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Abstract

In this paper, an inverse problem of constructing a linear n degree of freedom mass-spring system from part of its physical
parameters and part of modality of its maximal or minimal natural frequencies is considered. The solvability and the expression of
the solution is derived. The numerical algorithms and some numerical examples are given.
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1. Introduction

A linear n degree of freedom system of n point masses simply interconnected by springs is characterized by the
generalized eigenvalue equation (see [5]),

(Kn − �Mn)u = 0, (1.1)

where � = �2, � is the natural frequency, u is the modality, Kn is the stiffness matrix,

Kn =

⎡
⎢⎢⎢⎣

k1 + k2 −k2
−k2 k2 + k3 −k3

· · · · · · · · · · · · · · ·
−kn−1 kn−1 + kn −kn

−kn kn + kn+1

⎤
⎥⎥⎥⎦ , (1.2)

and Mn = diag(m1, . . . , mn) is the mass matrix. Of particular interest are matrices Kn satisfying certain row sum
conditions, namely (see [13]):

• Kn is a Jacobi matrix with all row sums equal to zero.We shall refer to such a Jacobi matrix as free–free.
• Kn is a Jacobi matrix with all row sums, save the first, equal to zero. We shall call this type fixed–free.
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• Kn is a Jacobi matrix with first and last row sums positive, while all others are zero. Kn with this property will be
called fixed–fixed.

In this paper, we will consider reconstructing a fixed–fixed mass-spring system, with k1 > 0, kn+1 > 0, mn > 0, mi,

ki+1 > 0 for i = 1, 2, . . . , n − 1.
Inverse vibration problem, roughly speaking, is how to reconstruct a stiffness matrix and a mass matrix from

prescribed natural frequencies or modalities or some physical parameters. Inverse vibration problems for mass-spring
system have been of interest for many applications, because of n degree-of-freedom mass-spring system may be thought
of as finite-difference or finite-element approximations of continuous systems. Gantmakher and Krein [4], Boley and
Golub [1], Gladwell [5], Zhou and Dai [17], Chu [3] had showed that inverse eigen-problems arise in classical vibration
theory which the reconstruction of mass-spring system may be thought of as basic inverse vibration problem.

There are many important results on reconstructing a mass-spring system with different given data, for example,
Hochstadt [7], Hald [6], de Boor and Golub [2], Ram [15,16] and Jiménez et al. [11] have given us the algorithms
for computing physical parameter mi and ki with all or partial natural frequencies of system by constructing a Jacobi
matrix; Peter Nylen and Frank Uhlig [12,13] focus on the reconstruction of mass-spring system with nature frequen-
cies from the modified system; Hochstadt [8] and Hu etc. [9] has reconstructed a Jacobi matrix with its sub-matrix
and all eigenvalue; Hu etc. [10] and Peng [14] has reconstructed a Jacobi matrix with its eigenpairs and subsystem;
In this paper, we will also consider reconstructing a fixed–fixed mass-spring systems from some physical param-
eters of subsystem and two natural frequencies and parts of its modalities, where two natural frequencies are the
maximal and the minimal one which have been of important interest for engineering applications. The problems are
as follows.

Problem FDDMK I. Given u ∈ Rn and wi ∈ R+, for i = 1, 2, . . . , n, find (Mn, Kn), such that, wi is the maximal
(or the minimal) natural frequency of (Mi, Ki), u is a modality corresponding to wn.

Problem FDDMK II. Given wi, w
∗
i ∈ R+ for i = 1, 2, . . . , n, find (Mn, Kn), such that wi and w∗

i is the maximal
and the minimal natural frequencies of (Mi, Ki), for i = 1, 2, . . . , n.

Problem FDDMK III. Given wn, w
∗
n ∈ R+, X2, Y2 ∈ Rn−p, and mi, ki ∈ R+ for i = 1, 2, . . . , p, find (Mn, Kn) and

X1, Y1 ∈ Rp, such that, wn and w∗
n is the maximal and the minimal natural frequencies of (Mn, Kn) respectively, x

and y is the modality corresponding to wn and w∗
n respectively.

Where, R+ is the set of all positive number, Rn is the set of all n-dimension vector. Mi and Ki be i by i leading
principal sub-matrix of Mn and Kn, respectively. (Mi, Ki) denote the i degree of-freedom mass-spring system including
physical parameters m1, m2, . . . , mi and k1, k2, . . . , ki, ki+1. (Mi, Ki) is a subsystem of (Mn, Kn), �(Mi, Ki) is the
set of all roots from det(Ki − �Mi) = 0. x = (XT

1 , XT
2 )T and y = (Y T

1 , Y T
2 )T, X1 = (x1, . . . , xp)T, Y1 = (y1, . . . , yp)T,

X2 = (xp+1, . . . , xn)
T, Y2 = (yp+1, . . . , yn)

T. sign(�) = 1, 0 or −1, when � > 0, � = 0 or � < 0, respectively.
This paper is organized as follows. In Section 2, we discuss the properties of (1.1), and the uniqueness of the solutions

for Problem FDDMK I and II. In Section 3, we show the existence of the solution for Problem FDDMK III, and derive
an expression of the solution. In Section 4, we give an algorithm to compute the solution of problem FDDMK III, and
some numerical examples to illustrate the results obtained in this paper are given.

2. Preliminary results, solving problem FDDMK I and II

Lemma 1. If mi > 0 for i =1, 2, . . . , n, ai = (ki +ki+1)m
−1
i , bi =−ki+1m

−1
i , ci =−ki+1m

−1
i+1, then (Kn −�Mn)u=0

is equivalent to Au = �u, where

A = M−1
n Kn =

⎡
⎢⎢⎢⎣

a1 b1
c1 a2 b2

· · · · · · · · · · · · · · ·
cn−2 an−1 bn−1

cn−1 an

⎤
⎥⎥⎥⎦ . (2.1)
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Remark. �∗ ∈ R+ is an eigenvalue of A and �∗ ∈ Rn is an eigenvector corresponding to �∗ if and only if �∗ is a
general eigenvalue of matrix-pairs Kn, Mn, and (Kn − �∗Mn)u

∗ = 0.

Note that bici > 0 for i = 1, 2, . . . , n − 1, matrix A is a Jacobian matrix which has some important properties as
follows (see e.g., [5,17]).

Property 1. Suppose Ai be a i × i leading principal sub-matrix of Jacobi matrix A, Di(�) = det(Ai − �I ), I is the
identity matrix of size i, then

Di(�) = (ai − �)Di−1(�) − bi−1ci−1Di−2(�), i = 2, 3, . . . , n, (2.2)

where D0(�) = 1 and D1(�) = a1 − �.

Property 2. Suppose that �(i) is an eigenvalue of Ai , �(i)
1 and �(i)

i is the minimal and maximal zero point of Di(�),
then

(1) Di(�
(i)) = 0, Di−1(�

(i)) �= 0, for i = 2, . . . , n;
(2) �(n)

1 < �(n−1)
1 < · · · < �(2)

1 < �(1)
1 < �(2)

2 < · · · < �(n)
n .

Property 3. Suppose that x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , yn)

T is an eigenvector corresponding to maximal
eigenvalue � and minimal eigenvalue �, respectively, then (1) xixi+1 < 0, yiyi+1 > 0 for i = 1, 2, . . . , n − 1; or (2)
sign(xi) = (−1)j−isign(xj ), sign(yi) = sign(yj ) for i, j = 1, 2, . . . , n.

Let �i (�) = det(Ki − �Mi), it has the similar properties with Di(�) = det(Ai − �I ). The following lemmas
are a direct result from Property 1–3. Their proofs are similar to the proof of Property 1–3, and are omitted (see
[5,17]).

Lemma 2. Suppose that �0(�) = 1, �1(�) = k1 + k2 − �m1, �i (�) = det(Ki − �Mi) for i = 2, 3, . . . , n − 1, then

�i (�) = (ki + ki+1 − �mi)�i−1(�) − k2
i �i−2(�), (2.3)

Note that �i (�) is made of physical parameters m1, m2, . . . , mi and k1, k2, . . . , ki, ki+1.

Lemma 3. Suppose that �(i) is a zero point of �i (�), �(i)
1 and �(i)

i is the minimal and the maximal natural frequency
of mass-spring system (Mi, Ki) for i = 1, 2, . . . , n then

(1) �i−1(�
(i)) �= 0 for i = 2, 3, . . . , n;

(2) 0 < �(n)
1 < �(n−1)

1 < · · · < �(2)
1 < �(1)

1 < �(2)
2 < · · · < �(n)

n .

Lemma 4. Suppose that u = (u1, u2, . . . , un)
T and v = (v1, v2, . . . , vn)

T is a modality corresponding to the maxi-
mal and the minimal natural frequency of mass-spring system (Mn, Kn), respectively, then it is true that (1) uiui+1
< 0, vivi+1 > 0 for i = 1, 2, . . . , n − 1; or (2) sign(ui) = (−1)j−isign(uj ), sign(vi) = sign(vj ), for i, j = 1,

2, . . . , n.

In the following, we find the solution of Problem FDDMK I and II. Obviously, solving Problem FDDMK I is
equivalent to solving the inverse general eigen-pairs problem as follows: given �i =�2

i and real vector u, find Mn, Kn ∈
Rn×n, such that

(Kn − �nMn)u = 0, �i (�i ) = 0, for i = 1, 2, . . . , n. (2.4)

Let Ei = ki(ui−1 − ui), Fi = (k2
i �i−2(�i )�

−1
i−1(�i ) − ki), for i = 2, . . . , n;$i = (�n − �i )ui + �iui+1,$mi

= (ui −
ui+1)Fi − Ei , $ki+1 = �nuiFi − �iEi , for i = 1, 2, . . . , n − 1.
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Theorem 1. Without loss of generality, we assume that wi is the maximal natural frequency of (Mi, Ki). Suppose
that k1 > 0 and

∑n
i=1 mi = � > 0, Problem FDDMK I has unique solution, if and only if, the following conditions are

satisfied

(1) 0 < �1 < �2 < · · · < �n, �i−1(�i ) �= 0, i = 2, . . . , n − 1, n, where �i = w2
i ;

(2) sign(ui) = (−1)i−1sign(u1), i = 2, . . . , n − 1, n;
(3) $i$mi

$ki+1 �= 0, sign($i ) = sign($mi
) = sign($ki+1), for i = 2, 3, . . . , n − 1;

(4) sign(�1$m1$
−1
1 − k1) = 1;

(5) un−1�n−1(�n) $n−1 − un�n−2(�n)$kn = 0;
(6) sign(� − ∑n−1

i=1 $mi
$−1

i ) = 1;

(7) sign(�n� − �n

∑n−1
i=1 $mi

$−1
i + (un−1u

−1
n − 1)$kn$

−1
n−1) = 1.

Proof. Necessity. Assume that Problem FDDMK I has unique solution, that is, Eq. (2.4) have unique solution. Hence,
conditions (1) and (2) can be derived from Lemmas 3, 4. Expanding (2.4), we obtain for i = 1, 2, . . . , n

(ui − ui+1)ki+1 − �nuimi = ki(ui−1 − ui), (2.5)

�i−1(�i )ki+1 − �i�i−1(�i )mi = k2
i �i−2(�i ) − ki�i−1(�i ), (2.6)

where u0 = un+1 = 0, �−1(�) = 0.
Since mi > 0 and ki+1 > 0 for i = 2, . . . , n − 1, we have condition (3) and

mi =$mi/$i , ki+1 =$ki+1/$i for i = 2, . . . , n − 1. (2.7)

By Eqs. (2.5) and (2.6) for i = 1, we have

(u1 − u2)k2 − �nu1m1 = −k1u1, k2 − �1m1 = −k1. ((2.8),(2.9))

Since m1 > 0 and k2 > 0, we have conditions (3) and (4), and

m1 =$m1/$1, k2 =$k2/$1 = m1�1 − k1. (2.10)

Similarly by Eqs. (2.5) and (2.6) for i = n, un �= 0 and �n−1(�n) �= 0, kn + kn+1 − �nmn can be expressed as

kn + kn+1 − �nmn = knun−1

un

and kn + kn+1 − �nmn = k2
n�n−2(�n)

�n−1(�n)
. (2.11)

Hence, condition (5) can be derived when substituting kn =$kn/$n−1 into (2.11).
Finally, since

∑n
i=1 mi = � and (2.11) we obtain

mn = � −
n−1∑
i=1

mi = � −
n−1∑
i=1

($mi
/$i ), kn+1 = �nmn + kn(un−1u

−1
n − 1), (2.12)

where mn > 0 and kn+1 > 0, so the conditions (6) and (7) can be derived.
Sufficiency: Since conditions (3) and (4) hold and k1 is given, m1 and k2 can be computed according to (2.10). �1(�)

can be reconstructed with m1, k1, k2 and we can compute �1(�2) and �0(�2). When �1(�2) �= 0 and condition (3)
holds we can compute m2 and k3 by (2.7). Generally, if m1, . . . , mi−1 and k1, . . . , ki−1, ki are given, we can reconstruct
�i−1(�) and we can compute �i−1(�i ) and �i−2(�i ). When �i−1(�i ) �= 0 and condition (3) holds we can compute mi

and ki+1 for i = 2, 3, . . . , n − 1. Finally mn and kn+1 can be computed by (2.12) when the conditions (5)–(7) holds.
So we get all physical parameters of a fixed–fixed mass-spring system. Such a system satisfy (2.4). This completes the
proof. �

Next, we discuss Problem FDDMK II.
Obviously, it is an inverse general eigenvalues problem as follows: given �1 and �i , �

∗
i ∈ R+, for i = 2, 3, . . . , n,

find Mn, Kn ∈ Rn×n, such that

�1(�1) = 0, �i (�i ) = 0, �i (�
∗
i ) = 0 for i = 2, 3, . . . , n. (2.13)
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Expanding (2.13), if �i−1(�i ) �= 0, �i−1(�
∗
i ) �= 0, we obtain

k1 + k2 = �1m1, ki+1 − �imi = Wi, ki+1 − �∗
i mi = W ∗

i , for i = 2, 3, . . . , n, (2.14)

where Wi = ki(ki�i−2(�i )�
−1
i−1(�i ) − 1), W ∗

i = ki(ki�i−2(�
∗
i )�

−1
i−1(�

∗
i ) − 1).

It is easy to prove Theorem 2 by the same method which we use to prove Theorem 1.

Theorem 2. Suppose m1 > 0 and k1 > 0. Problem FDDMK II has unique solution, if and only if

(1) 0 < �∗
n < �∗

n−1 < · · · < �∗
2 < �1 < �2 < · · · < �n;

(2) �i−1(�i ) �= 0, �i−1(�
∗
i ) �= 0, for i = 2, 3, . . . , n;

(3) sign(m1�1 − k1) = 1;
(4) 	i	mi

	ki+1 �= 0, sign(	i ) = sign(	mi
) = sign(	ki+1), i = 2, 3, . . . , n.

If the above conditions are satisfied, the physical parameters of mass-spring system have the expression as follows:

mi = 	mi
/	i , ki+1 = 	ki+1/	i for i = 2, . . . , n,

where 	i = �i − �∗
i , 	mi

= W ∗
i − Wi , 	ki+1 = W ∗

i − �∗
i Wi .

3. The solvability conditions of problem FDDMK III

In fact, Problem FDDMK III is a general inverse eigen-problem as follows: given �, � ∈ R+, X2, Y2 ∈ Rn−p and
Kp−1 ∈ R(p−1)×(p−1), Mp ∈ Rp×p, find kp+1 ∈ R+, Mn, Kn ∈ Rn×n and X1, Y1 ∈ Rp, such that

(Kn − �Mn)x = 0, (Kn − �Mn)y = 0, (3.1)

xTMny = 0. (3.2)

Expanding (3.1) and (3.2), we obtain four questions as follows:

Problem FDDMK III.1. Given kp+1, xp+1 �= 0, yp+1 �= 0, Mp, Kp ∈ Rp×p, find X1, Y1 ∈ Rp such that

(Kp − �Mp)X1 = kp+1xp+1Epp, (Kp − �Mp)Y1 = kp+1yp+1Epp, (3.3)

where Epp be the pth column of p × p identity matrix.

Problem FDDMK III.2. Given kp+1 > 0, xi, yi , for i =p + 1, p + 2, xp and yp is the solution for Problem FDDMK
III.1, find mp+1 > 0 and kp+2 > 0, such that

{
�xp+1mp+1 + (xp+2 − xp+1)kp+2 = kp+1(xp+1 − xp),

�yp+1mp+1 + (yp+2 − yp+1)kp+2 = kp+1(yp+1 − yp).
(3.4)

Problem FDDMK III.3. Given kp+1 > 0, mp+1 and kp+2 is the solution for Problem FDDMK III.2, find mi > 0 and
ki+1 > 0, for i = p + 2, . . . , n, such that{

�ximi + (xi+1 − xi)ki+1 = ki(xi − xi−1),

�yimi + (yi+1 − yi)ki+1 = ki(yi − yi−1),
(3.5)

where i = p + 2, . . . , n, xn+1 = yn+1 = 0.

Problem FDDMK III.4. Given mi, ki for i = 1, 2, . . . , p and xi, yi for i = p + 1, . . . , n, X1, Y1 is the solution for
Problem FDDMK III.1, mp+1, kp+2 is the solution for Problem FDDMK III.2, find kp+1 > 0, such that

XT
1 MpY1 + mp+1xp+1yp+1 +

n∑
i=p+2

mixiyi = 0. (3.6)
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Lemma 5. Suppose � /∈ �(Mp, Kp), then there exists unique solution u in the equation

(Kp − �Mp)u = 
Epp, (3.7)

and u can be expressed as follows:

u = 
(Kp − �Mp)−1Epp = 
u∗

�p(�)
, (3.8)

where u∗ = (u∗
1, u

∗
2, . . . , u

∗
p)T, u∗

i = �i−1(�)
∏p

j=i+1 kj , u∗
p = �p−1(�).

Proof. �p(�) = det(Kp − �Mp) �= 0 because of � /∈ �(Mp Kp), According to the definition of inverse matrix, we
obtain

(Kp − �Mp)−1 = 1

�p(�)
(Kp − �Mp)∗,

where (Kp − �Mp)∗ is adjoint matrix of Kp − �Mp. So there exists unique solution u in Eq. (3.7) as follows:

u = 


�(�)
(Kp − �Mp)∗Epp.

We have (3.8) by straightforward computing the pth column of (Kp − �Mp)∗.

Lemma 6. Suppose that �, � /∈ �(Mp, Kp), � �= �, and X1=(x1, x2, . . . , xp)T, Y1=(y1, y2, . . . , yp)T are the solutions
of equations (Kp − �Mp)X1 = cEpp, (Kp − �Mp)Y1 = dEpp, respectively. It is true that

XT
1 MpY1 = cd�p(�, �)

(� − �)�p(�)�p(�)
, (3.9)

where �p(�, �) = �p−1(�)�p(�) − �p−1(�)�p(�).

Proof. According to two equations (Kp − �Mp)X1 = cEpp, (Kp − �Mp)Y1 = dEpp, we obtain

Y T
1 (Kp − �Mp)X1 = cY T

1 Epp, XT
1 (Kp − �Mp)Y1 = dXT

1 Epp. (3.10)

Noting that XT
1 MpY1 = Y T

1 MpX1 and XT
1 KpY1 = Y T

1 KpX1, it is true that

(� − �)XT
1 MpY1 = dXT

1 Epp − cY T
1 Epp. (3.11)

By Lemma 5 we obtain

XT
1 Epp = c�p−1(�)

�p(�)
, Y T

1 Epp = d�p−1(�)

�p(�)
. (3.12)

When � �= �, substituting (3.12) into (3.11) yields (3.9). This completes the proof. �

Using Lemmas 2–6, it is easy to have the following results.

Theorem 3. Problem FDDMK III.1 has unique solution, if and only if

(1) �p(�) �= 0, �p(�) �= 0;
(2) sign(xixp+1) = sign(�i−1(�)�p(�)), sign(yiyp+1) = sign(�i−1(�)�p(�)) for i = 1, 2, . . . , p;
(3) sign(xixi+1) = sign(�i−1(�)�i (�)) = −1, for i = 1, 2, . . . , p − 1;
(4) sign(yiyi+1) = sign(�i−1(�)�i (�)) = 1, for i = 1, 2, . . . , p − 1.
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If the above conditions are satisfied, the solution has the expression as follows:

xp = �p−1(�)

�p(�)
kp+1xp+1, xi = �i−1(�)

�p(�)
kp+1xp+1

p∏
j=i+1

kj for i = 1, 2, . . . , p − 1,

yp = �p−1(�)

�p(�)
kp+1yp+1, yi = �i−1(�)

�p(�)
kp+1yp+1

p∏
j=i+1

kj for i = 1, 2, . . . , p − 1. (3.13)

Now, by using the theory of linear systems we can get the solution of Problem FDDMK III.2 and III.3. At first, let
Hi =�xi(yi+1 −yi)−�yi(xi+1 −xi), Gi = (xi −xi−1)(yi+1 −yi)− (yi −yi−1)(xi+1 −xi), Qi+1 =�xi(yi −yi−1)−
�yi(xi − xi−1), for i = p + 1, . . . , n.

Theorem 4. Problem FDDMK III.2 has unique solution, if and only if

Hp+1Gp+1Qp+1 �= 0, sign(Hp+1) = sign(Gp+1) = sign(Qp+2),

and the solution has the expressions as follows:

mp+1 = kp+1Gp+1/Hp+1, kp+2 = kp+1Qp+2/Hp+1. (3.14)

Theorem 5. Problem FDDMK III.3 has unique solution, if and only if

HiGiQi+1 �= 0, sign(Hi) = sign(Gi) = sign(Qi+1) for i = p + 2, . . . , n.

If the above conditions are satisfied, the solution has the expression as follows:

mi = kiGi/Hi, ki+1 = kiQi+1/Hi . (3.15)

Corollary. Suppose that mi and ki have the expression of (3.14) and (3.15), respectively, there exists a relation formula

ki = kp+1Qp+2k
∗
i for i = p + 2, . . . , n + 1, (3.16)

mi = kp+1Qp+2m
∗
i for i = p + 2, . . . , n, (3.17)

where k∗
p+2 = H−1

p+1; k∗
i = H−1

p+1

∏i−1
j=p+2 Qj+1/Hj , i = p + 3, . . . , n + 1; m∗

i = k∗
i Gi/Hi, for i = p + 2, . . . , n.

Proof. Using (3.15) to recur from i to p + 2, we get

ki = kp+2

i−1∏
j=p+2

Qj+1

Hj

, i = p + 3, . . . , n + 1. (3.18)

Substituting kp+2 = kp+1Qp+2/Hp+1 into (3.18) yields (3.16) and substituting (3.16) into (3.15) yields (3.17). This
completes the proof. �

Remark. �p(�), �p(�),�p(�, �),xp, yp, Gp+1, Qp+2, mi(i = p + 1, . . . , n) are all function of kp+1. Let

Rp(�) = (kp − �mp)�p−1(�) − k2
p�p−2(�), Rp(�) = (kp − �mp)�p−1(�) − k2

p�p−2(�).

	(0)
2 = �p−1(�)�p−1(�), 	(0)

1 = �p−1(�)Rp(�) + �p−1(�)Rp(�), 	(0)
0 = Rp(�)Rp(�).

	(1)
1 = �p−1(�)�p−1(�) − �p−1(�)�p−1(�) = 0, 	(1)

0 = �p−1(�)Rp(�) − �p−1(�)Rp(�).

	(2)
0 = xp+1(yp+2 − yp+1) − yp+1(xp+2 − xp+1), 	(2)

1 = (xp+2 − xp+1)yp+1�p−1(�),

	(2)
2 = −(yp+2 − yp+1)xp+1�p−1(�),

	(3)
0 = (� − �)xp+1yp+1, 	(3)

1 = −�xp+1yp+1�p−1(�), 	(3)
2 = �xp+1yp+1�p−1(�).
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	(4)
i = 	(2)

i /Hp+1 = 	(2)
i m∗

p+1 for i = 0, 1, 2.

	(5)
ij = 	(3)

j ∗ m∗
i for i = p + 2, . . . , n, j = 0, 1, 2.

The following notations can be introduced to solve Problem FDDMK III.4.

(i) �p(�) = (kp + kp+1 − �mp)�p−1(�) − k2
p�p−2(�)�kp+1�p−1(�) + Rp(�).

(ii) �p(�) = (kp + kp+1 − �mp)�p−1(�) − k2
p�p−2(�)�kp+1�p−1(�) + Rp(�).

(iii) �p(�)�p(�) = 	(0)
2 k2

p+1 + 	(0)
1 kp+1 + 	(0)

0 .

(iv) �p(�, �) = �p−1�p(�) − �p−1(�)�p(�) = 	(1)
1 kp+1 + 	(1)

0 = 	(1)
0 .

(v) xp = kp+1xp+1�p−1(�)/[kp+1�p−1(�) + Rp(�)],
(vi) yp = kp+1yp+1�p−1(�)/[kp+1�p−1(�) + Rp(�)],

(vii) Gp+1 = [	(2)
0 �p(�)�p(�) + 	(2)

1 kp+1�p(�) + 	(2)
2 kp+1�p(�)]/[�p(�)�p(�)].

(viii) Qp+2 = [	(3)
0 �p(�)�p(�) + 	(3)

1 �p(�)kp+1 + 	(3)
2 �p(�)kp+1]/[�p(�)�p(�)].

(ix) mp+1 = kp+1(	
(4)
0 �p(�)�p(�) + 	(4)

1 �p(�)kp+1 + 	(4)
2 �p(�)kp+1)/[�p(�)�p(�)].

(x) mi = kp+1(	
(5)
i0 �p(�)�p(�) + 	(5)

i1 �p(�)kp+1 + 	(5)
i2 �p(�)kp+1)/[�p(�)�p(�)].

Theorem 6. Problem FDDMK III.4 has a solution, if and only if,

(1) �p(�) �= 0, �p(�) �= 0;

(2) �2t
2 + �1t + �0 = 0 has a positive root t∗, where �2

2 + �2
1 �= 0, �2

0 �= 0;

(3) �2t
2 + �1t + �0 = 0 has infinite roots t∗ > 0, when �2

2 + �2
1 + �2

0 = 0.

If the above conditions are satisfied, the solution has the expression as follows:

kp+1 = t∗ �= −Rp(�)/�p−1(�) and − Rp(�)/�p−1(�),

where �2 = 	(6)
0 	(0)

2 + 	(6)
1 �p−1(�) + 	(6)

2 �p−1(�), �1 = 	(6)
0 	(0)

1 + 	(6)
1 Rp(�) + 	(6)

2 Rp(�) + 	(6)
3 , �0 = 	(6)

0 	(0)
0 ,

	(6)
j = xp+1yp+1	

(4)
j + ∑n

i=p+2 xiyi	
(5)
ij , 	(6)

3 = xp+1yp+1	
(1)
0 /(� − �).

Proof. Using Lemma 6 and X1, Y1 is the solution of Problem FDDMK III.1, when �p(�) �= 0, �p(�) �= 0, it is true
that

XT
1 MpY1 = k2

p+1xp+1yp+1�p(�, �)

(� − �)�p(�)�p(�)
.

Because of Problem FDDMK III.2 has a solutionmp+1 which has the expression (ix), we can computemp+1xp+1yp+1.
Similarly, we can compute mixiyi for i = p + 2, . . . , n by the expression (x). It holds that

XTMY = k2
p+1xp+1yp+1�p(�, �)/[(� − �)�p(�)�p(�)]

+ kp+1xp+1yp+1(	
(4)
0 �p(�)�p(�) + 	(4)

1 �p(�)kp+1 + 	(4)
2 �p(�)kp+1)

�p(�)�p(�)

+
n∑

i=p+2

kp+1xiyi(	
(5)
i0 �p(�)�p(�) + 	(5)

i1 �p(�)kp+1 + 	(5)
i2 �p(�)kp+1)

�p(�)�p(�)
. (3.19)

Reduce (3.19), we get by (3.6)

	(6)
0 �p(�)�p(�) + 	(6)

1 �p(�)kp+1 + 	(6)
2 �p(�)kp+1 + 	(6)

3 kp+1 = 0. (3.20)



X. Huang et al. / Journal of Computational and Applied Mathematics 206 (2007) 645–655 653

Substituting (i)–(iii) into (3.20), we get

�2k
2
p+1 + �1kp+1 + �0 = 0. (3.21)

Hence, Problem FDDMK III.4 has a solution if and only if �2t
2 + �1t + �0 = 0 has a positive root t∗ which is not

equal to −Rp(�)/�p−1(�) and −Rp(�)/�p−1(�). We can get kp+1 = t∗.

Theorem 7. Problem FDDMK III has a solution, if and only if, the following conditions are satisfied

(1) sign(xi) = (−1)n−isign(xn), sign(yi) = sign(yn), i = p + 1, . . . , n;

(2) sign(�i−1(�)�i (�)) = −1, sign(�i−1(�)�i (�)) = 1, i = 1, 2, . . . , p − 1;

(3) sign(�i−1(�)�p(�)) = (−1)p+1−i , sign(�i−1(�)�p(�)) = 1, i = 1, 2, . . . , p − 1;

(4) �p(�) �= 0, �p(�) �= 0;

(5) HiGiQi+1 �= 0, sign(Hi) = sign(Gi) = sign(Qi+1), i = p + 1, . . . , n;

(6) �2t
2 + �1t + �0 = 0 has a positive root t∗ which is not equal to −Rp(�)/�p−1(�) and −Rp(�)/�p−1(�).

Proof. Necessity. It is clearly given by Theorems 3–6.
Sufficient: We can get physical parameters kp+1, mi, ki+1 for i = p + 1, . . . , n and xi, yi for i = 1, 2, . . . , p by a

construction method. Using mi, ki for i = 1, 2, . . . , p,we can get polynomial function to compute �i (�) and �i (�) for
i = 0, 1, . . . , p − 1; Using xi, yi for i = p + 1, . . . , n, we can calculate Hp+1 and Gi, Qi+1 for i = p + 2, . . . , n;
Finally we compute �2, �1 and �0. If �2t

2 + �1t + �0 = 0 has a positive root t∗ which is not equal to −Rp(�)/�p−1(�)

and −Rp(�)/�p−1(�), we get kp+1 = t∗.
When m1, . . . , mp and k1, . . . , kp, kp+1 are given, we can calculate �p(�) and �p(�). Then computing xi, yi for

i = 1, 2, . . . , p by (3.13), computing mp+1 and kp+1 by (3.14), computing mi, ki+1 for i = p + 2, . . . , n by (3.18).
So we get all physical parameters with mi > 0 and ki+1 > 0 for i = p + 1, . . . , n and sign(xi) = (−1)n−isign(xn),
sign(yi) = sign(yn) for i = 1, 2, . . . , p. This completes the proof. �

4. Algorithm and example

According to above discussion an algorithm to solve problem FDDMK-III is presented as follows.
Algorithm FDDMK. Given mi, ki for i = 1, 2, . . . , p and xi, yi for i = p + 1, . . . , n, �1, �2 ∈ R+, then the

Algorithm constructs kp+1, mi, ki+1 for i = p + 1, . . . , n and XT
1 , Y T

1 .
(1) If there is i1, i2 ∈ {1, 2, . . . , p} such that mi1 < 0 or ki2 < 0, goto step (8). If there is i3, i4 ∈ {p + 1, . . . , n} such

that sign(xi3) �= (−1)n−i3 sign(xn) or sign(yi4) �= sign(yn), goto step (8).
(2) Compute � = �2

1, compute �i (�) for i = 1, 2, . . . , p − 1 by (2.3). If there is i5 ∈ {1, 2, . . . , p − 1} such that
sign(�i5

(�)�i5+1(�)) �= −1, goto step (8).

(3) Compute � = �2
2,compute �i (�) for i = 1, 2, . . . , p − 1 by (2.3). If there is i6 ∈ {1, 2, . . . , p − 1} such that

sign(�i6
(�)) �= sign(�i6+1(�)), goto step (8).

(4) Compute Hp+1 and Hi, Gi, Qi+1 for i = p + 2, . . . , n. If Hp+1 = 0 or HiGiQi = 0 then goto step (8); If there
is i7 ∈ {p + 2, . . . , n} such that fail to sign(Hi7) = sign(Gi7) = sign(Qi7), goto step (8).

(5) Compute Rp(�), Rp(�) and 	(j)
i for i = 0, 1, 2 and j = 0, 1, 2, 3, 4, 	(5)

ij for j = 0, 1, 2 and i = p + 2, . . . , n,

	(6)
j for i = 0, 1, 2, 3. Then calculate �i for i = 0, 1, 2, if �2t

2 + �1t + �0 = 0 has a positive root t∗ which is not equal
to −Rp(�)/�p−1(�) and −Rp(�)/�p−1(�), then let kp+1 = t∗, else goto step (8).

(6) Compute �p(�) and �p(�), if �p(�) = 0 or �p(�) = 0, goto step (8). If there is i8, i9 ∈ {1, 2, . . . , p − 1} such

that sign(�i8−1(�)�p(�)) �= (−1)p+1−i8 or sign(�i9−1(�)�p(�)) �= 1, goto step (8).
(7) Compute xp, yp and Gp+1, Qp+2, if sign(Gp+1) = sign(Qp+2) = sign(Hp+1), then calculate mp+1 and kp+2,

else goto step (8).
(8) Stop compute and exit program. Problem FDDMK III has no solution.
(9) Compute xi and yi for i = 1, 2, . . . , p − 1 by (3.13). Compute mi and ki for i = p + 2, . . . , n by (3.17).
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Example. Given � = 3.6926, � = 0.0965, p = 4, n = 9, ε = 1.0e − 012, m1 = m2 = m3 = m4 = 4, k1 = k2 =
k3 = k4 = 4, X2 = (x5, x6, x7, x8, x9)

T = (0.0972, −0.2322, 0.2958, −0.2685, 0.1586)T, Y2 = (y5, y6, y7, y8, y9)
T =

(0.2365, 0.2243, 0.1904, 0.1382, 0.0726)T, Employing algorithm FDDMK, we can know that v2
2 + v2

1 + v2
0 < ε which

is computed by MATLAB. Applying Algorithm FDDMK by MATLAB, we choose kp+1 = 1.0 in case 1 and let kp+1
has errors in case 2 where kp+1 = 0.9999, two solution are as follows:

Case 1: kp+1 = 1.0, a specially structured Jacobi matrix can be constructed as follows:

K9=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8.0000 −4.0000
−4.0000 8.0000 −4.0000

−4.0000 8.0000 −4.0000
−4.0000 5.0000 −1.0000

−1.0000 4.9842 −3.9842
−3.9842 7.9576 −3.9734

−3.9734 7.9537 −3.9803
−3.9803 7.9563 −3.9760

−3.9760 7.9524

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M9 = diag(4, 4, 4, 4, 3.9852, 3.9775, 3.9771, 3.9782, 3.9765),

where X1=(x1, x2, x3, x4)
T=(0.0142, −0.0240, 0.0265, −0.0208)T, Y1=(y1, y2, y3, y4)

T=(0.0628, 0.1196, 0.1648,

0.1942)T, (k6, k7, k8, k9, k10) = (3.9842, 3.9734, 3.9803, 3.9760, 3.9764). (m5, m6, m7, m8, m9) = (3.9852, 3.9775,

3.9771, 3.9782, 3.9765).
From the above 9 × 9 Jacobi matrix K9 and diagonal matrix M9, we recompute the general spectrum of matrix-pair

K9 and M9 by MATLAB 6.1, and get

�(M9, k9) = (0.0965, 0.2506, 0.7559, 1.1083, 1.7792, 2.4036, 2.8667, 3.5477, 3.6926)T,

and the eigenvector X to the maximal eigenvalue 3.6926 is

X = (0.0142, −0.0241, 0.0266, −0.0209, 0.0975, −0.2328, 0.2966, −0.2692, 0.1590)T,

and the eigenvector X to the minimal eigenvalue 0.0965 is

Y = (−0.0629, −0.1198, −0.1651, −0.1945, −0.2369, −0.2247, −0.1907, −0.1384, −0.0727)T.

Case 2: kp+1 = 0.9999, a specially structured Jacobi matrix can be constructed as follows:

K9=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8.0000 −4.0000
−4.0000 8.0000 −4.0000

−4.0000 8.0000 −4.0000
−4.0000 4.9999 −0.9999

−0.9999 4.9841 −3.9842
−3.9842 7.9576 −3.9734

−3.9734 7.9537 −3.9803
−3.9803 7.9563 −3.9760

−3.9760 7.9524

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M9 = diag(4, 4, 4, 4, 3.9852, 3.9775, 3.9771, 3.9782, 3.9765),

where X1=(x1, x2, x3, x4)
T=(0.0142, −0.0240, 0.0265, −0.0208)T, Y1=(y1, y2, y3, y4)

T=(0.0628, 0.1196, 0.1648,

0.1942)T, (k6, k7, k8, k9, k10) = (3.9842, 3.9734, 3.9803, 3.9760, 3.9764). (m5, m6, m7, m8, m9) = (3.9852, 3.9775,

3.9771, 3.9782, 3.9765).
From the above 9 × 9 Jacobi matrix K9 and diagonal matrix M9, we recompute the general spectrum of matrix-pair

K9 and M9 by MATLAB 6.1, and get

�(M9, K9) = (0.0965, 0.2506, 0.7559, 1.1083, 1.7792, 2.4036, 2.8667, 3.5477, 3.6926)T,
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and the eigenvector X to the maximal eigenvalue 3.6926 is

X = (0.0142, −0.0241, 0.0266, −0.0208, 0.0975, −0.2328, 0.2966, −0.2692, 0.1590)T,

and the eigenvector X to the minimal eigenvalue 0.0965 is

Y = (−0.0629, −0.1198, −0.1651, −0.1945, −0.2369, −0.2247, −0.1907, −0.1384, −0.0727)T.

These obtained data show that Algorithm FDDMK is quite efficient.
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