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We present a method of projections onto convex cones for establishing the sharp
bounds in terms of the first two moments for the expectations of L-estimates based
on samples from restricted families. In this part, we consider the case of possibly
dependent identically distributed parent random variables. For the classes of
decreasing failure probability, DFR, and symmetric unimodal marginal distribu-
tions, we first determine parametric subclasses which contain the distributions
attaining the extreme expectations for all L-estimates. Then we derive the bounds
for single order statistics. The results provide some new characterizations of
uniform and exponential distributions. � 1996 Academic Press, Inc.

1. Introduction

Let X1 , ..., Xn be possibly dependent identically distributed random
variables. Let F, +, +2 , and _2=+2&+2<� stand for a common distribu-
tion function, the first and second moments, and variance, respectively.
Define the quantile function by QF (x)=sup[t: F(t)�x]. Let Xi :n denote
the i th order statistic. Rychlik [14] proved that for the expectation of an
arbitrary L-estimate with coefficients ci # R, i=1, ..., n, the inequality

EF :
n

i=1

ci Xi :n�|
1

0
QF (x) :

n

i=1

di $i (x) dx (1)
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holds, where

di=n _C \ i
n+&C \i&1

n +& , i=1, ..., n,

with C being the greatest convex function on [0, 1] that satisfies

C \ j
n+� :

j

i=1

ci , j=0, 1, ..., n,

and $i denoting the indicator of [(i&1)�n, i�n). Note that �n
i=1 di$i con-

stitutes an n-dimensional family of jump functions and di , i=1, ..., n, is the
l2-projection of ci , i=1, ..., n, onto nondecreasing sequences. E.g., for a
single j th order statistic, �n

i=1 di$i=n�(n+1& j) on [( j&1)�n, 1] and 0
elsewhere, and, as a consequence,

EFXj :n�
n

n+1& j |
1

( j&1)�n
QF (x) dx (2)

(cf. also Caraux and Gascuel [5], Rychlik [13]). Inequality (1) is sharp;
i.e., it becomes equality for some joint distribution with given common
marginals F (for details, see [14]). For instance, (2) becomes equality iff

Pr \Xj&1:n�QF \ j&1
n +�Xj :n=Xn :n+=1. (3)

Applying (1) and the Schwarz inequality, Rychlik [16] obtained a general
sharp bound for expected L-estimates, depending merely on the expectation
and variance of parent variables:

EF :
n

i=1

ci (Xi :n&+)�_ :
n

i=1

d 2
i &\ :

n

i=1

ci+
2

&
1�2 _

- n
. (4)

The equality in (4) holds if each Xi takes on n values (not necessarily
different),

xj=++
dj&�n

i=1 ci

[�n
i=1 d 2

i &(�n
i=1 ci)

2]1�2
_, j=1, ..., n,

with equal probabilities, for some specific joint distributions, e.g., for the
random choice of a permutation of numbers x1 , ..., xn . The cases of the
sample maximum and range were solved earlier by Arnold [1]. If Xi are

157ORDER STATISTICS FROM RESTRICTED FAMILIES, I



File: 683J 159803 . By:BV . Date:07:07:07 . Time:12:35 LOP8M. V8.0. Page 01:01
Codes: 2765 Signs: 2032 . Length: 45 pic 0 pts, 190 mm

symmetrically distributed, an improvement of (4) was given by Rychlik
[16] (for the case of sample maximum; see Arnold [1]).

Our purpose is to provide tighter bounds for expected L-estimates, when
the marginals belong to restricted families of absolutely continuous dis-
tributions. In the case of independent variables, there are known bounds
for some families of parent distribution functions: decreasing failure prob-
ability, monotone failure ratio, and symmetric unimodal ones (see Arnold
and Balakrishnan [2, Section 3.4] and David [7, Section 4.4]). These
bounds were established by means of the Jensen inequality. They depend
on some quantiles of the parent distribution.

Below we present sharp bounds for the above-mentioned families of dis-
tributions in terms of the first two moments. The bounds are obtained by
projecting quantile functions, or their modifications, on a convex cone
generated by a considered class of distributions. To this end we shall apply
the following basic lemma, describing projections onto convex cones in
inner product spaces.

Lemma 1. Let (X, ( } , } )) be a real inner product space and let C/X be
a convex cone. If for a given x # X there exists PC x # C which satisfies

&x&PC x&�&x& y& for all y # C,

then PCx is unique and satisfies

(x, y)�(PCx, y) for all y # C, (5)

(x, PCx)=&PCx&2. (6)

If X is complete and C is closed, then PC x does exist for every x # X,
and it is called the metric projection of x onto C. We omit the proof of
Lemma 1 here, because it almost coincides with the proof of the statement
for Hilbert spaces (see, e.g., Balakrishnan [3, Section 1.4]).

To illustrate the projection method, suppose that X is the linear space of
real functions on [0, 1) which are right continuous, have left limits, and are
square integrable, and the inner product is defined by

( f , g)=|
1

0
f (x) g(x) dx, f , g # X.

Observe that the family Q0 of all quantile functions of random variables
with a finite second moment is a convex cone in X. Let Q�Q0 be also a
convex cone in X. By (1), (5), and the Schwarz inequality
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EF :
n

i=1

ciXi :n�|
1

0
QF (x) :

n

i=1

di $i (x) dx

�|
1

0
QF (x) PQ \ :

n

i=1

di$i+ (x) dx

�&QF & "PQ \ :
n

i=1

di$i+"
="PQ \ :

n

i=1

di$i+" - +2 . (7)

For the joint distributions, described in [14], with common quantile function

QF=
PQ(�n

i=1 di$i)

&PQ(�n
i=1 di $i)&

- +2 (8)

we apply (6) to get

EF :
n

i=1

ci Xi :n=|
1

0
QF (x) :

n

i=1

di$i (x) dx

=
- +2

&PQ(�n
i=1 di$i)&

|
1

0
PQ \ :

n

i=1

di$i+ (x) :
n

i=1

di$i (x) dx

="PQ \ :
n

i=1

di$i+" - +2 .

If the shifted quantile functions Q&+, Q # Q, constitute a convex cone
such that the projection PQ&+(�n

i=1 di $i) exists, we can similarly obtain
another sharp inequality in terms of the expectation + and the variance _.

In Sections 2, 3, and 4 we consider specific families of decreasing failure
probability, DFR, and symmetric unimodal parent distributions, respec-
tively. In each section we first determine a parametric class of marginals
containing the unique element with the extreme expectation of a given
L-statistic. Then we present upper bounds for the expectation of a single-
order statistic and the distributions for which the bounds are attained. The
results provide some new characterizations of the uniform and exponential
distributions (see Section 5 for details).

In the Appendix the problem of the best approximation of a jump func-
tion by a nondecreasing convex one is considered. Two lemmas proved
therein provide the basic tools for deriving the results of Sections 2�4. The
projection method allows us to establish analogous sharp bounds for the
independent identically distributed random variables as well. In this case
we need to project polynomials instead of jump functions. The respective
calculations and resulting formulas are significantly more complicated. The
independent case will be studied in Part II of the paper.
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2. Life Distributions with Decreasing Failure Probability

We consider the class F1 of distribution functions such that F # F1 iff
F=0 on R& , and F(0)�0, and F is absolutely continuous on R+ , and the
density function is nonincreasing. This means that the failure (or death)
probability decreases as the object is aging. The first condition means that
the object is possibly damaged (or dead) from the beginning. These dis-
tributions can also describe one-sided (or absolute) measurement errors.
Some reliability results for the class were presented in Dharmadhikari and
Joag-Dev [8, Chap. 9]. The respective class of quantile functions is

C1=[Q: [0, 1] [ R: Q(0)=0 and Q is nondecreasing and convex].

Observe that C1 is a convex cone of quantile functions. We apply the pro-
jection method and the results of the Appendix (with [a, b)=[0, 1) and
w#1) to establish sharp bounds for expected L-estimates which depend on
the second moment.

Proposition 1. Let F1*/F1 be the family of finite mixtures of [0, ai]-
uniform random variables, i=1, ..., k, k�n, including a possible pole at zero.
Then, for every (c1 , ..., cn) # Rn there exists F* # F1* such that

EF* �n
i=1 ci Xi :n

- +2

= sup
F # F1

EF �n
i=1 ciXi :n

- +2

.

Proof. From (7) and (8), it follows that the right-hand side can be
attained when a quantile function is proportional to the projection
P1(�n

i=1 di $i) on C1 . From Lemma A1 of the Appendix we conclude that
the projection exists and is piecewise linear. This corresponds to a mixture
of uniform distributions. K

Proposition 2. Suppose that Xi , i=1, ..., n, are dependent with a com-
mon distribution function F # F1 :

If ( j&1)�n� 1
3 , then

EFXj :n�
- 3

2 \1+
j&1

n + - +2

and the equality holds iff Xi , i=1, ..., n, are uniformly distributed on
[0, - 3+2].

If ( j&1)�n> 1
3 , then

EFXj :n� 2
3 - 2n+2�(n+1& j)
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and the equality holds iff Xi are [0, - (2n+2�(n+1& j)]-uniformly dis-
tributed with probability 3

2 (1&( j&1)�n) and have one atom at zero with
probability 3

2 ( j&1)�n& 1
2.

Proof. By Lemma A2, it suffices to find : # [0, ( j&1)�n] maximizing
(24), which in our case can be rewritten as

A(:)=
3
4 \1&

j&1
n +

2 (1+( j&1)�n&2:)2

(1&:)3 .

An easy computation shows that this is maximized by 0 if ( j&1)�n� 1
3 and

3
2 ( j&1)�n& 1

2 elsewhere. Plugging it into (25), we can write the projection
as

P1 \ n
n+1& j

:
n

i= j

$i+ (x)

={
3
2 \1+

j&1
n + x,

4n2

9(n+1& j)2 \2x+1&3
j&1

n ++

,

if
j&1

n
�

1
3

,

if
j&1

n
>

1
3

.

By (7) and (8), we obtain the desired conclusion. K

3. Life Distributions with Decreasing Failure Rate

We now examine the case of the subclass F2 of life distributions (i.e., F=0
on R&) such that the respective failure rate functions

HF (x)=&[ln(1&F(x)]$, F # F2 ,

exist and decrease on R+ . The failure rate represents the infinitesimal
conditional probability that the object which survived time x will fail
immediately afterwards. Properties and applications of the notion were
extensively studied (see, e.g., Barlow and Proschan [4]). Some basic
properties and examples of distributions with monotone failure rates were
briefly presented in [11]. The decreasing failure rate means that the object
is improving with age which means the conditional failure probability in a
given period of time becomes smaller as the time passes (for theoretical
justifications of DFR, we refer to Proschan [12]).

The DFR density function is decreasing on R+ . We also assume here
that F(0)�0, F # F2 . Observe that the quantile function of DFR distribu-
tion satisfies

Q(0)=0, Q(1&e&x) is convex on R+.
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Furthermore, by substitution, (1) can be rewritten as

EF :
n

i=1

ci Xi :n�|
�

0
Q(1&e&x) :

n

i=1

di2i (x) e&x dx,

where 2i is the indicator of [ln(n�(n+1&i)), ln(n�(n&i))). Accordingly, to
obtain the bounds analogous to (7) for the case of DFR distributions we
need to project �n

i=1 di2i onto the convex cone of compositions of DFR
quantiles with the standard exponential distribution

C2=[R: [0, �) [ R: R(0)=0, R is nondecreasing and convex]

in the respective inner product function space with the weight function
w(x)=e&x, x�0. We will denote by P2 the projections onto C2 . Lemma
A1 immediately implies that all P2(�n

i=1 di2i) are piecewise linear. Below
we describe the respective parametric class of marginal distributions. For
k�n take two arbitrary sequences 0=x0<x1< } } } <xk=+� and
0�*1< } } } <*k<+�. If

QF (1&e&x)=*j (x&xj&1)+ :
j&1

i=1

*i (xi&xi&1) for x # [xj&1 , xj],

then

F(x)=1&exp \&
1
*j _x& :

j&1

i=1

*i (xi&xi&1)&&xj+
for x # _ :

j&1

i=1

*i (xi&xi&1), :
j

i=1

*i (xi&xi&1)& . (9)

This means that the marginal distribution is a specific mixture of truncated
exponential distributions with a possible pole such that F(0)=1&e&x1, if
*1=0. Define

F2*=[F # F2 : F satisfies (9) for some x1 , ..., xk&1 , *1 , ..., *k , k�n].

We are thus led to the following.

Proposition 3. For every L-estimate, based on dependent variables with
a common DFR life distribution there is an F* # F2* such that

EF* �n
i=1 ci Xi :n

- +2

= sup
F # F2

EF �n
i=1 ciXi :n

- +2

.

Since C2/C1 , for every L-estimate the above supremum is evidently less
than the respective one in Proposition 1. We can compare explicit formulas
for single order statistics.
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Proposition 4. Suppose that F # F2 . If ( j&1)�n�1&e&1 then

EFXj :n�_ln
n

n+1& j
+1& - +2 �2 ,

which is attainable for the exponential marginal distribution with the scale
parameter - +2 �2.

Otherwise,

EFXj :n�- 2n+2 �[(n+1& j) e].

This becomes equality for the mixture of the exponential distribution with the
scale - (n�(n+1& j))(+2 �2e) and zero, with probabilities (n+1& j) e�n and
1&(n+1& j) e�n, respectively.

Proof. Since

sup
F # F2

EFXj :n

- +2

= inf
R # C2 , &R&=- +2

|
�

0
R(x)

n
n+1& j

:
n

i= j

2i (x) e&x dx,

our problem resolves to finding P2(n�(n+1& j) �n
i= j 2i) and calculating

its norm. By Lemma A2, the projection is the positive part of a linear func-
tion. To determine the root of it, we should maximize (24), which in this
case amounts to

A(:)=
(n+1& j)2

2n2 \ln
n

n+1& j
+1&:+

2

e:,

for : # [0, ln(n�(n+1& j))). An elementary algebra yields :*=(ln(n�
(n+1& j))&1)+.

Suppose first that :*=0, i.e., ( j&1)�n<1&e&1. Then the optimal slope
is

**(0)=
1
2 \ln

n
n+1& j

+1+ ,

due to (25) and, further,

P2 \ n
n+1& j

:
n

i= j

2i+ (x)=\ln
n

n+1& j
+1+ x

2
,

"P2 \ n
n+1& j

:
n

i= j

2i+"=
1

- 2 \ln
n

n+1& j
+1+ ,
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and, finally, the quantile function satisfying

QF*(1&e&x)=- +2 �2 x, x>0,

gives the sharp bound for the expectation, as we claimed.
Turning to the other case, we verify that

P2 \ n
n+1& j

:
n

i= j

2i+ (x)=
n

(n+1& j) e \x+1&ln
n

n+1& j++

has the norm

"P2 \ n
n+1& j

:
n

i= j

2i+"=- 2n�[(n+1& j)e],

which yields

QF*(1&e&x)=- n+2 �[2e(n+1& j)] \x+1&ln
n

n+1& j++

, x>0.

This completes the proof. K

4. Symmetric Unimodal Distributions

We denote by F3 the class of symmetric unimodal distributions which,
by definition, satisfy F(++x)=1&F(+&x), x # R, and F is concave on
[+, +�). The class contains a number of popular parametric families,
with the normal one as the most eminent representative. Unimodality pro-
perties and applications in statistics were described in [8]. The respective
quantiles are convex on [ 1

2 , 1], and satisfy

QF (x)&+=+&QF (1&x). (10)

It is convenient to concentrate on the modifications of quantiles

SF=(QF&+) | [1�2, 1] , F # F3 , (11)

which constitute a convex cone

C3=[S: [ 1
2 , 1] [ R: S( 1

2)=0 and S is nondecreasing and convex].
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Then, by (1), (7), (8), and (11), we have

sup
F # F3

EF �n
i=1 ci (Xi :n&+)

_

= sup
S # C3

�1
1�2 S(x) �[n�2]

i=1 (dn+1&i&di) $n+1&i (x) dx
_

=
1

- 2 "P3 \ :
[n�2]

i=1

(dn+1&i&di) $n+1&i+ " ,

where P3 denotes the projection onto C3 . The supremum on the left-hand
side is attained iff

SF=
P3(�[n�2]

i=1 (dn+1&i&di) $n+1&i)

&P3(�[n�2]
i=1 (dn+1&i&di) $n+1&i)&

_

- 2
. (12)

Note that the projected function is a jump function, which takes on
[(n+1)�2] values at most. Therefore the projection of it is a piecewise
linear function with k�[(n+1)�2] pieces. Precisely,

P3 \ :
[n�2]

i=1

(dn+1&i&di) $n+1&i+ (x)

=:j (x&xj&1)+ :
j&1

i=1

:i (xi&xi&1) for x # [xj&1 , xj], (13)

for two nondecreasing sequences xi , :i , i=1, ..., k, where x0= 1
2 , xk=1,

and :1�0. By (11) and (12), the respective quantile function is an affine
transformation of (13) on [ 1

2 , 1], defined by (10) on the remaining part of
its domain. Finally, we can write the following.

Proposition 5. For every L-estimate there exists a distribution function
F* # F3 which is a mixture k�[(n+1)�2] uniform, symmetric about + dis-
tributions, possibly including the degenerate +-valued distribution such that

EF* �n
i=1 ci (Xi :n&+)

_
= sup

F # F3

EF �n
i=1 ci (Xi :n&+)

_
.

The remainder of this section will be devoted to the case of single order
statistics.

Proposition 6. For the sample minimum we have

EFX1:n�+, F # F3 .
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The equality holds iff X1= } } } =Xn have any distribution F # F3:

If 0<( j&1)�n< 1
3 , then

EFXj :n�++
2n

3(n+1& j)
- ( j&1)�n _, F # F3 .

This becomes an equality iff each Xi=+ with probability 1&3( j&1)�n and
is uniformly distributed on [+&- n�( j&1) _, ++- n�( j&1) _] with prob-
ability 3( j&1)�n.

If 1
3�( j&1)�n� 2

3 , then

EFXj :n�++- 3
j&1

n
_, F # F3 ,

with the equality attainable only for [+&- 3 _, ++- 3 _]-uniform
marginal distribution.

If 2
3<( j&1)�n, then

EFXj :n�++ 2
3 - n�(n+1& j) _, F # F3 .

Here the equality holds iff F is the mixture of the jump distribution at
+ and the [+&- n�(n+1& j) _, ++- n�(n+1& j) _]-uniform distribution
with probabilities 3( j&1)�n&2 and 3(1&( j&1)�n), respectively.

Proof. The first bound is trivial. We have EFX1:n�EFX1 , whatever the
interdependence and the common marginal F are. Obviously, the equality
holds iff the random variables are identical.

Let us observe that for the j th-order statistic

:
[n�2]

i=1

(dn+1&i&di) $n+1&i=
n

n+1& j
:
n

i=r

$i ,

where r=max[ j&1, n+1& j]. We can apply Lemma A2 to assert that

P3 \ n
n+1& j

:
n

i=r

$i+ (x)=**(x&:*)+.

Maximizing (24), we obtain :*=max[ 1
2 , (3r&n)�2n].

If 1
3�( j&1)�n� 2

3 , then :*= 1
2 , and so

P3 \ n
n+1& j

:
n

i=r

$i+ (x)=12
(n&r) r

(n+1& j) n \x&
1
2+=12

j&1
n \x&

1
2+

has the norm

"P3 \ n
n+1& j

:
n

i=r

$i+"=- 6
j&1

n
.
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Therefore, by (11) and symmetry,

QF*(x)=++2 - 3 (x& 1
2) _,

which is the quantile function of [+&- 3 _, ++- 3 _]-uniform distribution.
Otherwise :*=(3r&n)�2n,

P3 \ n
n+1& j

:
n

i=r

$i+ (x)=
8n2

9(n&r)(n+1& j) \x&
3r&n

2n ++

,

"P3 \ n
n+1& j

:
n

i=r

$i+"=
2 - 2

3
- (n&r) n
n+1& j

,

and for x� 1
2 ,

QF*(x)=++
2
3 \

n
n&r+

3�2

\x&
3r&n

2n ++

_.

Therefore F* is the combination of the jump distribution at + and the uni-
form distribution on [+&- n�(n&r) _, ++- n�(n&r) _] with coefficients
3r�n&2 and 3(1&r�n), respectively. Taking r=n+1& j and j&1, we
obtain the second and fourth cases of Proposition 7, respectively. K

It is worth noting that supF # F3
EFXj :n>+, for all j�2. This is

impossible for independent parent samples.

5. Concluding Remarks

1. According to (7), the projection method allows us to determine
bounds for various restricted families of distributions for which quantile
functions constitute convex cones. Applying auxiliary results of Appendix,
we can establish, with a moderate effort, bounds for the counterparts of
families considered in Sections 2�4: life distributions with increasing failure
probability and rate, and symmetric U-shaped. In all these cases, for the
single order statistics, the marginals attaining the bounds are certain trans-
formations of projection of the form min[**x, M].

2. It is easy to verify that for arbitrary possibly asymmetric
trimmed means Tj, k :n=(k+1& j)1 �k

i= j Xi :n , as well as Winsorized
means,

Wj, k :n=
1
n _ jXj :n+ :

k&1

i= j+1

Xi :n+(n+1&k) Xk :n& , 1� j<k�n,
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we have

:
n

i=1

di$i=
n

n+1& j
:
n

i= j

$i ,

just like for the jth order statistic (see Rychlik [15]). As a consequence,
we can replace Xj :n by Tj, k :n or Wj, k :n in Propositions 2, 4, and 6, and
the assertions will be still true. Likewise, for the jth range Rj :n=Xj :n&
Xn+1& j :n , j>n�2, yields

:
[n�2]

i=1

(dn+1& j&di) $i=
2n

n+1& j
:
n

i= j

$i

(cf. Rychlik [14]). Therefore the bounds for EFRj :n , F # F3 , are twice as
much as the bounds for the corresponding j th-order statistic in Proposition
6, with the identical conditions of being attained.

3. Propositions 2, 4, and 6 provide new characterizations of
uniform and exponential distributions:

For possibly dependent identically distributed random variables with
decreasing failure probability

EFXj :n=
- 3

2 \1+
j&1

n + - +2 ,
j&1

n
�

1
3

,

may hold iff the marginal is uniform.
The only common marginal DFR distribution F such that

EFXj :n=_ln
n

n+1& j
+1& - +2 �2 ,

j&1
n

�1&e&1,

for a dependent sample is the exponential distribution.

EFXj :n=++- 3
j&1

n
_,

1
3

�
j&1

n
�

2
3

,

holds for a sample of dependent identically distributed symmetric and
unimodal random variables iff the distribution F is uniform.

Appendix

It will be convenient to consider some modifications of quantile func-
tions. Therefore we introduce an inner product function space which is
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slightly more general than the one considered in the Introduction. Let X be
the family of functions f : [a, b) [ R, &�<a<b�+�, which are right
continuous and have left limits, and

|
b

a
f 2(x) w(x) dx<�

for a strictly positive weight function w such that all linear functions belong
to X. The inner product will be defined by

( f , g)=|
b

a
f (x) g(x) w(x) dx, f , g # X.

Let C/X be the subfamily of nondecreasing, convex functions which
vanish at a. Obviously, C is a convex cone. Now fix f # X"C. For applica-
tions to the bounds on L-statistics in Sections 2�4 we assume that f is a
jump function. In the case of single order statistics the respective jump
functions take on only two values. Our objective is to find PC f # C (if it
exists) which minimizes the weighted mean square distance

Df ( g)=|
b

a
[ f (x)&g(x)]2 w(x) dx

over all g # C.
We now consider the case of f being stepwise with m steps.

Lemma A1. If f (x)=Mi , when x # [xi&1 , xi) for some a=x0<
x1< } } } <xm=b and Mi&1{Mi , i=2, ..., m, then PC f exists and is
piecewise linear function with at most m pieces.

Proof. Let Cm/C be the family of piecewise linear functions which
have no more than m pieces. We first show that for every g # C there exists
h # Cm+1 such that

Df (h)�Df ( g). (14)

So let g be an arbitrary element of C. We define below a partition of the
domain into intervals with ends a= y0� y1< } } } < ys=b. The first,
possibly degenerate, interval [ y0 , y1] is the one where g vanishes. Observe
that g is strictly increasing on ( y1 , b), and, in consequence, g can intersect
f at separate points of ( y1 , b) at most once in each of ( y1 , xj), (xi&1 , xi)
for all i> j such that xj&1� y1<xj . For a given interval, three cases are
possible: either g intersects f in it, or g lies above or beneath f .
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We define yi+1 , i�1, recursively. Suppose that xk&1� yi<xk . If g inter-
sects or lies above f on [ yi , xk), then yi+1=xk . Otherwise, we define yi+1

as the greatest xl such that g lies beneath f on [ yi , xl). Obviously,
[ y2 , ..., ys]/[xj , ..., xm] and so s�m+1.

We now construct h # Cm+1 satisfying (14). Consider an interval
( yi&1 , yi), i�2, where g and f intersect at some zi . Let hi be the linear
function determined by two points ( yi&1, g( yi&1)) and (zi , g(zi)). Further,
suppose that g> f on some ( yi&1 , yi). We define hi choosing any linear
function tangent to g at yi&1. Take finally any ( yi&1 , yi), where f has
values Mk , ..., Ml and g< f . Let hi be the greatest convex function on
[ yi&1, yi], not greater than f on ( yi&1 , yi), and equal to g at yi&1 and yi

and extended linearly to the whole domain. This is a piecewise linear func-
tion determined by l+1&k conditions hi ( yr)=g( yr), r=i&1, i, and
hi (xr)�Mr , r=k, ..., l&1. It has l&k pieces at most.

Observe that for all i=1, ..., s&1

0�hi ( yi)�g( yi)=hi+1( yi), (15)

0�h$i ( yi)�g$( yi&)�h$i+1( yi). (16)

We now examine the behaviour of max[hi , hi+1], i=2, ..., s. Suppose first
that g and f intersect on ( yi&1 , yi). Then, by definition of zi and (15)�(16),

hi+1(zi)�hi (zi)= f (zi)�hi ( yi)�hi+1( yi)=g( yi).

Therefore there exists ui # [zi , yi] such that max[hi , hi+1]=hi on [a, ui]
and hi+1 elsewhere. Moreover,

g(x)�max[hi , hi+1](x)� f (x) for x # [ yi&1 , zi], (17)

f (x)�max[hi , hi+1](x)�g(x) for x # [zi , yi). (18)

If g> f on ( yi&1 , yi), then, by (15)�(16),

hi+1( yi&1)�hi ( yi&1)=g( yi&1)�hi ( yi)�hi+1( yi)=g( yi),

and so max[hi , hi+1] is equal to hi and hi+1 on the left and right to some
ui # [ yi&1 , yi], respectively. Also,

f �max[hi , hi+1]�g on [ yi&1, yi]. (19)

If g< f on ( yi&1 , yi), then hi and hi+1 are equal at yi and we have

g�max[hi , hi+1]=hi� f on ( yi&1 , yi). (20)
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Define h1#0 and h=max1�i�s hi . Then h # Cm+1 and

0, if x # [a, y1],

h(x)={max[hi , hi+1](x), if x # [ yi&1 , yi], i=2, ..., s&1,

hs(x), if x # [ ys&1 , b).

Moreover, h=g on [a, y1] and, by (17)�(20), it lies between g and f, and
so (14) holds.

The next step of the proof is showing that

inf
h* # Cm

Df (h*)= inf
g # C

Df ( g). (21)

To this end, it suffices to modify h so that we obtain h* # Cm less distant
from f in the case s=m+1. This implies y1<x1 . Suppose first that
h2(z2)=h3(z2) for a z2 # ( y1 , x1). Construction of h shows that M1�h2(z2).
If M1�0, then h*=max[h1 , h3 , ..., hs] satisfies Df (h*)�Df (h). If M1>0,
then we can replace max[h1 , h2] by the linear h� 1 , which vanishes at a and
intersects h3 at the level M1 . Finally suppose that h is linear on ( y1 , x1],
which forces h<M1 there. However, since s=m+1 holds, h must break at
x1 . Applying h� 1(x)=h3(x1)(x&a)�(x1&a), as in the previous case, we
improve the approximation of f , and, in consequence, (21) holds.

The proof is completed by proving that the left-hand side infimum is
attainable. We notice that for h* # Cm given by

h*(x)=*j (x&zj&1)+ :
j&1

i=1

*i (zi&zi&1), x # [zj&1 , zj],

Df (h*) is a continuous function of 2m&1 parameters 0�*1� } } } �*m ,
zi # [xi&1 , xi], i=1, ..., m&1. Our purpose is to prove that the infimum is
attained on a compact subset of R2m&1. We only need to find an upper
estimate on *m .

Let k be the smallest subscript for which *k=*m . We claim that we can
confine to the case when *m either equals 0 or is the optimal slope for
approximating f on [zk&1 , b) by linear functions starting from (zk&1 ,
h*(zk&1)). Indeed,

|
b

zk&1

[ f (x)&h*(zk&1)&*m(x&zk&1)]2 dx

is a quadratic function of *m , minimized by

**(zk&1)=
�b

zk&1
(x&zk&1)( f (x)&h*(zk&1)) w(x) dx

�b
zk&1

(x&zk&1)2 w(x) dx
. (22)
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If 0<*m{**(zk&1), we could decrease Df (h*) slightly moving *m towards
**(zk&1). For M=max1�i�m Mi and a positive =, we have

sup
a�z�xm&1

**(z)� sup
a�z�xm&1

M �b
z (x&z) w(x) dx

=2 �b
z+= w(x) dx

�
M �b

a (x&a) w(x) dx
=2 �b

xm&1+= w(x) dx
<�,

which ends the proof. K

It is clear that PC f has exactly m pieces if M1�0 and Mi&Mi&1 ,
i=2, ..., m, increase sufficiently fast.

Lemma A2. Assume that f (x)=0 for x<; and f (x)=M>0 for x�;,
where ; # [a, b]. Then

PC f (x)=**(x&:*)+ , (23)

where :* maximizes

A(:)=
[�b

; (x&:) w(x) dx]2

�b
: (x&:)2 w(x) dx

for : # [a, ;) (24)

and

**=M
�b

; (x&:*) w(x) dx
�b

:* (x&:*)2 w(x) dx
>0. (25)

Proof. From the proof of Lemma A1 we deduce that PC f has no more
than two pieces. If it has exactly two pieces, then they meet at an : # [a, ;)
and therefore the first one must equal 0. The second one must have optimal
slope (22), which can be rewritten here as

**(:)=M
�b

; (x&:) w(x) dx
�b

: (x&:)2 w(x) dx
.

If PC f is linear, then either PC f #0 or PC f (x)=**(a)(x&a). Since
**(a)>0, the former case is excluded. Accordingly, PC f belongs to the
class of functions h:(x)=**(:)(x&:), a�:�;. Since

Df (h:)=&M 2
[�b

; (x&:) w(x) dx]2

�b
: (x&:)2 w(x) dx

+M 2 |
b

;
w(x) dx,
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it remains to determine :* # [a, ;] that maximizes (24). It is worth noting
that :*{;, because differentiating Df (h:) in : gives

D$f (h:)=&2M 2
�b

; (x&:) w(x) dx
[�b

: (x&:)2 w(x) dx]2

__|
b

:
(x&:) w(x) dx |

b

;
(x&:) w(x) dx

&|
b

:
(x&:)2 w(x) dx |

b

;
w(x) dx&

and so D$f (h;)>0 by the Schwarz inequality. K
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