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Introduction 

Up to now, no computational model is known to perform effective commuta- 
tive algebra for ideals in a computable ring of formal power series, while the 
theory for this is quite developed at least since [7]. 

The particular case of algebraic formal power series comes out naturally, when 
studying singular points of algebraic varieties, for instance, in the Newton- 
Puiseux algorithm for determining the analytic branches of a curve at a singular 
point and, more generally, when studying analytic components of a complex 
algebraic variety. 

We propose here to develop a computational model for algebraic formal power 
series, already introduced in [l], based on a symbolic codification of the series by 
means of the Implicit Function Theorem, i.e., we will consider algebraic series as 
the unique solutions of suitable functional equations, which we call Locally 
Smooth Systems. We then reduce the problem of handling a finite set of algebraic 
series to some corresponding problem involving suitable polynomial rings. 

In this model we will show that most of the usual local commutative algebra can 
be effectively performed on algebraic series, since we can reduce to the polyno- 
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mial case, where the Tangent Cone Algorithm can be used to effectively perform 

local algebra. We can give a Tangent Cone Algorithm for ideals in the ring of 

algebraic formal power series, and so compute standard bases and use an effective 

version of the method of associated graded rings, to deal with basic local ideal 

theoretical problems. It turns out, however, that much information can be 

obtained in a direct way, by means of the Bezout Theorem. 

The main result of our paper is an effective version of the Weierstrass 

Preparation Theorem: we are able to prepare a distinguished polynomial and 

contemporaneously reduce the involved Locally Smooth Systems to ones with one 

less variable. This theorem will allow us to have an effective version of the 

Weierstrass Division Theorem, to handle an effective elimination theory for 

algebraic series and to give an effective version of the Noether Normalization 

Lemma. 

In Section 1 we recall without proofs the basic theory of standard bases in rings 

of formal power series. The second section is devoted to the presentation of the 

proposed computational model for algebraic series, based on the concept of 

locally smooth systems. In Section 3 we show how to modify a locally smooth 

system to effectively compute with algebraic series. In Section 4 we then give an 

algorithm to compute a standard basis for the ring of algebraic series (and 

henceforth an effective version of the method of associated graded rings). In 

Section 5 we give effective versions of the Weierstrass Preparation and Division 

Theorems, which are used in Section 6 to present algorithms for computing the 

elimination of variables and the Noether normal position of an ideal of algebraic 

formal power series. Finally we show in the Appendix how to reduce classically 

defined algebraic series to our model and conversely, by means of (a constructive 

version of) the Artin-Mazur Theorem. 

We assume that the reader is familiar with the notion and basic properties of 

Grobner bases for polynomial ideals [6]. 

1. Recalls on standard bases 

Notation 

We fix the following data and notation all over the paper. 

Let {Z, , . . , Z,,,} be a set of variables. We will use Z as a shorthand for 

(Z,, . , Z,,,) and denote by (Z) = (Z,, . , Z,,,) the multiplicative semigroup of 

terms in the Z,‘s. 

An admissible term ordering (of weight L) on (Z) is a semigroup total ordering 

such that there exists a positive linear form L : FV”‘+ fV, L(a) = L(a,, . . . , a,,) = 

c w,a;, with Z” < 2” if L(a) < L(b), where Z” := Zq’ . . . 22. We say that w, is 

the weight of the variable Z,, and, by abuse of notation, we will write L(Z’) for 

L(a). We remark that, for each n E N, there are only finitely many terms Z” with 

L(Z”) = n. 
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Let K denote a field of characteristic zero. We require that the field K is 

computable in a very weak form: all we need is the availability of arithmetical 

operations in K; we will require availability of a factorization algorithm for 

polynomials in K[Z] only in the Appendix, where it will be needed to explicitly 

represent in our computational model an algebraic power series given in the 

classical way. 

Let us denote by K[[Z]] = K[[Z,, . . . , Z,,]] the ring of formal power series. We 

will be specifically interested in the ring 

K[[Z]];,,, := {g E K[[Z]]: g is algebraic over K[Z]} 

of algebraic power series. Let f E K[[Z]], we write f= zuENP)’ f(,Z”, with f, E K; 

then let f(,, : = c ,.cc,j=l f,,Z”, so that f= c :=(, f(,,. In this setting we denote: 

Supp(f) := {Z”: f, #O} ) 

T(f) : = min, {Z”: f, f 0)) the leading term of f , 

M(f) : = f,Z’, where Z” = T(f), the leading monomial of f , 

lc( f) : = f,, where Z” = T(f), the leading coejjicient of f and 

in(f) := fci,, where f(,, = 0 Vj < i, the initial form of f 

Moreover, for any K-algebra R with K[Z] C R C K[[Z]], we will freely use the 

following notation, denoting m := (Z,, . . , Z,,,)K[[Z]] n R: 

Standard bases and normal forms 

We recall now some basic definitions and results on standard bases for the ring 

of formal power series and subrings of it. 

Definition. Let R be any ring such that K[Z] C R C K[[Z]]. Let I be an ideal in R, 
{g,, , g,>} C I. We say that: 

(i) g E R has an R-standard representation in terms of {g,, . , g,} if g E R* 
and g = C h,g, with T(h,) . T( g;) 2 T(g) Vi, h, E R. 

(ii) An element h E R is an R-normal form of g with respect to {g,, . . , g,} if 

g - h has an R-standard representation in terms of {g,, . , g,} and either h = 0 

or Wh)@(Wg,), . . , M( g,s)). (We write: h ENF(g, {g,, . . , g,}, R).) 

Moreover, let us consider: M(I) := (M(g): g E Z) C K[Z]; we say that: 

(iii) {g,, . , g,$} is an R-standard base for I if { M( g,), . . . , M( g,)} generates 

the ideal M(1). 
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Remark. One of the main features of Grijbner bases for polynomial rings consists 
in the following fact, which gives an effective test for ideal membership: 

Let g be a polynomial, Z an ideal, {g,, . . , g,} a GrGbner basis of I; then: 

0 is a normal form of g with respect to {g,, . . , g,} if and only if g E Z , 

g has a nonzero normal form with respect to {g,, . . . , g,} if and only if 

g@Z 

A similar result can be obtained also in the case of standard bases; however, 
without further restrictions, the two cases above are no more mutually exclusive; 
a third possibility occurs, namely that no normal form of g with respect to the 
standard basis {g,, . . , g,} exists. 

Example 1. Let m=l, Z=Z,, L(Z):=l, g,:=Z-Z2, g:=Z, Z:=(g,)K[Z]. 

Then {g,} is a standard basis for I. Clearly Z@(Z - Z”), so there is no 
K[Z]-standard representation of g in terms of {g,} and 0 is not a normal form of g 
with respect to {g,}. Moreover, if h E K[Z] - (0) is such that Z - h E ( gl), then 
h(0) = 0, so M(h) E (M( g,)); therefore, NF( g, {g,}, K[Z]) = $3. 

Definition. We say that the ring R has the property (NF) if, for each {g,, . . . , g,}, 
g E R, there is an R-normal form of g with respect to {g,, . . . , g,}. 

Proposition 1.1. Let R be a ring satisfying (NF), g E R, Z = (gl, . . . , g,) and 
assume that {g,, . . . , g,} is a standard base, then: 

(i) if OENF(g, { g,, . . , g,}, R), then g EZ; in this case NF(g, {g,, 
. . . ) s,>> W = (0); 

(ii) if there is h E NF(g, {g,, . . , g,}, R) - {0}, then g@Z; in this case if 

h’ENF(g, {g,, . . , g,Y}, R), then h’#O, M(h) = M(h’), T(h) = max{ir(f): g - 

f EO. 

Proof. (i) If OENF(g, {g,,. . . , g,} , R), then g has an R-standard representation 
in terms of {g,,..., g,5} and in particular it belongs to I. Assume there is 

fEWg,{g,,..., g,}, R) and f Z 0, then g - f has an R-standard representa- 
tion in terms of {g,, . . . , g,}, hence g - f E I; but also g E I, and thus f E I. This 
implies M(f) E M(Z), which gives a contradiction, since M( f)$M(Z) because f 

is a normal form. 
(ii) If there is h E NF( g, {g,, . . , g,}, R) - {0}, then hgZ, because M(h)$?’ 

M(Z); since g - h E I, it follows that ggZ too. By (i) then 09 

NF(g> {g,,. . . 7 g,}, R). So if h’ENF(g, {g,, . . . , g,Y}, R), then h’#O; clearly 
h - h’ E I, and therefore, if M(h) # M(h’), assuming, e.g., T(h) 5 T(h’), we 
conclude that M(h - h’) = CM(h), for some nonzero constant c; hence M(h) E 
M(Z), a contradiction. Similarly we can see that there are no f with h - f E Z and 

T(f)’ Z-(h). •I 
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Proposition 1.2. Let R be a ring satisfying (NF). Let g,, . . , g, E R, Z = 

(g,, . . . > g,)R. Then the following conditions are equivalent: 
(a) {g,, . . . , g,} is an R-standard basis of I, 
(b) tlg E R: g E Z iff g has an R-standard representation in terms of 

{gI,...,gSI, 
(c) VgER:gEZiffOENF(g,{g,,...,g,},R). 

Proof. (a) + (c) This is a direct consequence of Proposition 1.1. 
(c) I$ (b) If g E I, then 0 E NF( g, {g,, . . . , g,}, R) and so g has an R-standard 

representation in terms of {g,, . . , g,}. The converse implication is obvious. 
(b)+(a) Let g E Z and let g = c h,g, be an R-standard representation. Let 

I= {i: T(h,)T(g,)= T(g)). ThenM(g)=C,Wh,)Wg,)E(Wg,),...,M(g,)). 
0 

As a consequence of the above results, if standard bases of ideals and normal 
forms of elements can be effectively computed, one has an ideal membership test, 
based on condition (c) above. 

Example 1 (continued). Since NF( g, {g,}, K[Z]) = 0, K[Z] does not satisfy 
(NF). Moreover, in K[Z], {g,} is a standard base of the ideal J = (g) = (g, g,), 
without being a basis of it and g E J without having a standard representation in 
terms of { gi}. In the ring K[[Z]], we have that (g) = (g, g,) = (g,) and that {g,} 
is a standard basis of it. Also Z = (CT=,, Z’)g, is a K[[Z]]-standard representa- 
tion. So g has a K[[Z]]-standard representation in terms of {g,} and 0 E 

NF(g, {g,>, WZII). If h ENfTg, {g,>, WZIIL h f 0, then, again, h(O) = 0; so 
M(h) E M(Z), a contradiction. Therefore, NF(g, {g,}, K[[Z]]) = (0). Moreover, 
since CT=, Z’ = l/(1 - Z)E K[Z],,,, by the same argument we have: 
NF(g, {g,}, K[Z],,,) = (0) and g = (l/(1 - Z))g, is a K[Z],,,-standard repre- 
sentation in terms of {g,}. 

The Tangent Cone Theorem 

The following theorem (cf. [9]), h s ows that the above example can be general- 
ized and it will be our main computational tool: 

Theorem 1.3. (Tangent Cone Theorem and Algorithm). 
(1) K[Z],,, satisfies (NF). 
(2) In K[Z],,, conditions (a), (b), (c) are equivalent. 
(3) Given G, F, , . . . , F, E K[ Z],,, , there is an algorithm which: 

(i) computes polynomials U,N such that: U is a unit in K[Z],,,, i.e., U = 
lt U’ and U’(O) =O, U’H is a K[Z],,,-normal form of G in terms of 

{F,, . . . , f’,), 
(ii) computes polynomials G,, . . , G,Y such that {G,, . . . , G,$} is a K[Z],,,- 

standard basis for (F,, . , F,), 
(iii) decides whether G E (F, , . . . , F,). q 
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Canonical forms 

In the Hironaka classical definition of standard bases (cf. [3,7]), they use the 

notion of canonical form which is stronger than the one of normal form (it has the 

uniqueness properties), but whose existence relies somehow on topological com- 

pleteness and which has less good computational properties. A similar notion 

exists also in the theory of Grobner bases for polynomial rings, where no 

computability problems arise. 

Definition. Let R, I and {g, , . , g,} as above; we say that an element h E R is an 

R-canonical form of g with respect to {g,, . , g,,} if g - h has an R-standard 

representation in terms of {g,, . . . , g,} and either h = 0 or Supp(h) I? 

(Vg,), . . . T Vg,)) = 0. 

Let us introduce also the corresponding condition for the ring R: 

(can) for each {g,, . , g,}, g E R, there is an R-canonical form of g with 

respect to {g,,. ,g,}. 

Clearly condition (Can) is stronger than (NF), and an R-canonical form is an 

R-normal form too. Moreover, if R satisfies condition (Can) and {g, , . . , g,} is a 

standard base of an ideal I, then it is easy to see that: 

for each g E R, there is a unique R-canonical form h of g with respect to 

{g,, . . , g,} such that if h # 0, then T(h) = max{ T(h’): g - h’ E I}. (We write: 

h=Can(g,{g ,.... ,g,S, R).) 
Therefore, essentially by the same proof as in Proposition 1.2, one has the 

following proposition: 

Proposition 1.4. Let R be a ring satisfying (Can). Let g, , . . , g, E R, I = 
(g,, . , g,). Then the following conditions are equivalent: 

(a) {g,, . . , g,} is an R-standard basis of I, 
(b) t/g E R: g E I iff g has an R-standard representation in terms of 

{g,>.‘.?g,Il 
(d) VgER: gEIiff Can(g,{g ,,..., g,}, R)=O. 0 

In this setting, the main result is Galligo’s Division Theorem (cf. [7]), which 

states that the ring K[[Z]] satisfies the condition (Can). 

In the ring W4]:,,, of algebraic power series, in which WC are interested, only 

a weaker version of Galligo’s result holds: in fact, the Hironaka’s Henselian 

Division Theorem (cf. [8], and for the genericity [7] and [3]) says that given 

if,) . . . 1 s,> = wml,~ after a generic homogeneous linear change C of coordi- 

nates, each gE K[[Z]],,,, has a K[[-41,,,- canonical form with respect to 

{C(f,)?' ‘. 7 C(f,)S. 
The following example shows that Hironaka‘s result cannot be improved: 
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Example 2 (Gaber and Kashiwara, cf. [S]). Let us consider two variables Z,,Z, 

and let L(Z,) = 1 Vi; let g, = (2, - Zt)(Z2 - Z:) and g = Z,Z,. Then (8,) is a 

standard base for the ideals it generates in K[[Z]],,, and in K[[Z]]. The K[[Z]]- 

canonical form of g with respect to {g,} is q(Z,) + q(Z,), where q(T) = 

c ;=,, (- l)iT3(2’), which is not an algebraic power series. So, by the uniqueness of 

canonical forms with respect to a standard base in K[[Z]], g does not have a 

K[[Z]],,,-canonical form with respect to the standard base (8,). By the same 

argument, g does not have a K[Z],,,-canonical form with respect to {g,}. 

On the other hand, it is clear that {g,} is a standard base for the ideal 

it generates in K[ Z] and in K[Z],,,,. A trivial application of the tangent 

cone algorithm gives: z,z, = g, + z; + z; - zfzi. so z; + z; - z;z; E 

NF(g, {g,>, K[Zl,,,). However, Z: + Zz - Z:Z, - Z,Zi + ZfZz belongs to 

NF(g, {Sl>? K[Zl,,,,) too. 

The notion of canonical forms has two main drawbacks: 

(1) from a theoretical point of view, since (Can) implies (NF) and the converse 

is false, canonical forms can be used in less situations than normal forms; 

(2) from a computational point of view, it is a nonconstructive notion, in the 

sense that, up to now, no algorithm is known which, given ‘computable’ g, 

g17.. ., g, E K[[Z]], allows to decide whether Can(g, {g,, . . , g,}, K[[Z]]) = 0, 

nor an algorithm to compute K([Z]]-standard bases. 

The notion of normal form is theoretically less satisfying, since it explicitly 

depends on a set {g,, . . . , g,} (unlike canonical forms which could be intrinsically 

defined in terms of an ideal). 

However, it gives essentially the same topological information as a canonical 

form, namely the ‘initial term of g mod I’ max{ T(h’): g - h’ E I}, which is 

relevant in the method of associated graded rings; also it exists and can be 

computed in a wider setting, where canonical forms exists (and are not necessarily 

computable) only for an ideal in generic position. 

We will therefore, in this paper, use the weaker condition (NF), and we will 

show that it will be enough for many purposes. However, in one specific point 

(the point of the Weierstrass Preparation Algorithm), we will need the full power 

of Galligo’s theorem. 

Auxiliary constructions using Buchberger reduction 

(1) Although normal forms do not exist for K[Z] (see Example l), given 

G,, . , G,\ E K[Z], if we apply Buchberger reduction (with respect to the 

converse of <) modulo G,, . , G, to a polynomial G which is not in 

(G,, . . . , G,)K[Z],,,, it terminates returning a polynomial which is a normal form 

of G. 

(2) Moreover, if F, F,, . , F, are given polynomials in K[ Z], and m E ( Z) is 

given, it is possible to compute (by truncated Buchberger reduction as above) a 
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polynomial H such that F - H is in the ideal generated by {F, , . . . , F,} in K[[ Z]] 

and in K[Z],,, and moreover it satisfies, for instance, one of the following 

conditions: 

(i) either M(H) . IS not a multiple of M(F,) Vi, or M(H) > m, 

(ii) for each t E Supp(H), t i m implies t is not a multiple of M(F,) Vi, 

(iii) for each t E Supp(H), L(t) 5 L(m) implies t is not a multiple of M(F;) Vi. 

2. A computational model for algebraic series: The locally smooth systems 

Let as above K be a computable field, which we assume to be a subfield of the 

field of complex numbers, let X = (X,, . . ,X,,) a set of variables and K[[X]],,, 

the algebraic closure of K[X] in K[[X]], which is the set of algebraic formal power 

series. The ring K[[X]],,, turns out to be the henselization of the ring of 

polynomials with respect to the maximal ideal corresponding to the origin, and it 

has many interesting algebraic and analytic properties, e.g., it is a noetherian, 

regular, factorial, n-dimensional domain, and, on the other hand, it is an 

henselian ring and the Weierstrass Preparation Theorem and the Implicit Function 

Theorem hold for it. We refer for these properties to the book by Nagata [ll]. 

We will describe a computational model for working in K[[X]],,,, which is a 

slight modification of the one introduced in [l] and is based on the Implicit 

Function Theorem. To do so, we will consider the elements of K[[X]],,, as unique 

solutions of polynomial equations by means of the Implicit Function Theorem in 

the following way: 

Let us consider polynomials 

F,, . . . , FrEK[X,,.... ,X,,Y,,...,Y,l 

vanishing at the origin and such that the linear terms of the Jacobian of 

(F,, . . . , F,) with respect to Y,, . . . , Y, are linearly independent, i.e. if 

F,(X, Y,,..., Y,)=i c,jY,+H,(X, Y,>...>Y,) 
,=I 

with cii E K, H, E (X, Y’), then det(c,,) # 0 (where we denote Y := (Y,, . . . , Y,)). 

Under this assumption, by the Implicit Function Theorem, there are unique 

f I...., f, E K[[X]],,, such that h(O) = 0 Vj, and F,(X, f,, . . , f,) = 0 Vi. 

Lemma 2.1. Zf F,, . . , F, are as above, without loss of generality we can assume 

that the Jacobian of the F,‘s with respect to the Y,‘s at the origin is a lower 

triangular nonsingular matrix, i.e., (c,) is a lower triangular matrix, i.e., c,i = 0 for 
i< j. 
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Proof. Applying row Gaussian elimination to the matrix (c,,), one obtains an 

invertible matrix D := (d,j) with entries in K such that D (c,) = (I,,) is lower 

triangular and nonsingular. Let F,! := cICl dtjFj. Then F,’ = c:=, lljYj + Hi, with 

H’ E (X, Y’) and FI(X, f,, . . . , f,) = 0 Vi. 0 

Definition (cf. [l]). We say that F = (F, , . , F,) is a 1ocaZly smooth system (LSS) 

if the Jacobian of the F,‘s with respect to the Y,‘s at the origin is a lower triangular 

nonsingular matrix. 

Let f,, . . . , f, E K[[X]],,, be the unique solutions of F, = 0,. . , F, = 0, which 

vanish at the origin: we also say that (F, , . . . , F,) is an LSS for the 6’s (or defining 

the L’s; or that the h’s are given by the LSS (F,, . . , F,), etc.). 

The key point of our approach is to obtain results in K[[X]],,, by working with 

suitable, and computable, extensions of K[X]. Given a locally smooth system 

F=(F,,...,Fr), let us consider the rings K(X,, . ,X,,, fi, . . , f,] = 

K[X,f,,... , f,] =: K[X, F] and K[X, f,, . . . , f,],,, =: K[X, F],,, viewed as a sub- 

ring of K[[X]].,,. 
To work in a constructive way with it, let us consider the evaluation map 

aF : K[X, Y,, . , Y,] + K[[X]] defined by vTF(Yi) =f, . 

The following hold: 

(1) kera,>(F,,. ,F,), Im a, = K[X, f,, . . . > f,] , 

(2) (ker +)K[X, Y,, . . . , Yrlloc = (F,, - . . , F,)K[X, Y,, . . . , Yrlloc , 

K[X, FL, = KIX, fi 3 . . . 3 frl,,, = 
K[X, Y, > . . . > Y,l,oc 

(F,, . . , Fr> ’ 

Clearly gF extends uniquely to a morphism K[X, Y,, . . , Y,lloC+ 

K[XJ fi 7 . 7 s,l,,,,~ which we will still denote by aF. We will also write (T for v~, 

when no confusion arises. 

We propose now some results which will permit us, using only linear algebra, to 

compute the initial form of an algebraic power seriesf, and to test whetherfis the 

zero function, or if it is a polynomial or a rational function. 

Proposition 2.2. Let F = (FI , . . , F,) be un LSS in K[X, Y, , . . . , Y,] defining the 
series f,, . . . , f, E K[[X]];,,,, d, = degree(F,) and d = n d;. Then: 

(a) For every i, there exists a polynomial Qi E K[X, T] with deg( Q;) 5 d such 

that Q,(x, f,(X)) = 0. 
(b) Given H E K[X, Y,, . . , Y,] of degree m, and h = a,(H), there exists a 

polynomial Q E K[X, T] with deg( Q) 5 md such that Q(X, h(X)) = 0. (Note: 

h(X) = H(X, f,(X), . ., L(W) E K[X, Fl.) 
(c) Let H E K[X, Y,, . , Y,],_ be given by H = Ho/(1 + H,) with H, and H, of 
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degrees bounded by m, and h = CT~(H) E K[X, F],,,,, then there exist a polynomial 
Q E K[X, T] with deg( Q) 5 (m + 1)d such that Q(X, h(X)) = 0. 

Proof. (a) Let Q, E K[X, T] be an irreducible polynomial with Qi(X, f;(X)) = 0 

(cf. [4, Chapter S]), and let V C K”+’ denote the Zariski closure of 

{(X, f,(X), , , f,(X)): X belonging to a neighbourhood of the origin where the 

1’s are defined}. Then V is contained in {F, = . . . = Fr = 0} and by the Bezout 

Theorem: deg( V) 5 n dcg(F,) = d. 
Now let WC K”+’ denote the Zariski closure of {(X, i(X)): X in a neighbour- 

hood of the origin where f, is defined} and ri : K”+‘* K”” the projection given 

by r,(X, Y,, . , Y,-) = (X, Y,). Then W C r,(V) and deg( W) 5 deg(V). Finally, 

since {Q, = 0) is a component of W, deg( Q,) 5 d. 
(b) Let F,,, := Y,,, - HE K[X, Y,, . . , Yr+,] and apply case (a) to F’= 

(F, Fr+,) and f,+, = h. 
(c) As in (b) with Fr+, := (1 + H,)Y,+, - H,,. 0 

Corollary 2.3. With the notation of the proposition we have that h identically 

vanishes if and only if its Taylor development up to degree dm vanishes. This 
permits us: 

(i) to have a test for h = 0, 
(ii) to compute the initial form in(h). 

In particular, we have that deg(in( 6)) I d vj. provided that f, # 0. 0 

The above corollary says that we can check whether we are introducing new 
algebraic series which in fact are the zero function. We propose now a test to see 

whether an algebraic series is a polynomial. 

Proposition 2.4. With the notation of Proposition 2.2(b), we have: 

h E K[X] if and only if h(,, = 0 Vj: md <j 5 m’d’ . 

Proof. By Proposition 2.2(b) there exists an irreducible polynomial Q E K[X, T] 
with Q(X, h(X)) = 0 and deg( Q) 5 dm. 

If h E K[X], then (T - h) is a factor of Q and deg( T - h) 5 deg( Q) C= dm. 

To show the converse let h = c:-,, h,, , = h’” + h”‘“, where 

(llll r 
h:” := c h,,, and h:“” := c h,,, = i h,,, . 

, 0 ,rd,,r+ I ,=d/‘,rr~+, 

Let us write Q(X, T) : = C :“‘:, q,(X) T’ with deg( q,) 5 dm - i 

Now, 

0 = Q(X. h(X)) = Q(X, h”(X) + h:‘“(X)) 

= Q(X, h:“(X)) + h”“(X)g(X) 
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with some series g(X). It is easy to show that deg( Q(X, h*(X)) 5 d’m2, hence, 
since h* * has order greater than d2m2, we have that Q(X, h*(X)) = 0. Therefore, 

(T- h*) divides Q(X, T), w IC h’ h is irreducible, and so (T - h”) = Q(X, T) and 

h=h:“. 0 

Corollary 2.5. Let h be as in Proposition 2.2(b), then it is possible to check 
whether h is a rational function. 

Proof. Let s = deg(Q) 5 dm and write 

Q(X,T)=a,,(X)T’+a,(X)T”~‘+~+~+a,,_,(X)T+a,(X) 

E K[X, T] . 

Let us further consider the following polynomial Q* E K[X, T]: 

Q*(x, T) = T’ + a,T’-’ + a,,a2T’-’ + . . . + a.:,-2a,_, T + a:,-‘a, 

= T‘ + i a~j~‘a,T‘-’ . 
i=l 

Then we obtain that deg(Q’) 5 s(dm - s + 1) 5 (dm + 1)‘/4. Let us consider 

u = ha,, E K[[Xll;,,,. N ow, if h(X) = f(X)/g(X) E K[X],,,, it is easy to see that g 

is a factor of a,, and therefore we obtain that u(X) = (ao(X)/g(X))f(X) E K[X]. 
It is straightforward to see that u is a root of Q*. Conversely, suppose that u 

is a polynomial root of Q* (apply Proposition 2.4), then h = u/a,, E 
K(X) f’ K[[X]],,,, = K[X],,,,. In order to apply Proposition 2.4, we need to check 

whether Us,) = 0 for (dm + 1)‘/4 5 j 5 (dm + l)‘/ 16, this can be done using suit- 

able linear systems (with the coefficients of a,, as unknowns), once we know the 

Taylor expansion of h up to degree (dm + 1)“/16 and we know that deg(a,,) 2 

dm-ssdm. Cl 

Example 3. The example we propose now will return throughout the paper: it will 

give an examplification of the main algorithms of the paper. 

Let us consider the curve with equation 

x;-x;-x:x;=0 

which has two analytically irreducible branches, 

XZ - g,(X,) ) x: - J&(X,) I 

where g, * g, E WX, lld~ are the solutions of T’ - Xi - XZT = 0. 
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By the transformation 

x, = -q 2 

T= Xf(*l + Y,), 

we obtain an LSS F’ = (F,, F2), 

F’ 
F, =2Y, -XT-XiY, + Y;) 

F1 = -2Y, + X; - X;Y, + Y; , 

defining fi and fZ and such that g, = +Xf + Xfh. 

We intend to perform computations in K[X,, g,]. To do this it will clearly be 

enough to compute in K[X, F] with F = (F,), 

Remarks 2.6. (1) The classical computational model for algebraic series consists 

in giving a series f(X) by giving a polynomial G(X,, . . . ,X,, T) such that 

G(X,,.. . , X,,, f(X)) = 0. However, since there is in general (also in case G is 

irreducible) more than one series vanishing at the origin and satisfying G, one 

must give also an algorithm to compute the Taylor expansion off up to order d, 

Vd. 

(2) Conversely, given a locally smooth system F = (F,, . . . , F,) defining 

fl7.' . , f,, it is possible to compute the Taylor expansions of the L. up to any 

degree. This can be done, for instance, by performing the derivatives of the F/ 

with respect to the X variables, introducing the formal partial derivatives of the 

‘functions’ Y,, and evaluating them at the origin (assuming Yi(0) = 0 we obtain 

the values of d”Y;/dX” for every multi-index a). 

(3) As a consequence of (2) and of Corollary 2.3 we see that the initial forms 

of the f, and of h can be calculated as well by truncated Buchberger reduction (cf. 

auxiliary construction (2) of Section 1 (p. 7)) or by solving suitable linear systems. 

(4) We can check in which factor of a polynomial a given algebraic series can 

vanish. Suppose we are given a reducible polynomial G(X, T) E K[X, T] and a 

factor F(X, T) of G of degrees d and m respectively, and a series h(X) such that 

G(X, h(X)) = 0; then, if the Taylor expansion of F(X, h(X)) vanishes up to order 

dm, we have that F(X, h(X)) = 0. In fact, take an irreducible factor G, of G with 

G, (X, h(X)) = 0, if {F = 0) and {G, = 0} do not have a common component, 

there exists a set of linear forms H, through the origin such that {F = 0) n {G, = 

0) n {H, = . . . = H,, _? = 0) is a finite set of points with multiplicity at the origin 

greater than dm, in contradiction with Bezout’s Theorem. 

(5) In the Appendix, we will show that it is possible, in a constructive way, to 

reduce this situation to our model, i.e., to give an LSS defining the required f. To 

do this we will give a constructive version of the Artin-Mazur theorem (cf. the 

Appendix) which will require factorizations. 
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3. The approach via standard bases: Standard locally smooth systems 

In this section, and in the next one, we are going to develop the theory of 
standard bases for the ring of algebraic series k[[X]],,,. 

As above, given a locally smooth system F = (F,, . . . , F,), defining the series 

f 
sGrG;Z 

f, we will consider the ring K[X, F],,,, = K[X, fi,. . . , f,]l,, viewed as a 
of K[[X]] a,g, and we will work with it in a constructive way by using the 

evaluation map aF defined by uF( Y;) = f, (cf. Section 2). 
Let (X)=(X,,...,X,) d enote the multiplicative semigroup of terms in the 

Xi’s, and let < be an admissible term ordering on (X) , which we will suppose to 
be fixed for this and the next section. 

In our model we introduce to represent theh’s a set of new variables Y1, . . . , Y, 
and consider the following diagram: 

K[XY %, A wm,, 

I 
U 

K[X, Yl,“, 
(F) = K[X, Fl,,, 

and we work in K[X, Y],,,. We will, henceforth, extend the given term-ordering 
on (X) to suitable ones on (X, Y) = (X,, . . . , X,, Y,, . . . , Y,). 

We will introduce two different such extensions: <,, and err. 
The second one, denoted <r and called the natural one (or the a-extension), 

will be a term ordering compatible with the above diagram, in the sense that the 
weights of the Yi’s are equal to the weight of the initial form of the h’s (= a(Y,)), 
and it can be defined whence we know such initial forms. Let us note that this 
could be done at once by means of the results of Section 2 (Corollary 2.3), but we 
prefer to introduce it in next section. 

The term ordering cU (called uniform) can be introduced without any further 
knowledge on the fi’s but the locally smooth system F defining them. We will show 
that this ordering will provide enough information, e.g., in order to give standard 
representations, standard bases etc. in K[X, F],,,, moreover, by means of it, it is 
possible to construct the a-extension <rr. 

Lemma 3.1. Let F = (F,, . . . , F,) be an LSS and let < be any admissible term 
ordering of weight L on (X,, . . . , X,, , Y,, . . , Y,) such that: 

(1) L(Y,) = 1 Vi, 
(2) Y, >. . . > Y,, 
(3) VmE(X), Vm’E(X, Y), ifL(m)=L(m’) and m<m’, then m’E(X). 

Then {F1,..., F,} is a standard base with respect to < in K[X, Y,, . . . , Y,],,, for 

the ideal it generates and M(F, , . . . , F,) = (M(F,), . . . , M(Fr)) = (Y, , . . , Y,). 
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Proof. If (F, , . , F,) is a locally smooth system, then clearly T(F,) = Y,, and 

therefore, since T(P’;) and T(F,) are relatively prime, by the Buchbcrger criterion 

]51, {F,>. .‘, F,) IS a standard base for the ideal it generates. 0 

Definition. A term ordering on (X, Y) satisfying the assumptions of the lemma 

will be called a uniform term-ordering on (X, Y). 

The restriction to (X) of such a term ordering on (X, Y) is clearly admissible. 

Conversely, let < be an admissible term ordering on (X), then there are uniform 

term-orderings <u on (X, Y) whose restriction to the terms in K[X] is the given 

<. 

We are going to show the existence of uniform term-ordering by constructing a 

particular one, which will (essentially) depend only on the ordered set of variables 

Y,‘s appearing in the LSS. 

Construction. To give explicitly such an extension, we fix arbitrarily any admis- 

sible term ordering cy on ( Y) with: Y, > * . . > Y, and the weight L( Y,) : = 1 Vj. 

We then extend the weight function L by imposing L,(X,) := L(X,) Vi, and 

L,(Y,):= 1 Vj. Then, for m,,mLE (X), m,,m’,,E (Y), we define 

mXmY Cu ml,m’, if 

Lu(m,ymy) < L,,(m’,m’,) 
or (L,,(m,ym,) = Lu(m’,mty) and m, < m>) 

or (L,,(m,ym,) = Lu(mi,m’,), m, = rn> and my <vm’y). 

Definition. We call cl, the uniform extension of < (constructed over <y). 

Notation. We fix, for the rest of this section, an LSS F = (F,, . . , F,) defining 

{f, , . , f,.}, an admissible term ordering < on (X) and a uniform extension cu. 

Then r,(H), M,,(H), in,(H) will denote the leading term, the leading monomial 

and the initial form of H E K[[X, Y]] with respect to cU, while T(H), M(H) and 

in(H) will denote the corresponding ones of H E K[[X]] with respect to <. 

Lemma 3.2. Let GE K[X, Y,, . , Y,lloC, then it is possible to compute U, G,, in 

K[X, Y] such thut 

lJ is a unit in K[X, Y],,,,, with U(0) = 1, 

a(G,,) = a(u/)4G), 
either G,, = 0 (in which case a(G) = 0) or M,,( G,,) E K[X] and M,( G,,) = 

Ma(G)). 

Proof. Notice first that we may assume GE K[X, Y,, . . , Y,]. Then, by the 

Tangent Cone Algorithm we can compute C/,G,, in K[X, Y] such that U is a unit 
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and UP’G,, is a K[X, Y,, . . , Y,],,,-normal form of G in terms of {F,, . . , F,}, 

with respect to cu. 

This in particular implies 

G - IT’G,, E (F,, . . , F,)K[X, Y],,, , i.e., v(G) = o(U-‘)dG,,) 

and 

if G,, # 0 , then M,(G,,)~(M,,(f’,), . . , M,(F,)) = (Y,, . , Y,> , 

so that M,(G,,) E K[X], which implies M,(G,,) = M(a(G)) . 0 

Proposition 3.3. Let G,,U, E K[X, Y], U, units in K[X, Y],,, with Iii = 1 + Ul, 

such that U,‘G, is a K[X, Y,, . , Y,],,,,-normal form of Y, in terms of 

{F,, . . , , F,}, with respect to Cu. 
Let F,’ := (1-t U,‘)Y! - G,. Then: 

(1) F’ = (F;, . . . , Fi) is un LSS for the functions f,, . . , f,. 

(2) f, = 0 iff G, = 0. 

(3) If G;fO, then F,‘= Y,(l+ Q,)- R, with Q,,R,E(X, Y), R,E 

K[X, Y ,,... ,Y,_,, Y,,,,..., Y,l and M,,(R,) = Wf,) E K[Xl. 
(4) {F;,...,F:} LS a standard base for the ideal it generates in K[X, Y],,, for 

<Il. 
Moreover, 

(a) it is possible to decide whether some f, = 0, 

(b) iff,#O, we have in(f,)=in,(R,), and therefore it is possible to compute 

M(f& T(f) and WA. 

Proof. (1) F,! E (F, , . . , F,)K[X, Yl,,,, = Ker(a), so F,‘(X, f,, . , f,) = 0. Since 

G, = 0 or, by Lemma 3.2, T(a(G,)) = T,(G,) > Y,, one has that G, E (X, Y) and 

Y, jZ’Supp(G,) for j > i, so F,’ = Y, - c c,,Y, + Si with c,, E K, c,, = 0 if j > i, 

S, E (X, Y-y. 

(2) If f, = 0, Y, E Ker(a) = (F,, . , F,)K[X, Y],,,,, so its normal form is 0. 

Conversely, if G, = 0, then Y, E (F,, . . . , F,)K[X, Y],,, = Ker (u), so f, = 0. 

(3) We can write G, = -Y,Q,’ + R, with R, E K[X, Y,, . . . , Y,_,, Yf+,, . . , Y,] 

and Qj = U,’ + Q,‘. Since T,(G,)> Y,, we have that Q,,R, E(X, Y). Since 

T,,(G,) E K[X], then Ri f0, and M,(R,) = M,(G,) = M(a(Y,)) = M(f) by 

Lemma 3.2. 

(4) Since <,, is a uniform term ordering, the thesis follows by Lemma 3.1. 

Finally, claim (a) is a direct consequence of (l), (2) and (3). As for (b), notice 

that, for any HE K[X, Y], we have that if T,(H) E (X), then in,(H) E K[X] 

(because a uniform term ordering satisfies condition (3) of Lemma 3.1) and, 

therefore, in,(H) = in(o(H)). So in(f,) = in,,(R,). 0 
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The above theorem shows how to write an algorithm to compute initial forms 

which is based on normal form algorithm for local rings. It is an alternative versus 

the direct methods described in Corollary 2.3, moreover, it will permit the further 

development of next sections. 

Definition. We say that F is a standard locally smooth system (SLSS) with respect 

to an admissible term ordering < on (X, Y) if: 

(1) F=(F,,... , F,) is an LSS for the functions f,, . . , f,, 

(2) f, zo v’i, 

(3) F, = Yj(l + Q;) - R, with Q,,R, E (X, Y), Rj E K[X, Y,, . . . , Y;_i, 
Y r+,““, Y,] and M(R,) = M(J;) E K[Xl, 

(4) {F,, . . , F,} is a standard basis for the ideal it generates in K[X, Y],,, for <. 

Proposition 3.4. With the notations and hypotheses of Proposition 3.3, the set 

{ Fl : x. # 0} is an SLSS for { 6: L. # 0) with respect to Cu. 

Proof. By Proposition 3.3 and the above definition, we have just to remark that if 

(F,, . . . , F,) is a local smooth system for f,, . . , f,, J = 0, and G, E 

K[X,Y 1,“. ,Yj-l, y,+*,..., Y,] denotes the evaluation of F, at Y, = 0, then 

(G,,...,G,-1, G,,,,..., G,) is a local smooth system for fi, . , ApI, 

f ,+I>..‘> f,. 0 

Example 3 (continued). We impose on (X) = (X, , X2, X,) the deg-rev-lex 

ordering with X, <X, <X, so that L(X,) = 1 Vi. Then K[X, F],,, = K[X, Yl],O,/ 

(F,), f, = a(Y,), 6, = 4X: + X:Y,). 
Now G, = XT + Xf Y, is a normal form of itself; Xi is a normal form of 

Y,(2 + Y, - Xi) in terms of (F,); Xy = M,(G,) = M( g,); X7 = M( f,), and F is 

an SLSS. 

4. Standard bases in K[[X].,, 

The aim of this section is to show that K[[X]],,, satisfies (NF) and that the 

Tangent Cone Algorithm for K[X, Y],,, can be used to compute normal forms 

and standard bases in K[[X],,, f or any ideal, if the input data are algebraic series 

in K[X, F],,, for an LSS F. 

Notation. Through this section, let f,, . . , f, E K[[X]],,, be given by a local 

smooth system (F,, . . . , F,) and let < be an admissible term ordering on (X), 

and cU an uniform extension. 

As a consequence of Proposition 3.4 we may assume that f, # 0 for each i, that 

(Fi,..., F,) is an SLSS for the h’s with respect to cU and that mi := T( 6) is 

known, Vi. 
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Let K[X, Fl,,, and (T : K[X, Y,, . . , Y,llOc-+ K[[X]] as in Section 3; let (T* be 
the semigroup morphism (X, Y) ---, (X) d e ne in a natural way by the evalua- fi d 
tion (T : a*(Y,) = mj = T(f,), a*(X,) = Xi. We are going to construct a term- 
ordering extension <,, on (X, Y), which is compatible with the morphism u”. 

Let us fix any admissible term ordering <r on ( Y) with Y, > . . . > Y,. 

For m,,mi E (X), m,,ml, E ( Y>, we then define: mxmy cD ml,m; iff 

mx~“(my) < m>a*(ml,) 

or (m,a*(m,) = mka*(mL) and m, < ml,) 

or (m,cT*(m,) = m’,cT*(m’,) and m, = rnfx and my Cy ml,) . 

We remark that <rr has weight L, with L,(y) = L(X,) and L,(Y,) = L(mj). 

Definition. We call err the cT-extension (or the natural extension) of < (con- 
structed over <r); it is an admissible term ordering on (X, Y) such that 

(1) its restriction to (X) is <, 
(2) if a*(m) < cr*(m’), then m <u m’, 
(3) if a*(m) = u*(m’), and m # m’ with m’ E (X), then m <,, m’, 
(4) if u*(Y,) = (T*(Y~), i >j, then Y, > Y,. 

We notice that, as required, the ordering <a induces the given term ordering < 
on the monomials of K[X, F] in a natural way by means of the mapping 

fl : K[X, qoc+ K[X, Ylhc 
(F) 

F K[X, Fl,,, 

It will play an essential role in computing (local) normal forms and standard 
bases. 

We also remark that to construct it we only need to know the T(f,)‘s and so we 
could either use the previously introduced uniform ordering <U, or, as well, other 
methods to compute initial forms. 

Let <n be the ordering defined above and cU the uniform extension of < (both 
constructed over the same ordering <r on (Y)). T,(F), M,(F), T,(F), M,(F), 
in,(F) and in,(F) will then denote the leading term, the leading monomial and 
the initial form of FE K[[X, Y]] with respect to <” and <cr respectively. 

Lemma 4.1. Let G E K[X, YlloC, HE K[X, Y],,, be a normal form of G with 
respect to (F, , . . . , F,) for cu. Then if a(G) # 0, M((r(G)) = M,(H). 

Proof. We are claiming, because of Lemma 3.2, that m’ := M<,(H) = 
M,(H) =: m. Clearly m 5” m’, so L,(m) 5 L,(m’). Also, m’ sC m by definition; 
then Lm(m’) 5 L,(m). Since &(X,) = L(X,) = L,(X,) Vi, while L,(Y,) = 1 I 
L,(Y,) Vj, necessarily L,(m’) 5 L,(m’) i L,(m) = L,,(m) (using that m E (X)), 
so that L,(m’) = L,(m). Then since ma,,m’ and m E (X), by Lemma 3.1, 
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M’ E (X) too. Since both <I, and <,, restrict to < on (X), we obtain m = 

m’. 0 

Corollary 4.2. (F, , . . . , F,) is an SLSS for the A’s with respect to cc. 

Proof. We only have to check conditions (3) and (4) of the definition. Following 

the notations of the definition of SLSS, by Lemma 4.1 we have that MV(Ri) = 

M,(R,) = M(f,), since R, is a normal form of Y,(l + Q,). Since Q, E (X, Y), 

l<,, T,,(Q,); now we observe that a”(Y,) = T(f,) = T<,(R,) = o*(T,,(R,)) and 

that T(,(R,) E (X), then Y, <,, T,,(R,), so T,,(F,) = Y,. Hence {F,, . , F,} is a 

standard base for <,, by the Buchberger criterion. q 

Definition. Let g E K[X, F],,,, and let G E K[X, Y],,,, be such that g = c(G). We 

say that an clement H E K[X, Y],,,, is a representation of g if it is a normal form 

of G with respect to (F,, . . , F,-) for cc,. 

Let us remark that the representations of g, while they are not unique (since 

normal forms are not so), do not depend on the choice of G in the sense that the 

set of normal forms depends only on its class modulo (T, i.e. only on the algebraic 

power series g. 

Notice further that if M,,(G) E K[X], then G is a representation of g. 

Moreover, for every HE K[X, Y] we have T,,(H) 5 T(a(H)) in the ordering 

<rr. 

Proposition 4.3. Let G E K[X, Y],,,,, g := o(G), and let H be a representation of 
g, then: 

(i) H = 0 if and onfy if g = 0, 
(ii) if H # 0, then a(H) = g, M<,(H) E K[X], and M,,(H) = M(g). 
Moreover, representations can be computed and the initial form of g, in(g) can 

also be computed. 

Proof. (i) is obvious. As for (ii) note that (F,, . , F,) is a standard basis for 

Ker(a), so G - H ~Ker(a) and M,(H)$(Y,, . . . , Y,). Therefore, a(H) = 
CT(G) = g and M,,(H) = M(g). 

As for the computability statements: by the Tangent Cone Algorithm on 

K[X, Y],,,, it is possible to compute a normal form H of G with respect to 

(F,, . . . F,) for <,, which is a representation of g. For the computability of in(g), 

we cannot apply directly the proof of Proposition 3.3, since with respect to <<, 

there could be terms m E (X), m’ E ( Y) such that L,,(m) = L(,(m’), m < m’. Let 

H’,U’E K[X, Y], U’E (X, Y) be such that H = (1 + U’)-‘H’. By truncated 

Buchberger reduction of H’ with respect to (F, , . . , F,) (cf. auxiliary construction 

of Section 1 (p. S)), we can compute H”E K[X, Y] such that a(H’) = a(H”) and 

for each t E Supp(H”), L,(t) 5 L,(T(g)) rm pl ies that t E (A’). Then (1 + I/‘)-‘H” 
is a normal form of G, in(g) = in,,(l + U’)-‘HI’) = in(,(H”). 0 
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Proposition 4.4. There is an algorithm which, given g,,, g, , . . . , g, E K[X, F],,,, 

returns an HE K[X, Y],,,, such that g(H) E NF( g,,, {g,, . . . . g,}, K[X, F],,,,) with 
respect to <. 

Proof. Let G, be a representation of gj Vi. We distinguish two cases. 

Lf WG,,)@(W,(G),), . . 3 f%S.J)~ then WAG,,) = M(g,,)fWQ,), . . , 
M( g,)), so that g,, = a(G,,) is a normal form of itself and we set H = G,,. 

Otherwise, if M(G,,) E (M<,(G,), . . M(,(G,)), by the Tangent Cone Algo- 

rithm, let HE K[X, Y],,,, be such that HENF(G,,, {G,, . , G,, F,,. . ,F,}, 

K[X, Y],,,,) with respect to <(,. Then either H = 0 or M,,(H)jZ(Y,, . . . , Y,, 

M,(G,), . . > M,,(G,)). Let G,, - H = c H,G, + c B,F, be a standard representa- 

tion. Since M,,(G,,),M<,(W E K[Xl, M,(H)~(Y,,....YI,M~,(G,)...., 

K(G,)) and T,(G,, - H) 5 T,,(H,GJ3 we have that T<,(H) > T,,(G,,). Hence 

M,,(G,,-WE K[XlandT(g,,-a(H))=T,,(G,,-H)~T,(H,G,)~T(a(H,))T(g,). 
Then go - a(H) = 2 dHtk, is a standard representation of g,, - p(H) in terms 

of {S,,..‘,&). 0 

Proposition 4.5. Let g,, . , g, E K[X, F],,, and let G,, . . , G, E K[X, Y],,,, be a 

set of corresponding representatives. 

Let moreover I = (g,. . . , g,)K[X, F],,,, and J = u-‘(l) = (G,, . . . , G,, 

F ,“.” F,.)K[X, Y],,,,. Then: 
(1) It is possible to compute a standard basis of I with respect to <. 

(2) {G ,,.. .,G,,F ,,..., F,}. 1s a standard basis for J with respect to <(, if and 

only if {g, , . , g,} is a standard basis for I with respect to <. 

(3) Given g E K[X, F],,,,, it is possible to compute HE K[X, Y] such that H 

represents o(H) and o(H) is a normal form of g with respect to {g,, . . , g,} in 

K[X, FL. 

Proof. (1) We show that it is possible to compute H,, . . , H, E K[X, Y] such that 

H, represents 11, := a(H,) Vi, and {H, , . . , H,, F, , . . , F,} is a standard basis of J 

in K[X, Y],,,. Then {h,, . . , h,} is a standard basis of I in K[X, F],,,, with respect 

to <. (In fact: let g E I, g #O, G a representation of g. Then G E J and 

T,,(G) E (X). So there is Hi such that M(hi) = M,,(H,) divides M,,(G) = M(g). 

Let P:={P,,..., P,} be a standard basis of J in K[X, YllCIC, which can be 

computed by the Tangent Cone Algorithm. Let Q := {P, E P: T,(P,) E (X)}. 

Then for each P, E Q, P, is a representation of a(P,). Moreover, Q U {F, , . , F,} 

is a standard basis for J. In fact, if G E J, either M,,(G) E (Y, , . . . , Y,) = 

(M<,(F,)> ‘. 3 M,,(Fr)), or T,,(G) E (X). In the latter case there is P, E P, such 

that M,,(P,) divides M,(G); but then T,,(P,) E (X) and P, E Q. 
(2) By the proof of (1) we are left to prove that if {g,, . . . , g,} is a standard 

basis for I in K[X, F],,,, with respect to <, then {G, , . . . , G,, F, , . . , Fr} is a 

standard basis for J in K[X, YllC,,. For this, let HE J. If Mcr(H)gK[X], then 
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M,(H) E (Y,, . . ., Y,) = (MV(F,), . . . , M,(F,)). Otherwise, if h : = a(H) E I, 

K,(H) = M(h) E (Mg,), . . 9 MEL)) c (Mcr(G,), . . , M,(G,)). 
(3) Comes from Proposition 4.4. 0 

Theorem 4.6 (Finite Henselian Tangent Cone Theorem). 

(1) K[X, F],,, satisfies (NF). 

(2) Let I C K[X, F],,,, b e an ideal. The following conditions are equivalent: 

(4 {g,,..., g,} C I is a K[X, F],,,-standard base of I. 
(b) Vg E K[X. F],,,: g E I iffg h as a K[X, F],,,-standard representation in 

terms of {g,, . . . , g,>. 
(4 VgE K[X, Fl,,,: gE 1 iff oENF(g, {g,, . . . > g,>, K[X, Fl,,,). 

(3) Normal forms and standard bases in K[X, F],,, can be computed. 
(4) It is possible to decide whether g E (g, , . . , g,). 0 

Theorem 4.7 (Henselian Tangent Cone Theorem). 

(1) K[[X]];,,, satisfies (NF). 

(2) Let ZC ~[[XlI,,, b e an ideal. The following conditions are equivalent: 

(a) {g, Y . . , gs} C Z is a K[[X]],,,-standard base of 1. 

(b) Vg E K[[X]].,,: g E Z iff g has a K[[X]],,,-standard representation in 

termsof {g,,...,g,). 
(4 t/g E KUXII,,,: g E 1 iff 0 E NF(g, {g,, . . . 2 g,>, K[[XlI,,,). 

(3) Normal forms and standard bases in K[[X]],,, can be computed. 
(4) It is possible to decide whether g E (g,, . , g,). 

Proof. LetZ=(h,,.. . , h,), g E K[[X]],,,. By the theorem in the Appendix, there 

is an LSS F such that {h,, . . , h,, g} E K[X, F],,,; then the theoretical result is a 

consequence of Theorem 4.6. 

If the series are given in our computational model, then also the computational 

part is immediate. 

Otherwise, if they are given in the classical model, then by the algorithms in the 

Appendix, an LSS defining them can be explicitly computed. 0 

Remark 4.8. If Z C K[[X]],,, is an ideal, one can define the L-homogeneous ideal 

in(Z) := (in(f): f E Z) and the graded ring K[X]lin(Z). By the method of 

associated graded rings, questions about the ideal Z (such as its dimension or its 

Hilbert function) can be reduced to the same question about in(Z) C K[X]. If the 

latter is known by a Grobner basis, such questions can be then effectively solved 

for it. 

Proposition 4.9. Let (g, , . . . , g,) be a standard basis of Z C K[[X]],,, with respect 
to an admissible ordering < of weight L. Then (in( gr), . . . , in( g,)) is a Grobner 
basis of in(Z) C K[X] with respect to the converse of <. 
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Proof. Let p E in(Z) and let g E I be such that in(g) = p. Then: 

wP)=wdE(wg,)?... ) Wg,)) = (Win(g,)), . . . , Win(g,))) . 
0 

Example 3 (continued). Let Z := (X: - gl(X,), X,X, - X:) E K[X, F],,,; we want 
to compute a standard basis of I. We compute a standard basis of (F,, Xi - Xt - 

XtY,, X,X, - X:) in K[X, Yllloc by the Tangent Cone Algorithm, obtaining 

{X,X, - x;, x: + XfY, - x;, F, ) 

x,x; - x; + y1x;x2, x; - x; - y,x:x;> 

so: M(Z) = (X,X,, X:, X,X:, X”,) and in(Z) = (X,X,, XT, X,X: - Xz, Xi) which, 

e.g., allows us to compute dimension, Poincare series, Hilbert function: 
dim(Z) = 1, 
poincare(in(Z)) = (1 + 22 + z2 + z’) /( 1 - z), 
hilbertfn(in(Z)): H(0) = 1, H(1) = 3, H(2) = 4, for z > 2, H(z) = 5. 

5. Weierstrass Preparation Theorem 

In this section we give a computational version of the Weierstrass Preparation 
Theorem for algebraic series. More precisely, given a distinguished algebraic 
power series g in K[X,, . . . , X,, f,, . . . , f,] we will construct a new LSS with one 
variable less, defining the coefficients of the Weierstrass polynomial of g with 
respect to that variable. 

Notation. In the next two sections, we will denote X’ : = (X, , . . . , X,_ ,), so that 
X= (X’, X,,) = (X,, . . . , Xn_i, X,,). Also, we denote by r the two projections 
of rings rr : K[[X,, . . . , X,1]+ K[[X,]] and r : K[X,, . . . , X,,, Y,, . . , Y,]+ 

K[X,, Y ,,..., Y,] defined by n(X,)=O if i<n. 
Let furthermore F, = (F,, . . . , F,) be a given LSS defining f,, . , f, E 

WXI, . . . ) XnlLlg and let g E K[X, Folloc, 

The following lemma will permit us to check whether g is distinguished in X,, 
i.e., whether g(0,. . . ,O, X,) = TT( g) = AX”, + higher degree terms, with A E K* 
and some positive integer d; and it will permit us to construct a suitable ordering 
in the variables (X’, X,). 

Lemma 5.1. (1) IT := (r(F,), . . . , n(F,)) is a locally smooth system for 

4fi), . . . 3 4f,>. 
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(3) It is possible to decide if r(g) = g(0,. . . ,O, X,,) # 0, in which case to 
compute a positive integer d such that T(n( g)) = Xi. 

(4) Let g be a distinguished polynomial in X,, of order d; then it is possible to 
compute an admissible ordering < on (X) such that in(g) = AX::, A E K”’ (i.e., 

any other term in Supp( g) has weight larger than the weight of X:f). 
(5) By changing, if necessary, the LSS F,, we may assume that T(f) > XII for 

each i. 

Proof. (1) F,(X ,,..., X,,, f ,,..., f,)=O implies F,(O ,..., 0, X,,, f,(O ,..., 0, 

X,,), . > f,((), . . > 0, X,,)) = 0, while the jacobian conditions are obviously pre- 

served. Statement (2) is obvious and (3) is a consequence of Lemma 3.2 applied 

to K[X,,, r(F, ), . . . > r(F, >I,,,,. 
TO show (4) a default choice is obtained by assigning L(X,,) = 1, L(X,) = d f 1 

Vi < n; better choices can be obtained by computing the truncation Tr( g) of g 

(and of f;) at degree d and solving appropriate linear inequalities for force 

hXf = in(Tr( g)). As for (5), let pi E K[X,, . . , X,,] be such that T( f, - p,) > Xt. 
Then (5(X,, . . ,X,,, Y,. , Y, -p,, . , Y,.), j = 1.. . n) is an LSS for 

f ,I..., f-p ,,... ,.f.. 0 

Assumptions. From now on we assume that < is an admissible ordering on 

(X’, X,,) satisfying conditions (3), (4), and (5) of Lemma 5.1. whose weight we 

denote by L. Also, assume A = 1. By the results of Section 3 we construct an 

SLSS F with respect to a c-extension of <. defining the new J’s, Moreover, 

assume that g is given by a representation G. 

Let (U):=(U,,,.. . . , U,,,,-,,. . , Ur ,,,. . ,l~‘,,~~_,. U,,,. , U,,_,) be a new set 
of indetcrminates. 

Let P,P, E K[X, Y. U] be the polynomials 

P, I= Y, - c U,,X! Vi = 1,. . . , r . 
,=,I 

Let L,, be the weight on (X. Y. U) defined by 

L,,(X,) := L(X,) Vi , 

L,,(Y,) := L(Y,) Vi . 
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MU,,) := W,) -I’wf,,) . 

Remark that ,!,(Y,) > &5(X,,) Vi because we assume that < satisfies condition 

(5) of Lemma 5.1; as a consequence L,,(U,,) > (d - j)L(X,,) 2 0, so that L,, is 

actually a weight. 

Let cU be any admissible term ordering on ( U ) such that 

Finally, let <,, be the admissible term ordering on (X, Y. U) defined by: for 

each m,m’E (X, Y), m,,m; E (U), 

m m, -Co m’ rnb G b(m ml,) < Mm’ mb) 

or (L,,(m mu) = L,,(m’ m;.) and mL, cL, ml,) 

or (L,,(m m,) = -&,(m’ m;) , 

mu = ml, and m -cm’) 

As usual, T,,(H), M,,(H), in,,(H) will denote the leading term, the leading 

monomial and the initial form of HE K[[X, Y, U]] with respect to <,,. 

Remark 5.2. (1) The ordering <o satisfies the following properties: 

(1.1) its restriction to (X, Y) is <, 

(1.2) if L,,(m) = L,,(m’), mE(X, Y), m’E(U), then m<,,m’, 

(1.3) generators of ( U > of the same weight L,, are ordered according to: 

U, > U,,, > U, for i < h and for every j , 

U,i > U,,, and r/, > U, for j < k and Vi,h, 

U,>U,, forhcjand’di 

(or: U,,, > lJ7,, > . . . > u,,, > u,, > u, , > . . . 

> CT, >...> u,,,_, >..‘> U,,(,_, > u,,_,>. 

(2) The polynomials P and P,‘s in K[X, Y, U] are &homogeneous; T,,(P) = Xf , 

T,,(P,) = Y, vi. 

(3) {P, P,, . , P,} is a Grobner basis of the ideal it generates with respect to the 

converse of co. 

(4) By Buchberger reduction, given any polynomial FE K[X, Y, U], we can 

compute a canonical form of F with respect to {P, P,, . . . , P,}, i.e., a polynomial 

Can(F) = F’ E K[X, Y, U] such that 
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F-F’E(P,P ,,.“, P,), Supp(F’) n <x;, Y,) . . . ) Y,) = 0. 

Therefore, if we apply Buchberger reduction to G, F,, . , F,, we obtain 

polynomials 

such that 

(*I 

(*I; 

d-l 

G- c H,X+(P,P ,,..., P,), 
j=O 
d-l 

F, - c H,,XL E (P, P,, . . , P,) Vi . 
j=O 

Lemma 5.3. (1) U, @Supp(H,) for h > j and lJWh gSupp(H,) for A > j and Vp. 
Moreover, Uj E Supp(H,). 

(2) U,, ~Supp(H,) Vh 2 j, U,, $Supp(H,) for k > j or for k = j and A > i. 
Moreover, U, E Supp(H,,). 

Proof. (1) We can write 

G = Xf + c A,(X’, Y)XI, + X;G,,(X, Y) 
j=O 

d-1 I d-l 

= xf + 2 c C,YiXl, + xf c cjx;, 
/=fl ,=I j=l 

+ c B,(X’, Y)XI, + X;(X;G’ + G”(X, Y)) , 
i = 0 

with B, E (X’) + (Y)* and G” E (X’, Y). 

Let c;I,: HyXi be the canonical form of 

d-l 

c B,(X’, Y)Xjl + X;(X,dG’ + G”(X, Y)) 
j=O 

with respect to {P, P,, . . . , P,}. An easy direct computation shows that U, @ 
Supp(Hy) VA and that U,,@Supp(Hy) VA,p. 

Let c:Zi HIXI, be the canonical form of cgI,i c:=, cljYiX,‘, with respect to {P, 

P,, . . . , P,}; since it is also the canonical form of c;ri cr=, c,, x:1:, UikXkik, 

again a direct verification shows that U, @Supp(Hj) V’h and lJ,* $Supp(Hi) for 

h> j and VF. 
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Finally, let CgLi HyXL be the canonical form of Xf Cy:: c,Xd and also of 
c;:: c;:: CjU,X;+k, again U,@Supp(Hy) VA 2 j and r/,,$ZSupp(H;) VA,~.L. 

Clearly, because of the uniqueness of canonical forms, one has 

C HjXI, = c ‘lix; + c H;X,i + 2 H;X; + c H;‘XI, . 
i i i / i 

Therefore, we obtain that 

cl, FSupp(Hj) for A > j and U,, gSupp(H,) for A > j and VP . 

Also, U, E Supp(H,). 
(2) Recalling that F, = Y, + ~,,ibihYh + F,!, with F!’ E (X, Y”) and that 

L(Y,) > L(Xi) (by assumption), we can write 

d-l d-l 

FL: = c c cip;YpX; + c di,X;+” + R,(X’, X,, , Y) 
/i j=l &=I 

with Ri E (X’) f (Y)2 + X:(X:, Y). Again one has that, 
denoting c j H,y’XI, the canonical form of R,(X’, X,, Y), U, ~~!fSupp(H~~~) VA 

and UF,~Supp(H:I) Vh,p.; 
denoting cj H,;XA the canonical form of c, c;I: cirjYWXA, which is also the 

canonical form of x;L: c, ciPj c%Zi UrkXA+k, U, gSupp(H:,) Vh and U,, $Z 
Supp(H!$) for A e j and V~.L; 

denoting cj HjiXi, the canonical form of c”,<‘, d,,Xt”” and also of 
C”,:: C,“Z:, d,clUkX:+k, again U, ffSupp(Hii) V’A 2 j and UP, gSupp(H,) Vh,j..~ 

Clearly, one has 

+ 2 H:,X; + c H:;.Xj, + 2 H;;X,‘, . 
i I i 

Therefore, we obtain that 

uAk gSupp(H,) for k > j or for k = j and h > i . 

Also, by the same argument, U, E Supp(H,,). q 

Proposition 5.4. (1) The system H:=(H,,, ,..., HrO, H,, Hll,...,H,,, 
H,, . . . , H, d_,, . . . , H, dm,, Hd_,) is an LSS, defining algebraic series ’ 
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h 1.0’. . 3 h 1.0) h,,, h,.,) . . . T hr.,, h,,...,h,,ll-,,...,hr.d-,,hd-, 

65 ~Wll;,,, 

(2) W := (H, F) = (H,,,,, . . , ff,.o, 4, H,.,, . , Hr.,, ff,, . . . , H,,,-,, . . . , 
H,-,‘,_, , NC,_,, F,, , F,) is an LSS. 

(3) The polynomial Et:,; hjX(, E K[[X’]J;,,,[X,,] (resp. Vi: cy:I,: h,,Xi) is the 

canonical form of X:I (resp. of Y,) with respect to {G, F,, . . , Fr} in the power 

series ring K[[X, Y]]. 

Proof. Because of Lemma 5.3 the linear part of the Jacobian of H is a lower 

triangular nonsingular matrix, after reordering the U-variables and, consequently, 

the polynomials H,‘s and H,,‘s. according to the uniform term ordering defined in 

the construction (i.e. U,, > UP,, > U,,, > UP @a < y < p 5 v or y = p and /3 < 

Y). 
(2) It is then clear that the same holds for the Jacobian of W. 

(3) We first remark that {G, F,, . . , F,} is a standard basis of the ideal I it 

generates in K[X, Y],,,, and therefore of ZK[[X, Y]] too. By Galligo’s theorem (cf. 

[7]) there are unique g,,, . . , g,-,, g,,,, . . , g,,,_,, , gr,,, . . . , gl,,-, E fXX’l1 
such that 

Can(xf, {G, F,}, K[[X, Y]]) = C gjX:l , 
,=(I 

cl- I 

Can(Y,, {G, Fi}, K[[X, Y]]) = C g;,Xi, . 
,-I) 

Let 7: K[U,X, Y] + K[[X, Y]] denote the evaluation such that 7(U,) = g,, 

s-(U,,) = g,,, we obtain 

d I 

T(P) = x:l - c g, xi, > 
,‘O 

.(P,) = y, - c g,,x, ; 
,-I) 

moreover, we remark that Xt < T(g,)XI, so 1 < T(g,), and therefore g,(O) = 0, 

and, in the same way, g,,(O) = 0, so that we can conclude that {r(P), 

r(P, ), > .(P,>) 1s a standard basis of IK[[X, Y]]. Because of the equations (*), 

(*), we have: 

,z, +&)x/z E fK[[X, yll . 
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Since M(Z) = (Xf, Y,,. . . , Y,) and Supp(Cliti T(H,>X~) II (Xt, Y,, . . . , Y,) = 0, 

we can conclude that cyi,t r(H,)X!, = 0, i.e., Q-(H,) = 0 Vj; and, in the same way, 

that 7(H,) = 0, too. This means that the {g,, g,,} are a solution of the system 

{Hj = H,, = O}. 

Therefore, by the uniqueness of the solutions of the Implicit Function 

Theorem, we conclude that g, = h, and g,, = h,,. 
(4) It is a consequence of (the proof of) (3), since 7 = an and ~w(l) = 

(g)~UWI. 0 

Theorem 5.5 (Effective Weierstrass Preparation Theorem). Given a local smooth 

system F,, c K[X, Y], u polynomial G,, E K[X, Y],,,, such that, denoting g = 
v~,,( G,,), g is regular of order d in X,, ( g(0, . , 0, X,, ) f O), it is possible to 
compute: 

(1) an admissible term ordering < on (X, Y) such that T(g) = Xf , an SLSS 

(with respect to <) F = (F,, . . , F,) defining f,, . . . , f, E K[[X]],,, such that 

K]X, Flhc = K[XT F,Jhc and a representation G E K[X, Y],,,, of g verifying the 
conditions of the above assumptions. 

(2) A locally smooth system H C K[ X’, U] = K[X, , . . . , X,,_ , , U] defining alge- 

braic series h,,, . . . , h,_,, h ,,,, . . . , h,,_,, . . . , h,(,, . . , h,,_, E K[[X’]];,,, which is 
an SLSS with respect to a an-extension of <, and such that W : = (H, F) is an SLSS 

with respect to a o,-extension of <. 
(3) V,V. E K[X, Y, U],,,,, V a unit such that 

&I cl- I 

mv(V> = X:r - c h,X = J’:f - c +,W,)X;, E WX’, Hl,,,,[X,,I 
,=o ,=(I 

and 

Proof. (1) This has been already obtained by means of Lemma 5.1. 

(2) By Proposition 5.4 we obtain an LSS H and by Proposition 3.4 we get the 

required SLSS, again called H by abuse of notation. 

(3) Since {g} is a standard basis in K[X, WI,,,, of the ideal it generates, {G, W} 

is a standard basis in K[X, Y, U],,, of the ideal it generates. Also P,P, E (G, W) 

by Proposition 5.4(4). Therefore, we have computable standard representations: 

iI& 1 
@) Xi- c U,X;, = 2 A,F, + 2 B,H, + c B,,H,, + VG, 

, =(I 
,I- I 

PI, ‘T - C ui,Xi, = C A,,< + C B,,ff, + C Bshlffhi + V,G 1 
,=o 

where V is a unit in K[X, Y],,,. 
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So, applying aw to both sides of @) and (0);: 

d-1 
Xi - 2 hjXI, = q+,(V)g , 

j=O 

d-l 

f,- 2 hzjX,',=~~(V,)g. q 
j = 0 

Definition. We will denote 

d-l 

Wei( g) : = gw(V)g = X,d - c hjXL E K[X’, H],,,[X,] 
1 =o 

the Weierstrass form of g. 

Algorithm. Let us resume the construction which given an LSS F,, C K[X, Y] and 

G E K[X, Y] decides whether g = +(GO) is distinguished in X,, and in this case 

computes an LSS H C K[X’, U] and WE K[X’, U][X,] such that u”(W) = 

Wei( g). 

(1) We compute r(F) = (F(0, . . . , 0, X,, Y,, . . . , Y,): F E F}, which is an LSS 

for v(f,),..., s-( f,); we modify it into an SLSS F, for (rr( f,): rr(x) f 0) with 

respect to a uniform term ordering. 

(2) We compute a normal form G, of n(G) = G(0,. . ,O, X,,, Y,, . . . , Y,) with 

respect to r(F,). If G, = 0, then g is not distinguished and the computation halts. 

(3) Otherwise we obtain d such that T(G,) = Xt and we can compute a weight 

L such that in(g) = Xf (e.g., by setting L(X,) = 1, L(X,) = d + 1 for i # n) and an 

admissible term ordering < on (X) of weight L. 

(4) We compute, by truncated Buchberger reduction with respect to F,, 

polynomials p, E K[X] such that T(f; - p,) > Xt. Then F, = (F,(X,, . . . ,X,, 

Y,-PI,..., Y,-p,):j=l... r) is an LSS for A. - pi. 

We set A. := f, - p, and we compute an SLSS (with respect to a cT-ordering) for 

f , f,; which we denote by F. 

“(5) w e set U, P, P,, L,,, <,, as specified in the above construction (after the 

assumption). 

(6) By Buchberger reduction with respect to the Grobner basis (P, Pi) we 

obtain Ho,. . . , Hd_,, H,,, . . . , H, dml,. . . , H,(,, . , H, d_, E K[X’, U] such that 

c;Zi HjXL is th e canonical form of G and c;zA H,kL of F, with respect to: 

(E P,). 
(7) We then set H:=(H,,,,,. . . , Hr,(), H,,, H ,,,,. . . , H,,,, H,,. . . ,ffl,d_,,. . . , 

H r.d_,, H,_,) and W := c:l,: U,XL. 

Under the same assumptions and notations of Theorem 5.5, we have, more- 

over, the following: 
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Theorem 5.6 (Effective Weierstrass Division Theorem). Let B E K[X, Y], so that 
0 + b := cFO(B) E K[X, F] C K[X, WllOc. Then: 

(1) it is possible to compute A E K[X, Y, Ulloc, polynomials A, E K[X’, U], 
j=O ,.‘., d - 1, such that 

d-l 

b = gw(A)Wei(g) + c q,(Aj)XL , 
j=O 

(2) C;Ii mH(Ai)XL = Can(b, {g>, K[[XlI), 
(3) a,(A), vH(Ai) are unique. 

Proof. We have: a,(B) = b E K[X, F] C K[X, W]. Since B$&(F,, . . , F,), by 
truncated Buchberger reduction, one can compute a polynomial B, E 
K[X, Y, U], which is a representation of b. By Buchberger reduction with respect 
to (P, P,) we can compute A, E K[X’, U], j = 0,. . . , d - 1 such that 

B, - c A,Xj, E (f’, f’,> 

Then 4B,) - c uw(Ai)Xi E (Q(P), 
(G, W). So we can compute a standard 
c wiew C,Wi. Since crw( W,) = 0, we have 

uw(Pi)) = (g), i.e., B, - C A,XI, E 
representation: 8, - c A,XI, = A’G + 

d-l 

b = v,(B,) = a,(A’)g + c a,(A,)X; 
i = 0 

To complete the proof we set A := V-IA’, where V is the unit given in Theorem 
5.5; finally we have just to remark that, since Ai E K[X’, U], aw(A,) = oH(A,). 

The claims (2) and (3) are then obvious. 0 

Remark 5.7. We want to point out explicitly a weakness of our approach: the 
nonzero coefficients in K[[X, , . . . , X,_,]] of the W ererstrass polynomial of G are 
treated as they were polynomially independent, requiring each a new variable and 
a generator in a standard local smooth system. This is an obviously inefficient 
approach, especially in view of repeated applications as in the next paragraph. 
However, in particular cases, we do not need all the construction given above, 
e.g., if the polynomial G does not depend on the Y variables, we do not need to 
introduce the ULj’s and therefore the procedure is greatly simplified. It is moreover 
possible, using Proposition 2.4, to check, at least, whether these coefficients are 
polynomials, and, eventually, to reduce in this way the size of the LSS’s. 

Example 3 (continued). Let g : = g, - Xi and remark that T( g(X, , 0,O)) Z 0. We 
can therefore apply the Weierstrass Preparation Theorem to obtain Wei( g) E 

K]]X,, x3llal,~xIl~ 
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We introduce the new variables T,,, T,, v,, V, and the ideal (Xi - X, T, - T,,, 

Y, - X,V, - VI). 
The canonical form of F, with respect to it is H,X, + H,,; the one of XT + 

Xf Y, - Xl is H,X, + H,, where 

H, = 2v,, - T,7’,, + T,,V; + V; - TfT,,V, - T,T,,V,, - T:,V, , 

HI = T,, - X; + T, T,,V, + T,,l/o , 

H3 = 2V, - T; - T,, + T,V; + 2V,v,, - T;V, - TfV,, - 2T,T,V, - T,,v,, , 

H4 = T, + T;V, + T,V,, + T,,V, 

H = (H,, . . . , NJ) is an LSS defining h,, . , h, E K[[X,]],,,,. 
As in Section 3, we compute: in(h,) = (-1/8)X;, in(h,) = Xi, in(h,) = 

(1/2)X:, in(h,) = (-112)X:. Finally, we have: Wei(Xf + X:f, - Xi) = Xi - 

h,X, - hz. 

6. Noether Normalization Lemma 

We are giving now two main consequences of the Weierstrass Preparation 
Theorem: the Noether Normalization Theorem and the elimination theory for 
algebraic series. For this we need some generalities from commutative algebra. 

Let us fix the following notations: 

Definition. Let (A, m) be a local ring and U an indeterminate, we say that a 
polynomial g E A[ U] is a Weierstrass polynomial if it is of the form 

d-1 

g-U”+ 2 aiU’, witha,Em. 
I-0 

Given a set U = (U,, . . , U,) of indeterminates, we say that a set 

{S,,..‘, g,} C A[ U], is a Weierstrass sequence if: 
g, E A[ U,] is a Weicrstrass polynomial (in U,), 
for k, 15 k < s, g, E A[ I/,, , CJmk+,] has the form: 

with a, E (m, U,, . . . , U,_,)A[U,, . . . , U,_,] . 

Lemma 6.1. Let (A, m) be a local ring and let I C A[ U, , . , U,] be an ideal 
containing a Weierstrass sequence {g,, . , g,}; then IA[U],,,, n A[ U] = 1. 
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Proof. We first observe that out contention is equivalent to the fact that every 

associated prime ideal of I is contained in n = (m, U,, . . , U,)A[U, , . . . , U,], 

and, therefore, it is enough to show that the only maximal ideal of A[ U, , . . . , Us] 

which contains I is n. 

Let n” be such an ideal; since (g,, . . , g,) C n*, the natural map 

--+n[rll A 

n* n A n* 

is an integral extension and, hence 

A 

n* n A 

is a field and so n* f’ A = m. Using the definition of Weierstrass sequence we 

obtain that n* contains also the Uj’s. 0 

Lemma 6.2. Let A be a noetherian local normal domain, let B denote its 

henselization and let I C A[ U] be an ideal; then ZB[ U] n B = (I n A) B. 

Proof. We only have to show ‘C’, which is straightforward if B were a free 

A-module. 

Let ZB[U] n B = (b,, . , b,) B; then we will reduce to the preceding case by 

finding a suitable finite flat (hence free since A is local) extension C of A, 
contained in B, such that b, E ZC[U] f’ C for every i. For this let C be an 

&ale-standard A-algera containing the b;‘s (cf. [12, Chapter VIII]); then C is a tlat 

and finitely generated A-module (cf. [12, Chapter V]). Cl 

Let us return to the situation of algebraic series. 

We first state a general lemma, in which T = (T,, . . . , T,,) is a new set of 

variables. 

Lemma 6.3. Let F C K[X, Y] be an LSS defining h, , . . , h,; let I be an ideal in 
K[X, F],,,,[ T,, . . , TF]. Then it is possible to compute a basis of Z f’ K[X, F],,,, 

consisting of elements in K[X, F]. 

Proof. Let us denote by g both the evaluation map a, and its polynomial natural 

extension K[X, Y],,,,[T]- K[X,F],,,[T]. Let J:= a-‘(Z) C K[X, Y],,,,[T]. 
Clearly, 

Z n K[X, IQ>, = 4.Z n K[X, Y],,,) . 

Then by an application of the Tangent Cone Algorithm (cf. [lo, Proposition 121) it 

is possible to compute a basis G of J such that G f’ K[X, Y],,, is a basis of 

J n K[X, Y],,,. 0 
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Lemma 6.4. Let H, be an LSS defining series in K[[X,, . . T Xn-jIIalg, 
Aj := K[X,, . . . ) X~_j, II,],,,. Let B, := {b,,, . . . 7 b,]} be a Weierstrass sequence in 

Aj[Xn-1.1, . . . >Xnl, 

g I,‘. . . T g,,~Aj[X,-j+,,...,X,l, 

I,:=(bl,,. . . ,bjj, g,j>... > s,j>Aj[X,,-,+,,...,X,,l’ 

Then : 

(1) 

zjK[[X, > . . . 2 Xnllalg ’ K[[Xl 9 ’ > x,~-,]l~lg = (O) 

~‘jA,[X,_,+,,...,X,,]‘Aj=(O). 

(2) It is possible to test whether Z,K[[X,, . . . , Xn]lalg n K[[X,, . . . , X,_j]],,, = 

(0). 

Proof. (1) Notice that ‘j’ is obvious. 
To show the converse, let a be the left-hand ideal and suppose a # 0. 

Since it is a nonzero ideal of K[[X,, . . . , X,,_,]lals which is the henselization of 
the local ring Aj, one has a fl Aj # 0 (cf. [12, Chapter V]). Moreover, 

a n Aj = ZjK[[X, > . . . , Xnlla,g n A,[X,-,+, j . 3 Xnl,oc n Aj 

= ZjAj[Xn_j+, >. . ’ > X,,],,, n A, = Z,A,]X,-,+,, . 3X,,l n Aj 3 

where the second equality comes from the faithfully flatness of the henselization, 
and the third one by Lemma 6.1. 

(2) Because of Lemma 6.3 one can compute a basis of ZjA,[X,_j+, , . . ,X,J fl 
Aj and so test whether it is (0). Because of (l), this gives a test whether 

Z,K[[X, 2 . . . 3 xA,g n K[[x,, . . . , x~,lL,,: = (0). 17 

Lemma 6.5. With the same notation as in Lemma 6.4, assume that 

I,WX,, . , Xnllalg n NIX, T . y xn-jllalg f (0) 

Let hEZjA,[X,_j+ ,,..., X,]nA,, hZ0. 

Let y be a linear change of the coordinates X, , . . , X, _, , such that y(h) is a 

distinguished series. 

Let Hjil be an LSS such that bj+,,j+, := Wei(y(h))E K[X,, . YXn-j-lt 

Hj+llloc; for each i, let 

b ,,I+, :=Can(~(bij), bj+,,j+,, K[[X,,... ,X,11> 9 

A I+, :=K[X,,.. . ,Xn-,-pH,+,l,oc~ 
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Then : 
(I) for each i, bi.j+, E Aj+l[Xn-,,. . .J X,1 

(2) (b;.j+l,. . . > bj+l,j+l) is a Weierstrass sequence. 

Proof. (1) is a consequence of the Weierstrass Division Theorem. 

(2) (b,,, . . . , bji) is a Weierstrass sequence; since y leaves fixed X,, _i, . . , X, , 

(y(bij), . . . > y(b,,)) is a Weierstrass sequence; since bi,j+, = Can(y(bij), bj+,,j+l, 

KNX, 7 . . 9 xn11> is obtained by substituting each coefficient in A,+1 of r(b,) by 

its canonical form, (b, j+, , . . . , b,+, , j+,) is a Weierstrass sequence. 0 

Theorem 6.6 (Effective Noether Normalization Lemma). Let I = (g,, . . . , g,) be 
an ideal of K[[X]],,, = K[[X,, . . . , Xn]lalg generated by polynomials g, in K[X, F], 

where F is an LSS defining the algebraic series f,, . . . , f,. 
Then there exist, and can be calculated 

(4 
(b) 

(4 
(4 

(4 

a linear change of coordinates C : K[[X]];,,,+ K[[X]],,,, 

WXlIa,, 
p:=dim I , 

an LSS H with respect to the variables X,, . . . , Xp, 
a Weierstrass sequence 

B:=(b,,... ,b,-,)cC(Z)K[X,,...,X,,Hl,,,[X,+,,...,X,l, 

elements h,, . . . , h, E K[X,, . . . ,X,, H],oc[Xp+l,. . . , Xn] such that C(Z) = 

(b,,...,b,-p,hl,...,h.~). 
As a consequence: 

(9 C(L) n KUX,, . . , X,11,,, = (01, 
(ii) 

WXI) . . . ) qlal,+ 
K[[X,>. . . > Xp> Xp+p.. . > Xnlla,g 

C(I) 
is an integral extension. 

Proof. If the data (a)-(e) h ave been obtained, then (i) and (ii) hold, since 

WXII,,, 
p =dim I 

and the elements in B give integral algebraic relations satisfied by X, + r, . . . , X, 
mod C(Z). 

So let us show how to construct the data (a)-(e). 
If Z = (0), which can be checked by Proposition 4.3, then p = n and there is 

nothing to prove. So we assume I# 0. 

We are going to construct inductively the following data: 
(a) a linear change of coordinates C, : K[[X]].,,-t K[[X]],,,, 
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(b) an LSS H, defining series in K[[X,, . . . , y,-,]]iilg, 

(c) the ring A, := K[X,, . . , X,,_,, HjJl,,,, 
(d) a Weierstrass sequence B, := {b,,j,. . . , ‘,,j> in A,[X,,_,+r,. . . ,X,,], 

(e) elements g,,j,. . . , g.s., E A,[X,-,+I,. . . ,X,,l, 
such that denoting Z, = (b,,j,. . . , b,,i, g,,i,. . , gJ,,)Ai[Xn-j+l>. . . 7 X,J, it holds 

that: 

for j = 0, 1, . , until Z, f~ A, = (0). 

We start by setting C,, to be the identity, H, := F, B,, I= 0, g,(, = gi for 

i=l,... , s, so that A,, = K[X,, . . ,X,,, Fl,,,, 4, = 1 and 4, n 4, # 69. 
Assume we have constructed C,, Hi, A,, B,, g ,,,, . . . , g ‘,,. 

BY Lemma 6.4, we can test whether Z;K]]X, > . 3 Xnlldg f- 
WX, 3 . T X,,-,lLrg = (0). 

Ifsuchisthecase,thenwesetC:=C,,p:=n-j,H:=H,,B:=B,;abasisof 

C(Z) in Aj is given by B, U {g,,,, . , g ,s., }. 

Otherwise, we choose h E Z,Aj[X,I_j+, , . , X,,] n A,, h f 0 (which is possible, 

since we have a basis of Z,A,[X,,_,+,, . . ,X,,J n A,). 

Then we perform a random linear change y of the coordinates X, , . , X_, 

and we check whether y(h) is distinguished (cf. Lemma 5.1(3)). Since for almost 

all y, y(h) is distinguished, we therefore obtain a probabilistic algorithm to 

compute such a y. We then set C,, , : = yC,. 

By the Effective Weierstrass Preparation Theorem we obtain an LSS H,,, 

defining series in K[[X,, . , X,,-,-,]];,Ig such that Wei(y(h)) E K[X,, . . , 

X t1-1~1’ H,+,],,,[X ,,_, ] and the ringAj+, := K[X,, . ,X,,-,-,, H,+,lloc. 

We set b,,,,,,, := Wei( y(h)) (obtained by the Effective Weierstrass Preparation 

Theorem); for each i, we set b,,,,, := Can(y(b,,), b,+,,,+, . K[[X,, . . . , X,,]]), 

which is obtained by substituting each coefficient in A,+, of y(b,.,) by its 

canonical form. By Lemma 6.5, B,+ , : = (b, ,, + , , . . , b,, , ,,+ ,) is a Weierstrass 

sequence in A,+, [X,,_,, . , X,,]. 

Also, by the Effective Weierstrass Division Theorem we compute Can( y( g,,,), 

bj+l,,+l' KL[Xll>. 
It is clear that, denoting Z,+, = (b,,,,,,. . ,b,+,,,+,, gl.,+l,f.. 7 g,.,+l)A,+l 

[X,,_,, . . ,X,,], it holds that: 

~,+,KD’lI,t,, = C,+,(Z). 0 

Corollary 6.7 (Elimination for algebraic series). Let Z be an ideal in 

KNX, 3 . . . ) X,,ll;,,g g enerated as in the above theorem. Then, given 6 < n: 

(1) it is possible to decide whether 6 > dim(Z), 

(2) if this is the case it is possible to compute: 

a linear change of coordinates C on K([X]],,,, 
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un LSS H d@ning series in K[[X,, . . . , X8]];,,g, 

an ideal I* C K[X,, . . . , X8, H] such that 

z*qx,). . . 3 milg = C(wqXlI~,,, f-l WX,, . . > xA,g . 

Proof. We iteratively compute (as in Theorem 6.6) Cj, H,, A,, B,, g,j, . . . , g,i> for 

j e 0, until either Z,A,[X,,_,+, , . . , X,,] n A, = (0) or j = n - 6. 

In the first case we can conclude that 6 5 dim(Z). 

In the second case, we set C := C,, H := Hi. 

B, u {g,, j, . . . , g,,j} is a basis of Z, consisting of elements in 

K[X,, . . ,x,,Hl,,,,[X,+,,...,X,l. 
Let X’:= (X,, . . . ,X8), x”:= (X8+,, . ,X,). 

By Lemma 6.3, we can then compute a basis in K[X’, H] of 

I” := Z, n K[X’, HI,,,. 

We have: 

Cuvwmi,, f-I mX’lIa,, 

= ~,maa,, f-l WX’IL,, 

= zjK~~X’lI;~~g[X”l~oc n WX’II.,, 

= ~,mul,,,[~f~l n ~t[x’ll,,, 

= U,W’, %,,[X”l n K[X’, %,)WX’lIa,, 

= ~*qX’lI,,, > 

where: 

the first equality holds since Z,K[[X]],,, = C(Z), 

the second equality comes from faithfully flatness, 

the third one holds by Lemma 6.1 applied to the ring A = K[[X’]].,,, 

the fourth one holds by Lemma 6.2 with A = K[X’, HI,,,, and B = 

WX’lId,. 0 

Example 3 (continued). Starting with Z = (Xi - g,(X,), X,X, - X:), we now 

compute I* C K[X?, X3, H’] such that Z*K[[X,, . . . , X,l]]i,,g = ZK[[X]],,, fl 

ZNX?? Xillalg~ where H’ = (Hi, Hi, Hi, HJ) is an SLSS defining h,,h,, h,, h,. 

We apply Lemma 6.3 to 

(Xf - X,T, - T,,, HI, H;, H;, Hi, X,X2 - X;) 

c K[X,, X3> T,,, T,, v,,, v,1,,,LF1 

obtaining a basis G such that 
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where 

F,, = X; - X; + T,X,X: - T&,X; - T, T&X; 

so ZK[[X]],,, n K[[X,, X3]lalg is generated by 

X; - X: + h4X2X: - h,h,X; - h,h,h,X; . 

Appendix. Constructive Artin-Mazur Theorem 

In this section we show how it is possible to reduce to our computational model 

in the case that the given algebraic function f is represented in a more classical 

way, i.e. if it is given by a polynomial G(X,, . . , X,,, T) such that 

G(X,, . . 7 X,, 7 f(X, 7 . . . , X,)) = 0. However, in this case, one must give also an 

algorithm to compute the Taylor expansion offat least up to some order d, which 

is enough to distinguish f from the other eventual roots of G. 

To do this, we will use a well-known result, due to Artin and Mazur (cf. [2,4]), 

which permits us to give an LSS defining the required f. We propose here a 

constructive version of it, using the Traverso Normalization Algorithm (cf. [13]). 

We note that in this case we require a stronger notion of computable field, i.e. 

we require the availability of factorization algorithms for polynomials with 

coefficients in K. 

Theorem (Constructive Artin-Mazur Theorem). Let f E K[[X]].,,, G E K[X, T] 
such that G(X, f(X)) = 0 and assume that an algorithm to compute the Taylor 
expansion off up to order d, Vd, is given. Then it is possible to compute a locally 
smooth system (F, , . . . , F,) defining algebraic series f,, . . . , f,, with f, = f. 

Proof. We follow the proof given in [4] to which we refer for further details. 

We can without loss of generality assume that G is irreducible. Otherwise we 

factorize and, since we know arbitrary Taylor expansions off, we can check at 

which irreducible factor of G, the series f vanishes. (To do this, by the Bezout 

theorem, it is enough to verify which of the factors c.‘s is such that F,( f(X)) has 

order greater than the square of the degree of F (see Remark 2.6(4)).) 

Let R : = K[X, T,] i(G) and let R’ := K[X, T,, T2,. . . , T,]/(G,, G,, . . . ,G,Y) 

be its normalization; then, by the universal property of the integral closure, the 

evaluation map u : R+ K[[X]] g’ rven by a( T,) = f, can be extended to 

(T’ : R’+ K[[X]]. Let f, = a’(T,), . . , f, = o’(T,); by substituting T, with T, - 
h(O), we can assume i(O) = 0 Vi. Then by the Zariski Main Theorem, the 

localization of R’ at the origin, Rl,,, is analytically irreducible and therefore an 

&tale extension of K[X],,,, so that it is nonsingular and the Jacobian of the G,‘s at 

the origin with respect to T,, T,, . . . , T, has rank r. Therefore, there are 
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F,, . . . , F,, linear combinations of the G,, . . . , G, such that (F,, . . , F,) is a 
locally smooth system (cf. Lemma 2.1); since F, E (G,, . , G,) and 

G;(X, f,, . . . > f,) = 0, qx, f,, . . . ) f,) = 0 too. 

This gives the existence of a locally smooth system satisfying the requirements 
of the theorem. In order to obtain a constructive procedure to give the F;‘s, all we 
need is to show how to compute G,, . . . , G, and h(O) Vi. 

Now we recall that the Normalization Algorithm proposed by Traverso (cf. 
[13]) allows to compute: 

(1) G,, G,, . . , G, E P[T,, T,, . . . , T,] such that R’ = K[X, T]I(G,, 

G,, . . . , G,), 
(2) polynomials D E K[X], H, E K[X, T,, . . . , T;_,] Vi, such that 

f(x) = wx, fi(XL.. .) L*(O) z. 

1 D(X) 

Then, since we are able to compute the Taylor expansion of fi u to any order d, 
we can do the same for each i; in particular, we are able to compute A(O). q 

We remark that, while the normalization algorithms seem to be not very 
feasible, we do not need to have a complete normalization of R, but just an 

extension R” = K[X, T] /(G,, G,, . . . , G,) such that (assuming i(O) = 0) the 

Jacobian of the G,‘s at the origin with respect to T,, T,, . . . , T, has rank r. 

Example. We remark that in Example 3 which we followed throughout the paper, 
the algebraic series f could be obtained by means of the normalization of the ring 

WX, 7 T, 1 

R= (T;-XT-X;T,) ’ 

obtaining 

ax, 3 T, Y T21 
R’ = (T, -XT - X;T,, 2T, + T; - X; - X;T,) 

K[X,, Y,l 
y2Y,+Y;-x;-x:Y,) 

This is of course what we did by hand, and, also, in this case the normalization 
algorithm goes very well since the ring R has dimension one. 
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