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Abstract

All Hilbert—Schmidt operators acting oh2-sections of a vector bundle with fiber a separable
Hilbert spaceH over a compact Riemannian manifod, are characterized. This is achieved by
defining the vector bundle of Hilbert—Schmidt operatorsihnand then making use of a classical
result known as the Kernel Theorem of Hilbert—Schmidt operators.

0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In this paper we are concerned with the following problem: to characterize all the
Hilbert—Schmidt operators acting drf-sections of a vector bundle with fiber a separable
Hilbert spaceH over a compact Riemannian manifalfl. This is achieved by defining the
vector bundle of Hilbert—Schmidt operators &n and then making use of a classical result
known as the Kernel Theorem of Hilbert—Schmidt operators [1, p. 306].

This characterization of Hilbert—Schmidt operators has broadly been used in the context
of geometric functional analysis and mathematical physics (see, for instance, [2]), but a
rigorous proof is missing in the literature.

Let E and F be separable Hilbert spaces. The operators called Hilbert—-Schmidt are
introduced in the following fashion: ife,} and{f,} are orthonormal bases & and
of F*, and if for an operatoA : E — F the series

o0 1/2
|IA|I2=( 3 |<f,::,Aen>|2>

n,m=1
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is convergent, then this series does not depend on the choice of the bases| where
denotes the duality pairing af* x F. Thus we say thad is a Hilbert—Schmidt operator if

|A|l2 is finite. These operators are compact and can be represented by “infinite matrices”
{am.n} € I?(N x N) in the following fashion:

o]

Au = Z am,n<e;’u>fm’

m,n=1

where{e;} and{f,,} are orthonormal bases &f* and of F'._
The mostimportant example is that of integral operakbessociated with the functions
K € L2(£21 x £27), whereg2; is an open set iR", by the formula

(Ku)(wp) = / K (w1, 02)u(w1) doy.
21

These integral operators, therefore, form a class of compact operators. Moreover, we
establish in Section 3 that every Hilbert—Schmidt operaofrom L2(21) to L2(£2)
is defined by &ernelK e L2(£21 x §22). This is known as the Kernel Theorem.

Wheng2; is replaced by a Riemannian manifdifiand the functiom is allowed to take
values on a Hilbert spack, the Kernel Theorem generalizes where now the keknid a
section of a bundle ove¥ of Hilbert—Schmidt operators acting di.

The paper is organized as follows: In Section 2 we define the vector bundle of Hilbert—
Schmidt operators over a manifold.

In Section 3 we prove the Kernel Theorem in this general context. As a corollary, we
obtain that operators mappidg-sections into differentiable sections (in the distributional
sense) have an integral kernel.

2. The vector bundle of Hilbert—Schmidt operators

In this section we define the vector bundle of Hilbert—-Schmidt operators over a
manifold. LetM be aC> manifold. Consider a disjoint uniovy, = |, ., Fx of a family
of vector spaces parameterized by theMett is sometimes convenient to describe a point
of Vy by (x; w), wherex € M andw € Fy.

The mapr : Vy — M, n(x; w) = x is called the projection F; is called thefiber of
Vu atx.

Definition 2.1. Vy, is called aC* vector bundleover M with fiber F, if there is an open
covering{Uy; « € M} of M satisfying the following:

(1) For eachU,, there is a mapr,:U, x F — 7~ 1(U,) such thatrt,(x,u) = x,
and for any fixedx, 7o(x): F — F, (= 7~ 1(x)) is a linear isomorphism, where
To(X)u = 75 (x, 1).

(2) If UyNUg # 9, then® :U, NUg x F — F defined by® (x)u = 74 (x) 1rg(x)u is a
C°° map.

(3) A is maximal among indexed families satisfying (1) and (2).
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Theorem 2.1.Fori =1, 2; let M; be aC* manifold. LetVy;, be a vector bundle ove¥;
with fiber a separable Hilbert spacg . Consider the disjoint union

Vi, = ) Lo(Fue, F2y)
(x,y)eEM1x M3

of a family of Hilbert—-Schmidt operators frofi, into F>,, parameterized by the set
M1 x Ma. ThenVy, «um, iS a C* vector bundle ovetM x M with fiber Lo(F1, F?),
the space of Hilbert—-Schmidt operators framinto F».

Proof. Let {U;q;; «i € A;} be an open covering oM; satisfying the conditions of
Definition 2.1. The{Uy,4; X U2,a,; (a1, a2) € A1 X A2} iS an open covering a1 x M»
which satisfies the following: Let; , : Ui, x F; be a local trivialization ofVy,. For
(x,y) € Urg, x Uz, andL € Lo(Fy, F2), set

Tanay (%, 3 L) = 120, () LT (). 1)
By Proposition 12.1.2 in [1]7a,a,(x, y; L) € L2(F1y, F2y). Define the mapg,a, (x, ¥)
L2(Fix, F2y) — La(F1, F2) by

Paray (%, )L =5 o () LTLay (X). (2)
It follows that

Taran (X, V3 Paran (X, YIL) =L,
and

100[10[2(x7 y)talag(X, y;L)y=L.
Thenpg,a, (x, y) is an inverse ofy,q,(x, y; ). Hence, to show that

Togay (X, Y3 ) 1 L2(F1, F2) = Lo(Fix, Fay)

is a linear isomorphism it suffices to show that it is a continuous map. We then estimate
the Hilbert—-Schmidt norm ofy, ., (x, y; L) for all L € L>(F1, F2). By Proposition 12.1.2
in [1] and by (1),

|Tag00 (6, 35 L), < [r2.0, (0 [ IL112] 715, ()
where|| || denotes the norm id;. It follows thatz,,«, (x, y; ) is continuous. This verifies
condition (1) of Definition 2.1.
To check condition (2) we proceed as follows.Uf, N Ui g, # @, let @ : (Uy,q, N
Urpg, x Uzga, N Uzp,) X Lo(F1, F2) — L2(F1, F2) be defined by ®(x,y)L =
Taqan (xa y)_lfﬁlﬁz(xa Y)L- By (1) and (2)

®(x, YL =15, (72,5, (NLTL 5 ()T10 (X).

bl

Sinced; : Ui o, N Ui p, x F; — F; defined by®; (x)u = tojl_l(x)t,gl. (x)u is aC* map, and

@ is linearinL, it follows that® is aC* map. This gives condition (2) of Definition 2.1.
Let A be the maximal family among indexed families satisfying conditions (1) and

(2) above. This shows thafy, x s, is a C* vector bundle oveM1 x M> with fiber

Lo(Fy, Fo). O
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3. The Kernel Theorem

Assume in the rest of this paper thit is a compack-dimensionalC*> Riemannian
manifold such that ifd M # @, then the boundary is a closed submanifold and near its
boundaryM is a direct producd M x [0, 8), § > 0. To avoid technical difficulties we use
also a manifoldiZ = ((—oo, 0] x IM)U M.

For a vector bundle/y, let I'(Vy) be the space of alC> sections ofVy,. For
u e I'Vy), we define the normiu|| by

||u||2=/\u<x)\§dx,
M

wheredx is the volume element defined by the Riemannian metric.[1%V,,) be the
completion ofI" (V) with respect to the norriu||.

Theorem 3.1.Let M; be a compactC>® Riemannian manifold satisfying the above
hypothesis. LeVy, be aC* vector bundle oved; with fiber F; a separable Hilbert
space. Finally, leVy, « a1, be theC> vector bundle oveM1 x Mo with fiber Lo(Fy, F?).

An operatorK from L2(Vy,) to L2(Vyy,) is a Hilbert—Schmidt operator if and only if it is
associated with a kerneél € L2V, x ).

We give an application of this theorem. LB}, be aC* vector bundle oveM with
fiber a finite-dimensional Hermitian vector spa€eDefine an inner produgt, ), on the
spacel’ (V) of C* sections, by

(u,v) = Xk:/((Diu)(x), (D'v)(x))dx,

i=0}

where Du denotes covariant differentiation with respect to the Riemannian connection.
The completion of"(V,) with respect to the normiull; = (u,u),%/z is denoted by

'* V).
Theorem 3.2.Let Vi« be theC*™ vector bundle oveM x M with fiber
Lo(E*, E).

Letk > [n/2] 4+ 1. Then every continuous operatEr: L2(Vy) — IT'*(Vy) is associated
with a kernelK € LZ(Vyrx ).

Proof. The proof follows from Theorem 3.1. By Lemma 5.1 of Chapter VIl in [3], the

inclusion map : I'*(Vy;) < L?(Vy) is a Hilbert—Schmidt operator. By Proposition 12.1.2

of [1], the composition’l? is Hilbert—Schmidt. Then by Theorem 3.1, this is associated
with a kernelk € LZ(Vyxp). O
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The proof of Theorem 3.1 is based on the classical version of the Kernel Theorem
(Lemma 3.1). We say that the spage(E*, F) is the Hilbert tensor productof the
separable Hilbert spacésand F. We denote this space by

E® F = Lo(E*, F).
Lemma 3.1.Let E and F be separable Hilbert spaces, ang; an open set irR" . An

operatorE from L2(£21, E) to L?(£22, F) is a Hilbert—Schmidt operator if and only if it
is associated with a kernél € L2(£21 x 22, L2(E*, F)).

Proof. Indeed, the spacgo(L2(£21, E), L2(22, F)) of Hilbert—-Schmidt operators from
L2(£21, E)t0 L?(£22, F) is equal toL?(£21, E)® L?(£22, F) (sinceL?(£21, E) is identified

with its dual space). According to Theorem 12.6.1 in [1], it is isometric to the space
(L2(£21) ® E) ® (L2(£22) ® F). By Proposition 12.3.1 in the same reference, this space is
isometric to

L?(21) ® (L%(£22) & (E & F)) = L?(£21) ® (L%($22) ® L2(E*, F)).
Again by Theorem 12.6.1, this space is isometric to
L?(£21, L?($22, L2(E*, F))).

But by the Fubini theorem the spad& (21, L2(22, L2(E*, F))) is isomorphic to the
spaceL?(£21 x §22, L2(E*, F)) of square summable Hilbert-Schmidt operatorsde:
21 x §22. O
Proof of Theorem 3.1. Fori = 1, 2; consider a finite open covering

{Uie; a € Aj}
of M; by trivializing charts. Consider a partition of unify;«}«ca; subordinated to the
covering{Uiq; « € A;}. For alla € A;, let W, L2(Vy,) — L?(Vy,) be the operator
given by

Yig = Yiqll. (3)

Assume thatk is a Hilbert—-Schmidt operator. By Proposition 12.1.2 in [W]gﬂl?d/la
is a Hilbert—-Schmidt operator. By Lemma 3Wpp KWy is associated with a kernel
Kop € L2(U1y x Uz, L2(Ff, F2)). We show thaK has the integral kernel,

Ru= [ 3 W2 Kapr »)¥ssCoouo) d.
My acA1,f€A2
This is a computation.

D Vs () Kap (. ) Va(X)u(x) dx

My a€Aq, BEA

= Y / V25 (1) Kap (X, V)10 (x)u (x) dx

a€Aq, ’BEAZUM
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= Z (Wzﬁf‘l/lau)(y)

a€Aq, BeEAr

> Yo (Kynau) () (by 3)

acA1, BeAL

= Y (Kyau)(y)

aeAl

= (]? > wlau>(y) (sinceA is a finite set)

a€A]

= (I?u)(y).
Moreover, there exists a positive constamsuch that for all(x, y) € M1 x M>,

2

D Yap()Kap(x. ) ¥a(x)

ac€A1, BEAL

<e 3 V0K V| 2yps gy
acAy, BeAr )

=c Y (Y0Va®)’[Kap D2y pyy

a€Aq, BeEAr

Lo(Ff, Fay)

Then

2

dxdy
Lo(Ff,, Fay)

/ D> Y (0 Kap(x, Y)Y1a(x)

MixMa a€Aq, BeEA

<c /‘ﬁla(x)zf Y25 (3% Kegp (x, y)ch(F* ) @Y A%

a€A, ﬁEAZUl Uzp

2
<o X IR sy g, v
weAs, BEA2) 1y, )

< 00,

sinceKyp € L%(U1y x Uzg, L2(F1*, F»)). This shows thak is associated with a kernel
K e L (VMJ_XMQ)

Conversely, assume that the opera\’ors associated with a kernél < L2 VMyxMs,)-
Then, forall(a, 8) € A1 x A2, LllzﬁKllfla is associated with a kern¢lz,3 MK (x, y)Y1g(x)
€ L?(U1y x Uag, L2(Ff, F2)). By Lemma 3.1, the operatobs K ¥, is a Hilbert—
Schmidt operator and then

K= Y wykuy,,
acA1, BeAL

is also a Hilbert—Schmidt operatorc
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