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Abstract

All Hilbert–Schmidt operators acting onL2-sections of a vector bundle with fiber a separa
Hilbert spaceH over a compact Riemannian manifoldM , are characterized. This is achieved
defining the vector bundle of Hilbert–Schmidt operators onH , and then making use of a classic
result known as the Kernel Theorem of Hilbert–Schmidt operators.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In this paper we are concerned with the following problem: to characterize a
Hilbert–Schmidt operators acting onL2-sections of a vector bundle with fiber a separa
Hilbert spaceH over a compact Riemannian manifoldM. This is achieved by defining th
vector bundle of Hilbert–Schmidt operators onH , and then making use of a classical res
known as the Kernel Theorem of Hilbert–Schmidt operators [1, p. 306].

This characterization of Hilbert–Schmidt operators has broadly been used in the c
of geometric functional analysis and mathematical physics (see, for instance, [2]),
rigorous proof is missing in the literature.

Let E andF be separable Hilbert spaces. The operators called Hilbert–Schmi
introduced in the following fashion: if{en} and {f ∗

m} are orthonormal bases ofE and
of F ∗, and if for an operatorA :E→ F the series

‖A‖2 =
( ∞∑
n,m=1

∣∣〈f ∗
m,Aen〉

∣∣2)1/2
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is convergent, then this series does not depend on the choice of the bases, wh〈 , 〉
denotes the duality pairing onF ∗ ×F . Thus we say thatA is a Hilbert–Schmidt operator
‖A‖2 is finite. These operators are compact and can be represented by “infinite ma
{am,n} ∈ l2(N × N) in the following fashion:

Au=
∞∑

m,n=1

am,n
〈
e∗n,u

〉
fm,

where{e∗n} and{fm} are orthonormal bases ofE∗ and ofF .
The most important example is that of integral operatorsK̃ associated with the function

K ∈ L2(Ω1 ×Ω2), whereΩi is an open set inRn, by the formula

(K̃u)(ω2)=
∫
Ω1

K(ω1,ω2)u(ω1) dω1.

These integral operators, therefore, form a class of compact operators. Moreov
establish in Section 3 that every Hilbert–Schmidt operatorK̃ from L2(Ω1) to L2(Ω2)

is defined by akernelK ∈ L2(Ω1 ×Ω2). This is known as the Kernel Theorem.
WhenΩi is replaced by a Riemannian manifoldM and the functionu is allowed to take

values on a Hilbert spaceH , the Kernel Theorem generalizes where now the kernelK is a
section of a bundle overM of Hilbert–Schmidt operators acting onH .

The paper is organized as follows: In Section 2 we define the vector bundle of Hi
Schmidt operators over a manifold.

In Section 3 we prove the Kernel Theorem in this general context. As a corollar
obtain that operators mappingL2-sections into differentiable sections (in the distributio
sense) have an integral kernel.

2. The vector bundle of Hilbert–Schmidt operators

In this section we define the vector bundle of Hilbert–Schmidt operators ov
manifold. LetM be aC∞ manifold. Consider a disjoint unionVM =⋃

x∈M Fx of a family
of vector spaces parameterized by the setM. It is sometimes convenient to describe a po
of VM by (x;w), wherex ∈M andw ∈ Fx .

The mapπ :VM →M, π(x;w)= x is called the projection. Fx is called thefiber of
VM atx.

Definition 2.1. VM is called aC∞ vector bundleoverM with fiberF , if there is an open
covering{Uα; α ∈M} ofM satisfying the following:

(1) For eachUα , there is a mapτα :Uα × F → π−1(Uα) such thatπτα(x,u) = x,
and for any fixedx, τα(x) :F → Fx (= π−1(x)) is a linear isomorphism, wher
τα(x)u= τα(x,u).

(2) If Uα ∩Uβ �= ∅, thenΦ :Uα ∩Uβ × F → F defined byΦ(x)u= τα(x)−1τβ(x)u is a
C∞ map.

(3) A is maximal among indexed families satisfying (1) and (2).
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Theorem 2.1.For i = 1,2; letMi be aC∞ manifold. LetVMi be a vector bundle overMi
with fiber a separable Hilbert spaceFi . Consider the disjoint union

VM1×M2 =
⋃

(x,y)∈M1×M2

L2(F1x,F2y)

of a family of Hilbert–Schmidt operators fromF1x into F2y , parameterized by the se
M1 ×M2. ThenVM1×M2 is a C∞ vector bundle overM1 ×M2 with fiber L2(F1,F2),
the space of Hilbert–Schmidt operators fromF1 into F2.

Proof. Let {Ui,αi ; αi ∈ Ai} be an open covering ofMi satisfying the conditions o
Definition 2.1. Then{U1,α1 ×U2,α2; (α1, α2) ∈A1 ×A2} is an open covering ofM1 ×M2
which satisfies the following: Letτi,αi :Ui,αi × Fi be a local trivialization ofVMi . For
(x, y) ∈ U1,α1 ×U2,α2 andL ∈L2(F1,F2), set

τα1α2(x, y;L)= τ2,α2(y)Lτ
−1
1,α1
(x). (1)

By Proposition 12.1.2 in [1],τα1α2(x, y;L) ∈ L2(F1x,F2y). Define the mapρα1α2(x, y) :
L2(F1x,F2y)→ L2(F1,F2) by

ρα1α2(x, y)L= τ−1
2,α2
(y)Lτ1,α1(x). (2)

It follows that

τα1α2

(
x, y;ρα1α2(x, y)L

)= L,
and

ρα1α2(x, y)τα1α2(x, y;L)= L.
Thenρα1α2(x, y) is an inverse ofτα1α2(x, y; ·). Hence, to show that

τα1α2(x, y; ·) :L2(F1,F2)→ L2(F1x,F2y)

is a linear isomorphism it suffices to show that it is a continuous map. We then es
the Hilbert–Schmidt norm ofτα1α2(x, y;L) for all L ∈ L2(F1,F2). By Proposition 12.1.2
in [1] and by (1),∥∥τα1α2(x, y;L)

∥∥
2 �

∥∥τ2,α2(y)
∥∥‖L‖2

∥∥τ−1
1,α1
(x)
∥∥,

where‖ ‖ denotes the norm inFi . It follows thatτα1α2(x, y; ·) is continuous. This verifie
condition (1) of Definition 2.1.

To check condition (2) we proceed as follows. IfUi,αi ∩ Ui,βi �= ∅, let Φ : (U1,α1 ∩
U1,β1 × U2,α2 ∩ U2,β2) × L2(F1,F2) → L2(F1,F2) be defined byΦ(x,y)L =
τα1α2(x, y)

−1τβ1β2(x, y)L. By (1) and (2)

Φ(x,y)L= τ−1
2,α2
(y)τ2,β2(y)Lτ

−1
1,β1
(x)τ1,α1(x).

SinceΦi :Ui,αi ∩Ui,βi × Fi → Fi defined byΦi(x)u= τ−1
αi
(x)τβi (x)u is aC∞ map, and

Φ is linear inL, it follows thatΦ is aC∞ map. This gives condition (2) of Definition 2.
Let A be the maximal family among indexed families satisfying conditions (1)

(2) above. This shows thatVM1×M2 is a C∞ vector bundle overM1 × M2 with fiber
L2(F1,F2). ✷
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3. The Kernel Theorem

Assume in the rest of this paper thatM is a compactn-dimensionalC∞ Riemannian
manifold such that if∂M �= ∅, then the boundary is a closed submanifold and nea
boundaryM is a direct product∂M × [0, δ), δ > 0. To avoid technical difficulties we us
also a manifoldM̃ = ((−∞,0] × ∂M)∪M.

For a vector bundleVM , let Γ (VM) be the space of allC∞ sections ofVM . For
u ∈ Γ (VM), we define the norm‖u‖ by

‖u‖2 =
∫
M

∣∣u(x)∣∣2
x
dx,

wheredx is the volume element defined by the Riemannian metric. LetL2(VM) be the
completion ofΓ (VM) with respect to the norm‖u‖.

Theorem 3.1. Let Mi be a compactC∞ Riemannian manifold satisfying the abo
hypothesis. LetVMi be aC∞ vector bundle overMi with fiberFi a separable Hilbert
space. Finally, letVM1×M2 be theC∞ vector bundle overM1 ×M2 with fiberL2(F

∗
1 ,F2).

An operatorK̃ fromL2(VM1) toL2(VM2) is a Hilbert–Schmidt operator if and only if it i
associated with a kernelK ∈L2(VM1×M2).

We give an application of this theorem. LetVM be aC∞ vector bundle overM with
fiber a finite-dimensional Hermitian vector spaceE. Define an inner product〈 , 〉k on the
spaceΓ (VM) of C∞ sections, by

〈u,v〉 =
k∑
i=0

∫
M

〈(
Diu

)
(x),

(
Div

)
(x)
〉
dx,

whereDu denotes covariant differentiation with respect to the Riemannian conne
The completion ofΓ (VM) with respect to the norm‖u‖k = 〈u,u〉1/2

k is denoted by
Γ k(VM).

Theorem 3.2.LetVM×M be theC∞ vector bundle overM ×M with fiber

L2(E
∗,E).

Let k � [n/2] + 1. Then every continuous operator̃K :L2(VM)→ Γ k(VM) is associated
with a kernelK ∈ L2(VM×M).

Proof. The proof follows from Theorem 3.1. By Lemma 5.1 of Chapter VII in [3],
inclusion mapi :Γ k(VM) ↪→ L2(VM) is a Hilbert–Schmidt operator. By Proposition 12.1
of [1], the compositioniK̃ is Hilbert–Schmidt. Then by Theorem 3.1, this is associa
with a kernelK ∈ L2(VM×M). ✷
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The proof of Theorem 3.1 is based on the classical version of the Kernel The
(Lemma 3.1). We say that the spaceL2(E

∗,F ) is the Hilbert tensor productof the
separable Hilbert spacesE andF . We denote this space by

E ⊗̂ F = L2(E
∗,F ).

Lemma 3.1.Let E andF be separable Hilbert spaces, andΩi an open set inRni . An
operatorK̃ fromL2(Ω1,E) to L2(Ω2,F ) is a Hilbert–Schmidt operator if and only if
is associated with a kernelK ∈L2(Ω1 ×Ω2,L2(E

∗,F )).

Proof. Indeed, the spaceL2(L
2(Ω1,E),L

2(Ω2,F )) of Hilbert–Schmidt operators from
L2(Ω1,E) toL2(Ω2,F ) is equal toL2(Ω1,E)⊗̂L2(Ω2,F ) (sinceL2(Ω1,E) is identified
with its dual space). According to Theorem 12.6.1 in [1], it is isometric to the s
(L2(Ω1) ⊗̂E) ⊗̂ (L2(Ω2) ⊗̂F). By Proposition 12.3.1 in the same reference, this spa
isometric to

L2(Ω1) ⊗̂
(
L2(Ω2) ⊗̂ (E ⊗̂F))= L2(Ω1) ⊗̂

(
L2(Ω2) ⊗̂L2(E

∗,F )
)
.

Again by Theorem 12.6.1, this space is isometric to

L2(Ω1,L
2(Ω2,L2(E

∗,F )
))
.

But by the Fubini theorem the spaceL2(Ω1,L
2(Ω2,L2(E

∗,F ))) is isomorphic to the
spaceL2(Ω1 ×Ω2,L2(E∗,F )) of square summable Hilbert–Schmidt operators onΩ =
Ω1 ×Ω2. ✷
Proof of Theorem 3.1. For i = 1,2; consider a finite open covering

{Uiα; α ∈Ai}
of Mi by trivializing charts. Consider a partition of unity{ψiα}α∈Ai subordinated to the
covering{Uiα; α ∈ Ai}. For all α ∈ Ai , let Ψiα :L2(VMi ) → L2(VMi ) be the operato
given by

Ψiαu=ψiαu. (3)

Assume thatK̃ is a Hilbert–Schmidt operator. By Proposition 12.1.2 in [1],Ψ2βK̃Ψ1α
is a Hilbert–Schmidt operator. By Lemma 3.1,Ψ2βK̃Ψ1α is associated with a kerne
Kαβ ∈L2(U1α ×U2β,L2(F ∗

1 ,F2)). We show that̃K has the integral kernel,

K̃u(y)=
∫
M1

∑
α∈A1,β∈A2

ψ2β(y)Kαβ(x, y)ψ1α(x)u(x) dx.

This is a computation.∫
M1

∑
α∈A1, β∈A2

ψ2β(y)Kαβ(x, y)ψ1α(x)u(x) dx

=
∑

α∈A1, β∈A2

∫
ψ2β(y)Kαβ(x, y)ψ1α(x)u(x) dx
U1α
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=
∑

α∈A1, β∈A2

(
Ψ2βK̃Ψ1αu

)
(y)

=
∑

α∈A1, β∈A2

ψ2β(y)
(
K̃ψ1αu

)
(y) (by 3)

=
∑
α∈A1

(
K̃ψ1αu

)
(y)

=
(
K̃
∑
α∈A1

ψ1αu

)
(y) (sinceA1 is a finite set)

= (
K̃u

)
(y).

Moreover, there exists a positive constantc such that for all(x, y) ∈M1 ×M2,∥∥∥∥ ∑
α∈A1, β∈A2

ψ2β(y)Kαβ(x, y)ψ1α(x)

∥∥∥∥2

L2(F
∗
1x,F2y)

� c
∑

α∈A1, β∈A2

∥∥ψ2β(y)Kαβ(x, y)ψ1α(x)
∥∥2
L2(F

∗
1x,F2y)

= c
∑

α∈A1, β∈A2

(
ψ2β(y)ψ1α(x)

)2∥∥Kαβ(x, y)∥∥2
L2(F

∗
1x,F2y)

.

Then ∫
M1×M2

∥∥∥∥ ∑
α∈A1, β∈A2

ψ2β(y)Kαβ(x, y)ψ1α(x)

∥∥∥∥2

L2(F
∗
1x ,F2y)

dx dy

� c
∑

α∈A1, β∈A2

∫
U1α

ψ1α(x)
2
∫
U2β

ψ2β(y)
2
∥∥Kαβ(x, y)∥∥2

L2(F
∗
1x,F2y)

dy dx

� c
∑

α∈A1, β∈A2

∫
U1α

∫
U2β

∥∥Kαβ(x, y)∥∥2
L2(F

∗
1x,F2y)

dy dx

<∞,
sinceKαβ ∈ L2(U1α × U2β,L2(F1

∗,F2)). This shows that̃K is associated with a kerne
K ∈ L2(VM1×M2).

Conversely, assume that the operatorK̃ is associated with a kernelK ∈ L2(VM1×M2).
Then, for all(α,β) ∈A1×A2, Ψ2βK̃Ψ1α is associated with a kernelψ2β(y)K(x, y)ψ1α(x)

∈ L2(U1α × U2β,L2(F ∗
1 ,F2)). By Lemma 3.1, the operatorΨ2βK̃Ψ1α is a Hilbert–

Schmidt operator and then

K̃ =
∑

α∈A1, β∈A2

Ψ2βK̃Ψ1α,

is also a Hilbert–Schmidt operator.✷
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