obvious that P~ = P~, Ok = Qk, ~ = 1,2, . . .  ,n, 
k = 1 , . . . ,  ff~. Assume u(x, t) is a nonoscillatory solution of the problem (1.3)-(B2), without loss 
of generally, assume u(x, t) is eventually positive, according the proof of Theorem 2.1 and (H10), 
we obtain 

n 

z' (t) + E (t) z (t - = 0, t > , .  

has an eventually positive solution z(t), let ACt ) = -z ' ( t ) /z( t ) .  Then, )~(t) is a nonnegative and 
continuous,and there exists tl > to with y(tl) > 0 and such that y(t) = y(tl) exp(-  fttl A(s) ds). 
Furthermore, A(t) satisfies 

( t ) = E R ~ ( t ) e x p  - ~(s) ds , t>_#. 
*=1 --c% 

Let B(t) v 'n i't+~ R~(s) ds, by using inequality e ~ > x + ln(er)/r for r > 0. By (Hg), we Y-~=l J t  

obtain that B(t) > 0, then 

( 1 ft~ ) )~ (t) = R~ (t) exp B (t) -ff~(t) ,~ (s) ds 

> R (t) B ( t )  ' - 
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Using the sketch of interchanging the order of integration, and using the same method of the 
proof of Theorem 3.2 in [9] and (Htl),  it will derive a contradiction. 

If  u(x, t) is eventually negative, we can change (1.3) as 

0~ (x, t) 
Ot 

a( t )  A ( - u ) + E p , ( x , t ) ( - u ( x , t - ~ r ~ ) ) -  q j ( x , t ) ( - u ( x , t - ' r j ) ) = O .  
~=1 3=1 

Let v(x,  t) = - u ( x ,  t), it follows that  v(x , t )  is an eventually positive solution of 

o~ (~, t) 
Ot 

n m 

(t) ~ ,  + ~ p ~  (x,t) ~ (~,t - ~,) - Z q, (x, t) v (x, t - ~,) = 0 
z=l 3=1 

According Theorem 2.1, we obtain tha t  (2.11) has an eventually positive solution, using the 
similar method of the above, we can derive a contradiction also. The proof is complete. 

REMARK. Theorem 3.1 is a nearly sharp condition for the oscillation of (1.3). 

EXAMPLE 3.1. Consider the parabolic equation, 

1 e_3~/2u( ~ )  5 _2~ ~ - ~ u ~  + x, t - - ~ e  ~ (x, t - 2~)  = o, (x,t) e (0,~) × R+, (3.1) 

with the boundary  condition, 

o~ (o, t) _ o~ (~, t )  
Ox Ox 

- -  = 0 ,  t > 0 .  ( 3 . 2 )  

where a(t) = 1/4, R(t)  = e -3~/2 - (5/4)e -27r, and a = 3Tr/2. 

Since f o  R( t ) ln (e f t t  +3'~/2 R ( s ) d s ) d t  = ec, so it satisfies condition (H1)-(H4) and every solu- 
tion of problem (3.1),(3.2) is oscillatory. In fact, u(x, t) = e - t  sint  cosx is such a solution. 

EXAMPLE 3.2. Consider the parabolic equation, 

0 3 (U (X, t) - -  (1/2) e - 2 r u  (x, t - 27r)) 

0t  3 
- ux~ + ½e-3"/2u ( z , t -  ~ ! ) 

(x, t) e (a, b) x R +, 
(3.3) 

with the boundary  condition, 

Ou (a, t) _ Ou (b, t) 
Ox Ox 

- -  = o, t > o, (3.4) 

It is easy to  show that  f T ( P ( t )  -- Q(t  + 5~r/2 - 3~r/2))dt = e% by Theorem 2.2, we obtain 
tha t  if u(x,  t) is a solution of (3.3)-(3.4). Then, either it is oscillatory, or limt~oo u(x,  t) = O. 
In fact, if we taking a = 0, b = ~r, u(x,  t) = e - t  sin t cos x is a oscillatory solution of it. If  we 
taking a = 0, b = v ~ r ,  then u(x, t) = e - t  cos (v~ /2 )x  is a asymptot ic  solution of it, such that  

[imt~oo u(x, t) = O. 
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