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Abstract

Optical grid networks provide an ideal infrastructure to support large-scale data intensive applications and interconnection of data

centers. The power consumption of communications equipment for such networks has been increasing steadily over the past decade

and energy efficient routing schemes and traffic models can be utilized to reduce the energy consumption. In many applications it

is possible to select the destination node from a set of possible destinations, which have the required computing/storage resources.

This is known as anycasting. We propose a novel formulation that exploits knowledge of demand holding times and the flexibility of

anycast routing to optimally schedule demands (in time) and route them in order to minimize overall network energy consumption.

Our simulation results demonstrate that the proposed approach can lead to significant reductions in energy consumption, compared

to traditional routing schemes.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Recent studies have shown that the energy consumption can become the bottleneck for the high speed data commu-

nication1,2 in today’s networks. Efficient routing schemes and resource allocation both in optical and electrical domain

can be used to help mitigate this problem3. A transparent IP-over-WDM (wavelength division multiplexing) network

can be utilized to allow traffic to optically bypass the electronic components, e.g. IP routers and switches, which

typically consumes more power than the corresponding optical equipment. In recent years various research works

have been published in the field of energy efficient WDM networks. A number of different approaches have been

proposed including switching off or slowing down unused network elements4, reducing electrical-optical-electrical
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(E-O-E) conversions5, putting selected network components in sleep mode6, and using intelligent traffic grooming

techniques7,8. For many types of applications in optical grid networks, the user may not care exactly where their job

is being processed. This allows the routing algorithms the flexibility of choosing a suitable processing (destination)

node for a given task, such that network resources can be utilized as efficiently as possible. This is known as the

principle of anycast routing9. A number of recent papers have shown how anycast routing can be used for minimizing

the overall energy consumption in optical networks10,11,12. However, these papers mostly deal with the static13,14 or

dynamic15,16 traffic models.

In this paper, we address the problem of energy efficient routing of traffic demands, under the sliding scheduled
traffic model (STM)17. Rather than using the traditional unicast routing, our proposed approach uses the anycast

principle to select the most suitable destination for a given demand. Furthermore, we present a novel approach that

jointly routes and schedules demands in time. We have developed a new integer linear program (ILP) formulation

to optimally solve this integrated routing and scheduling problem. We consider power consumption at both network

nodes (e.g. in IP routers, optical switches) and along fiber links.

The rest of the paper is organized as follows: in Section 2 we present the literature review. In Section 3 we formulate

our energy-aware scheduling and routing problem. We discuss our simulation results in Section 4 and conclude this

study in Section 5.

2. Review of Energy-Aware Allocation Scheme

It has been predicted that “energy consumption rather than the cost of the component equipment may eventually

become the barrier to continued growth”1 for today’s core/transport networks. Consequently, energy efficiency of core

wavelength division multiplexing (WDM) networks has received significant research attention in the last few years18,6.

A number of techniques for energy-efficient resource allocation with unicast routing in WDM optical networks have

been reported in the literature. More recently, energy aware approaches (both heuristics and optimal formulations)

using anycast routing has been considered in18,10,12.

In4, the goal is to find routes in the topology in such a way that it reduces the overall power consumption, by

switching of unused network elements. In18, the authors propose ILP formulations and heuristics that can reduce

power consumption by selective switching off optical links. In6, the authors introduce a model where each node

stores two predetermined thresholds that trigger the node switching between sleep and active modes, depending on

traffic load. One drawback of this model is it can drop lightpath requests due to isolated nodes. All the above papers

consider either the static traffic model, where the traffic demands are set up on a permanent or semi-permanent basis,

or the dynamic traffic model, where connection requests arrive randomly and are allocated on-demand as they arrive.

Finally, in12 the authors address the energy-aware anycast routing problem for the fixed window scheduled traffic

model19, where the traffic demands are periodic, with specified start and end times that are known beforehand. Our

approach differs from the existing works in that we consider the sliding scheduled traffic model17 20 and investigate

if adding some flexibility in terms of the demand start and end times can help to further reduce the overall network

energy consumption.

3. Energy aware routing and scheduling of SLDs

Our formulation takes as input a physical topology G[N, E]; here N is the set of nodes and E is the set of fiber

links, where each fiber can accommodate a set of K WDM channels. We are also given a set P of scheduled lightpath

demands (SLDs) and the entire time duration is divided into mmax intervals, numbered m = 1, 2, 3..mmax. Each demand

p ∈ P is specified as a tuple (sp, Dp, αp, ωp, τp). A demand p has a specified duration τp, and can be scheduled any

time within a larger window (αp, ωp), such that the demand can only start after αp, and must be completed before ωp.

Clearly (ωp − αp + 1) ≥ τp. Here sp is the source node for the SLD and Dp is a set of potential destination nodes,

from which the routing algorithm will choose the most suitable one.

The total power consumption of an active IP router (PIP) and an optical switch (PS W ) are shown in (1) and (2)

respectively.

PIP = Cs
IP +Cd

IP · tIP (1)
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PS W = Cs
S W +Cd

S W · tλ (2)

In both cases, the first term denotes the static component of the power consumption for simply turning the device

ON or making it active. The second term is the load dependent portion of the power consumption and increases with

the amount of traffic tIP (tλ) flowing through the IP router (optical switch). Finally, Ce
link, the power consumption of an

active fiber link e is shown in (3). The value of Ce
link is determined by the number of inline amplifiers plus the pre and

post amplifiers for each link, and can be calculated beforehand. The power consumption rates of different components

are taken from21.

Ce
link = Cpre + ne ·CILA +Cpost (3)

We present integer linear program (ILP) formulation that takes into consideration the energy at network nodes (in-

cluding electronic routing and optical switching) and along the fibers and minimizes energy consumption by selecting

a suitable destination, route, wavelength and start time for each demand. The idea is to establish the set of SLDs (P)

in a way that allows components that are already active to be used as much as possible, so other components may be

turned off. We define the following variables to be used in our ILP.

• rp
i,m = 1, if lightpath p uses IP router at node i during interval m.

• sp
i,m = 1, if lightpath p uses optical switch at node i during interval m.

• ri,m = 1, if IP router at node i is being used during interval m.

• si,m = 1, if optical switch at node i is being used during interval m.

• tp
e,m = 1, if link e is being used by lightpath p during interval m.

• te,m = 1, if link e is being used during interval m.

• ωk,p = 1, if lightpath p uses channel k.

• yp,i = 1, if lightpath p uses node i.
• xe,p = 1, if lightpath p uses link e.

• dp,i = 1, if node i is selected as destination node for lightpath p.

• ap,m = 1, if lightpath p is active during interval m.

• stp,m = 1, if m is the starting interval for lightpath p.

• ap
k,e = 1, if lightpath p uses channel k on link e.

Min
∑

m

[
∑
i∈N

(Cs
ip · ri,m +

∑
p∈P

Cd
ip · rp

i,m) +
∑
i∈N

(Cs
sw · si,m +

∑
p∈P

Cd
sw · sp

i,m) +
∑
e∈E

Ce
link · te,m] (4)

subject to:

a) Destination node selection constraints:

∑
i∈Dp

dp,i = 1; dp,i = 0,∀i � Dp,∀p ∈ P (5)

b) Route selection constraints:

∑
e:(i, j)∈E

xe,p −
∑

e:( j,i)∈E
xe,p =

{
1 if i = sp,
−dp,i otherwise. ∀i ∈ N, p ∈ P (6)

c) IP router usage constraints:

dp,i + ap,m − rp
i,m ≤ 1 ∀p ∈ P, i ∈ Dp, αp ≤ m ≤ ωp (7a)

dp,i ≥ rp
i,m; ap,m ≥ rp

i,m ∀p ∈ P, i ∈ Dp, αp ≤ m ≤ ωp (7b)
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∑
p rp

i,m

M
≤ ri,m ∀i ∈ Dp, αp ≤ m ≤ ωp (7c)

ri,m ≤
∑

p

rp
i,m ∀i ∈ Dp, αp ≤ m ≤ ωp (7d)

d) Optical switch usage constraints:

ap,m + (yp,i + dp,i) − sp
i,m ≤ 1 ∀p ∈ P, i ∈ Dp, αp ≤ m ≤ ωp (8a)

ap,m ≥ sp
i,m; (dp,i + yp,i) ≥ sp

i,m ∀p ∈ P, i ∈ Dp, αp ≤ m ≤ ωp (8b)

∑
p sp

i,m

M
≤ si,m ∀i ∈ Dp, αp ≤ m ≤ ωp (8c)

si,m ≤
∑

p

sp
i,m ∀i ∈ Dp, αp ≤ m ≤ ωp (8d)

e) Fiber link and node usage constraints:

xe,p + ap,m − tp
e,m ≤ 1 ∀p ∈ P, i ∈ Dp, αp ≤ m ≤ ωp (9a)

ap,m ≥ tp
e,m; xe,p ≥ tp

e,m ∀p ∈ P, i ∈ Dp, αp ≤ m ≤ ωp (9b)

∑
p tp

e,m

M
≤ te,m ∀i ∈ Dp, αp ≤ m ≤ ωp (9c)

te,m ≤
∑

p

tp
e,m ∀i ∈ Dp, αp ≤ m ≤ ωp (9d)

yp,i =
∑

j:(i→ j∈E)

xe,p ∀p ∈ P, i ∈ N (9e)

f) RWA constraints:

∑
k∈K
ωk,p = 1, ∀p ∈ P (10)

ωk,p + xe,p − ap
k,e ≤ 1; ∀k ∈ K, e ∈ E, p ∈ P (11a)

ωk,p ≥ ap
k,e; ∀k ∈ K, e ∈ E, p ∈ P (11b)

xe,p ≥ ap
k,e; ∀k ∈ K, e ∈ E, p ∈ P (11c)

ap
k,e + ap,m + aq

k,e + aq,m ≤ 3 ∀k ∈ K, e ∈ E, p, q ∈ P, αp ≤ m ≤ ωp (12)

g) Demand scheduling constraints:

∑
m

stp,m = 1, ∀p ∈ P, αp ≤ m ≤ ωp (13)
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∑
m

ap,m = τp, ∀p ∈ P, αp ≤ m ≤ ωp (14)

ap,m+ j ≥ stp,m, ∀p ∈ P, 0 ≤ j < τp, αp ≤ m ≤ ωp (15)

Equation (4) is the objective function, which minimizes the overall energy consumption at IP routers, optical

switches and fiber links. Constraint (5) selects exactly one destination for each SLD p ∈ P, and also ensures that only

nodes belonging Dp can be selected as destination nodes. Constraint (6) is the standard flow conservation constraint

and is used to find a feasible path from the source to the selected destination. Constraints (7a) - (7d) together determine

if IP router at node i is being used during interval m. Similarly, Constraints (8a) - (8d) determine if optical switch at

node i is being used during interval m. Constraints (9a) - (9d) state that fiber link e is in use during time interval m, if

there is at least one SLD p ∈ P such that p uses link e and is active during interval m. Constraint (9e) states that node

i ∈ N is used by demand p, if p uses edge e : i→ j.
Constraint (10) enforces the wavelength continuity constraint, so that each demand p is allocated the same channel

on each fiber it traverses. Constraints (11a) - (11c) set the value of ap
k,e = 1, if lightpath p uses channel k on link

e. Constraint (12) enforces the wavelength clash constraint and ensures that two lightpaths p and q cannot use the

same channel k on the same link e if they are both active during the same interval m. Finally constraints (13)-(15) are

used to select the best starting interval for each SLD. Constraint (13) ensures that exactly one interval is selected as

the starting interval for demand p. Constraint (14) states that the number of active intervals for demand p must equal

its demand holding time τp. Finally, constraint (15) ensures that all the active intervals for demand p are assigned

consecutively, with no gaps in between.

3.1. An Illustrative Example

In order to illustrate the effectiveness of the proposed approach, we consider a very simple example where three

demands are to be scheduled and routed over the topology in Fig. 1(a). The demands p1, p2 and p3 are specified as

shown below:

• p1 = (2, {1}, 2, 4, 2): The source node s1 = 2; the set of potential destinations D1 = {1}; the demand must be

scheduled between intervals α1 = 2, ω1 = 4 and the demand holding time τ1 = 2 intervals.

• p2 = (1, {3}, 1, 4, 3): The source node s2 = 1; the set of potential destinations D2 = {3}; the demand must be

scheduled between intervals α2 = 1, ω2 = 4 and the demand holding time τ2 = 3 intervals.

• p3 = (2, {3, 4}, 3, 5, 2): The source node s2 = 2; the set of potential destinations D3 = {3, 4}; the demand must

be scheduled between intervals α3 = 3, ω3 = 5 and the demand holding time τ3 = 2 intervals.

In order to simplify the explanation, we assume that demands p1 and p2 have already been routed along the routes

2 → 1 and 1 → 3 respectively, using channel λ1, as shown in Fig. 1a. Furthermore, we assume that demands p1 and

p2 have been scheduled to start at time interval m = 3 and m = 2 respectively, as shown in Fig. 1b.

(a) (b)

Fig. 1. (a) Routing and (b) scheduling of three demands over a 4-node physical topology.
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Under this scenario, there are a number of options for routing and scheduling demand p3. Six valid options for

demand p3 are given below. We note that this is not an exhaustive list, and there are other options that can be used.

We are simply listing the following options to illustrate that there are many different ways a single demand may be

accommodated.

• Option 1: Select node 3 as the destination, use route 2→ 3 and schedule the demand to start in interval m = 3.

• Option 2: Select node 3 as the destination, use route 2 → 1 → 3 and schedule the demand to start in interval

m = 3.

• Option 3: Select node 3 as the destination, use route 2→ 3 and schedule the demand to start in interval m = 4

• Option 4: Select node 4 as the destination, use route 2 → 1 → 4 and schedule the demand to start in interval

m = 3

• Option 5: Select node 4 as the destination, use route 2 → 1 → 4 and schedule the demand to start in interval

m = 4

• Option 6: Select node 4 as the destination, use route 2 → 3 → 4 and schedule the demand to start in interval

m = 4

Assuming demands p1 and p2 have been allocated as mentioned above, we see that Option 2 allows the maximum

sharing of resources and consequently reduces energy consumption. For example, since node 3 is selected as desti-

nation node for p3, this allows node 4 to remain in a low-power (inactive) state. Also, route 2 → 1 → 3 is selected,

rather than the shorter route 2 → 3, because both links 2 → 1 and 1 → 3 are already in use by other demands. This

means the optical amplifiers on link 2 → 3 can remain in low-power state. Finally, scheduling p1(p2) to start during

interval m = 3(m = 2) rather than the earliest possible times for those demands, allows p1 and p2 to remain active for

the entire duration of p3, so that network components are active for a minimum amount of time.

4. Simulation Results

In this Section, we present simulation results, obtained using our proposed ILP formulations. We considered three

well known topologies ranging in size from 11 nodes to 24 nodes. This includes the standard NSFNET22, COST-

23921, and USA network23. The ILP is able to generate optimal results for practical sized problems. The simulations

were carried out with IBM ILOG CPLEX 12.6.224. We have performed experiments considering 10, 20, 40 and 80

lightpaths. The results reported below correspond to average values (rounded to the nearest integer) over 5 different

runs. For each given network topology, we have tested our proposed approach with different sized demand sets and

different demand time correlations δ as defined in19. The demand time correlation δ determines the overlapping

between different demands. If δ = 0, it means that the demands do not overlap in time, so RWA can be done for each

demand separately. For the simulations we have considered two distinct scenarios:

• Energy aware anycast sliding scheduled traffic model (EA-AnycastSlidingSTM): This is our proposed approach,

where the ILP selects the best possible destination node and start time for each demand, and then performs RWA.

• Energy aware anycast fixed window traffic model (EA-AnycastFixedSTM): In this case the ILP is free to choose

a suitable destination node, but the start time of each demand is fixed.

It has already been shown that energy-aware anycast routing under the fixed window STM (EA-AnycastFixedSTM),

where demand start and end times are specified beforehand, can lead to energy savings compared to both energy-

unaware anycast and energy-aware unicast approaches12. In this section, we investigate how much additional im-

provements can be achieved, even over the previous best performing model (EA-AnycastFixedSTM), by allowing

flexible scheduling of the SLDs in time, using our proposed model (EA-AnycastSlidingSTM). Fig. 2a shows the nor-

malized energy consumption for routing a set of SLDs over the 11-node (COST239) topology for 16 channels per fiber.

It is clearly seen that the proposed approach (EA-AnycastSlidingSTM) performs better than EA-AnycastFixedSTM

irrespective of the number of demands. EA-AnycastSlidingSTM shows improvement about 13%, 11%, and 7% over

EA-AnycastFixedSTM for 10, 20, 40 lightpath demands respectively. As expected, the overall trend shows an in-

crease in energy consumption with increase in number of demands, since more network components such as switches,

routers and amplifiers will be required to turn on. In Fig. 2b and 2c the comparison of energy consumption for
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14-node topology with 21 links (NSFNET) and 24-node with 43 links is illustrated. For 14-node topology, we have

performed experiments with 10, 20, 40 and 80 lightpath demands. For 24 node topology, the experiments were per-

formed on 10, 20 and 40 lightpath demands. For both networks, the proposed sliding scheduled traffic demands

allocation model outperforms the fixed approach(EA-AnycastFixedSTM). The energy consumption also increases as

the number of demands increase for both the topologies. The average improvement over the next best approach (EA-

AnycastFixedSTM) is 13%, 11% and 7% for with 10, 20 and 40 demands respectively. We next consider results for

different networks with the same number of demands as illustrated in Fig. 3a. We can see that the energy consumption

is more in the case of 14-node topology compared to 11-node topology for all the approaches, but the energy con-

sumption for 24-node topology is less compared to 14-node topology although 24-node topology includes more nodes

and links compared to 14-node topology. This can be due to a number of factors, such as the length of the links, the

number of available destination nodes, and the distribution of the demands. In Fig. 3b we show the relative improve-

ment obtained using our proposed scheme over EA-AnycastFixedSTM scheme. EA-AnycastSlidingSTM shows 12%

improvement on 11-node topology, 11% improvement on 14-node topology and 7% improvement on 24-node topol-

ogy comparing to next best technique EA-AnycastFixedSTM. We next consider the comparison of execution times

of our proposed approach with the other approaches. The simulation results show that fixed window traffic allocation

requires significantly less time compared to sliding scheduled demand allocation. The reason is that the additional

flexibility in demand start time leads to an increase in the number of integer variables, which results in a much larger

search space. Fig. 3c shows that the execution time increases with number of nodes, increases as expected. The EA-

AnycastSlidingSTM shows linear steady growth in execution time with increase in number of nodes and consumes

large time compared to EA-AnycastFixedSTM as expected.

(a) (b) (c)

Fig. 2. Comparison of energy consumption for sliding and fixed schedule traffic with different demand set sizes (a) 11-node network (COST239),

(b) 14-node network (NSFNET), and (c) 24-node network.

(a) (b) (c)

Fig. 3. (a) Comparison of energy consumption for sliding and fixed schedule traffic for different network topologies, (b) Improvement of EA-

AnycastSildingSTM over EA-AnycastFixedSTM and (c) Comparison of execution time for EA-AnycastSildingSTM and EA-AnycastFixedSTM.

5. Conclusion

In this paper, we have presented a new approach for energy-aware RWA, which jointly schedules demands (in

time) and exploits the flexibility of anycast routing to minimize the overall energy consumption of the network. Our

approach implements a comprehensive energy-aware resource allocation for optical grid networks, which is able to
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consider power consumption over a wide variety of network components. To the best of our knowledge, this is the

first optimal ILP formulation for sliding scheduled lightpath demands with the objective of energy minimization for

optical grid networks. We have compared our results with previous best technique, using fixed window demand

allocation model. The results demonstrate that the proposed approach can significantly lower energy consumption,

even compared to previous energy-aware routing for lightpaths with pre-specified start and end times.
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