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Abstract

The decomposition of representations of compact classical Lie groups into representations of finite sub-
groups is discussed. A MATHEMATICA package is presented that can be used to compute these branching 
rules using the Weyl character formula. For some low order finite groups including A4 and �(27) general 
analytical formulas are presented for the branching rules of arbitrary representations of their smallest Lie 
super-groups.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Standard Model of particle physics (SM) provides a highly accurate description of Nature. 
However, there are still many questions to be answered. Amongst others, the so-called flavour 
puzzle remains to be solved, i.e. a satisfactory explanation of the family structure with its masses 
and mixing is still lacking. One possible avenue towards a solution is provided by settings with 
non-abelian discrete flavour or horizontal symmetries, which, somewhat complementary to grand 
unified symmetries, relate to the different families of the SM. Many models using such symme-
tries have been built, especially for the lepton sector, where until some time ago the so-called 
tri-bi-maximal mixing pattern seemed to be in good agreement with observation (for reviews of 
such models see, for example, [1–6]).
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Even if one is able to find an explanation for the flavour structure of the SM in terms of finite 
non-abelian symmetries, this is, of course, only the first step. One would also like to explain the 
origin of these symmetries. This problem is amplified because global symmetries are believed 
to be broken by gravitational effects [7,8]. One possible consistent origin of these symmetries 
is provided by string theory [9–12]. However, although in principle highly predictive, string 
theory has not yet been entirely successful in obtaining unambiguous predictions that can be 
compared with present-day experimental data. Another, more bottom-up possibility to obtain 
discrete symmetries that are protected from violation by gravitational effects is by breaking a 
(non-anomalous) continuous gauge group like SU(N) [13]. Symmetries of this kind are known 
as discrete gauge symmetries.

The aim of this work is to aid the construction of models where a finite symmetry emerges 
from the spontaneous breaking of a continuous symmetry, i.e. from breaking Lie groups to finite 
subgroups. This is only possible if there is an irreducible representation of the Lie group that 
contains a trivial singlet of the subgroup. A vacuum expectation value of this component may 
then break the Lie group to the desired subgroup. Therefore, a procedure is outlined and imple-
mented in the MATHEMATICA [14] package DecomposeLGReps allowing to decompose the 
Lie group’s representations into irreducible representations of the subgroup.

The decomposition of a representation of a finite group into representations of a subgroup 
proceeds via the scalar product of characters. The same technique can, in principle, be used for 
Lie groups as long as their dimension is finite. However, whereas character tables of finite groups 
contain all information needed to go through this procedure, it is clearly impossible to compile 
all the necessary information for Lie groups; the table had to be infinitely large.

Hence, previous studies used different methods to compute the branching rules. A first possi-
bility is using the fact that each Lie group representation can be obtained from the tensor product 
of fundamental representations1 as in [15].2 A second option is working with explicit realisations 
of the Lie group representations [16]. Both approaches cannot be easily generalised to larger Lie 
group representations or larger rank Lie groups. In another approach that also highlights the con-
nection between spontaneous and explicit symmetry breaking, Merle and Zwicky [17] used an 
algorithm based on group invariants and provided a MATHEMATICA package implementing the 
algorithm for SU(3). Again this is not easily generalised, and the method relies on somewhat 
advanced notions of invariant theory. Similar considerations also lead to the so-called gener-
ating functions for subgroup scalars compiled in [18], which, however, mainly focuses on Lie 
subgroups of Lie groups. To overcome these limitations, the present work uses the standard tech-
nique of the character scalar product and computes the characters on the fly with MATHEMATICA

using what is called the Weyl character formula [19] (for more modern treatments see, for ex-
ample, [20,21]). This, in principle, allows the computation of branching rules for all compact 
Lie groups and arbitrary finite subgroups thereof. The corresponding MATHEMATICA package
DecomposeLGReps implementing the formulas for the classical Lie groups U(N), SU(N), 
SO(N) and USp(2N) can be found online.3

Of course, there remain some general issues with this type of model building. For example, 
the VEV of the singlet component of the Lie group representation under consideration may be 
left invariant by a larger number of transformations than the desired subgroup, i.e. the subgroup 

1 So-called spinor representation of SO(N) are an exception, see Section 2 below.
2 The title of the present work is an allusion to the title of this reference: ‘Spontaneous breaking of SU(3) to finite 

family symmetries – a pedestrian’s approach’ by Luhn.
3 http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps.

http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps
http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps
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might not be the maximal invariant subgroup of the VEV. Unfortunately, there is no general 
theory that exposes whether this is the case or not; hence, this question has to be settled in each 
case individually, e.g. by examining the subgroup tree [17] or by constructing the actual rep-
resentation matrices [15,16]. Furthermore, it is, in general, difficult to write down a potential 
giving rise to the desired VEV dynamically. These caveats notwithstanding, knowledge of can-
didate representations for the desired breaking is of great help in model building. Moreover, as 
will be seen below, in some cases one can discern patterns in the branching rules that allow to 
make general statement about models embodying this breaking.

This work is structured as follows. First, criteria for a finite group to be a subgroup of 
a compact classical Lie group are compiled in Section 2. In Section 3 the scalar product of 
characters and its application for the computation of branching rules is reviewed. Section 4
explains the technical details of the computation, which uses the connection between Lie al-
gebra and Lie group characters and the Weyl character formula. The MATHEMATICA package 
DecomposeLGReps implementing this procedure is briefly presented in Section 5. In Sec-
tion 6, some examples are given for the applicability of the package, and some general results 
for various small finite groups are derived.

2. Subgroups of compact classical Lie groups

The purpose of this section is to state criteria for a finite group H to be a subgroup of any of 
the compact classical Lie groups U(N), SU(N), SO(N) and USp(2N). In fact, the simplest case 
is the one of the unitary group U(N) because any finite-dimensional representation of a finite 
group is equivalent to a unitary representation [20].

The criterion used here is that H is a subgroup of U(N) if and only if it has a faithful repre-
sentation of dimension N .

To see this, let H have a faithful unitary representation R of dimension N ,

R: H → {N × N unitary matrices} , (2.1)

and let N be the fundamental representation of U(N),

N : U(N) → {N × N unitary matrices} , (2.2)

which is a bijection. Then the map

N−1 ◦ R: H ↪→ U(N) (2.3)

is an injective group homomorphism that embeds H into U(N) as a subgroup.
Now let H be a subgroup of U(N). Then there exists an embedding i of H into U(N),

i: H ↪→ U(N) , (2.4)

where i is an injective group homomorphism. Using this map one can define a faithful represen-
tation R′ of H by

R′ := N ◦ i , (2.5)

which has dimension N . This concludes the proof of the subgroup criterion for U(N).
The same arguments go through for the other compact classical Lie groups if, additionally, 

detρR(g) = 1 for SU(N), detρR(g) = 1 and for some choice of basis ρR(g) ∈ R
N×N for SO(N)

and ρR(g) ∈ Sp(2N,C) for USp(2N).
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For works on subgroups of the probably most relevant Lie groups for model building, SU(3)

and SO(3), see [3,22–24], and for a general overview of popular groups for model building, 
see [2].

One more important remark concerns the notation for Lie group representations used here. An 
irreducible representation of a Lie group is labelled by the Dynkin labels Λ = (Λ1, Λ2, . . . , Λr)

of the highest weight of its associated Lie algebra representation. This correspondence between 
Lie group and Lie algebra representations is only one-to-one for simply connected Lie groups, 
e.g. for SU(N) and USp(2N) (cf. [20]). However, SO(N) is not simply connected and has as 
universal covering group Spin(N), e.g. the universal covering group of SO(3) is Spin(3) which 
is isomorphic to SU(2). Thus, for the present approach one has to distinguish the groups SO(N)

and Spin(N) carefully in contrast to common practice in physics. In fact, the N -dimensional 
fundamental representation of SO(N) is not a faithful representation for Spin(N). Therefore, 
the procedure described above really embeds the finite group into SO(N) and not into Spin(N). 
Branching rules will, hence, only be computed for non-spinorial representations, i.e. for rep-
resentations with Dynkin label ΛN an even integer for SO(2N + 1) and ΛN−1 + ΛN an even 
integer for SO(2N).

3. Group characters

This section reviews the notion of group characters. More information can be found in many 
books on group theory, e.g. [25].

Let G be a compact group and consider its finite-dimensional representations over the com-
plex numbers. Given such a representation R with matrix realisation ρR(g) one can define its 
character as

χR(g) := tr (ρR(g)) , ∀g ∈ G, (3.1)

which is a map from the group to the complex numbers. Since the trace is invariant under simi-
larity transformations, characters are independent of the chosen basis. Moreover, they are class 
functions, i.e. they are constant on conjugacy classes. Characters fulfil the relations

χR(g−1) = χR(g)∗ , ∀g ∈ G, (3.2a)

χR⊕R′(g) = χR(g) + χR′(g) , ∀g ∈ G, (3.2b)

χR⊗R′(g) = χR(g) · χR′(g) , ∀g ∈ G. (3.2c)

The characters of irreducible representations are in one-to-one correspondence with the repre-
sentations themselves.

One can define a scalar product on characters by4

(χR,χR′) := 1

|G|
∑
g∈G

χR(g−1)χR′(g) = 1

|G|
∑
g∈G

χR(g)∗ χR′(g) , (3.3)

where |G| is the number of elements of G. Given characters of two irreducible representations, 
their scalar product is 1 if the representations are equivalent and 0 if they are different, i.e. 
the characters of irreducible representations are orthonormal. Given a reducible representation 

4 For compact Lie groups the sum has, in principle, to be replaced by a suitably normalised integral. Since we only 
need the character scalar product of finite subgroups, the present discussion is sufficient for our purposes.
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Rred, the number of times the irreducible representation Rirr is contained in Rred is equal to 
(χRirr ,χRred).

This leads to the following algorithm for the computation of branching rules. Given an irre-
ducible representation R of G, restrict it to a subgroup H ⊂ G. Then the character scalar product 
of this representation with an irreducible representation ri of H yields the multiplicity μi of r i

in R,

μi = (χr i
,χR|H ) = 1

|H |
∑
h∈H

χr i
(h)∗ χR(h) . (3.4)

This will now be applied to finite subgroups of Lie groups. Note that, since the sum only runs 
over the finite number of elements of the subgroup, only a finite number of Lie group characters 
has to be computed.

4. Lie group characters

This section explains the details of the computation of Lie group characters using the Weyl 
character formula. It is structured as follows. First, the connection of Lie group and Lie algebra 
characters is reviewed, and the Weyl character formula for the computation of Lie algebra char-
acters in its modern formulation is introduced. After clarifying some notational issues, the Weyl 
character formulas for the classical Lie groups are presented in two formulations due to Weyl, 
which are for the present purposes more useful than the general formula mentioned before. The 
reader only interested in the application of the MATHEMATICA package or the final results for 
small groups may skip ahead to the respective sections.

4.1. Lie group and Lie algebra characters

The definition of characters shown above is not limited to finite groups. In fact, the character 
χΛ of a finite-dimensional highest-weight representation of some finite-dimensional Lie group 
L is defined in the same way, namely

χΛ(g) := tr(ρΛ(g)) , ∀g ∈ L, (4.1)

where ρΛ is a matrix realisation of the representation with highest weight Λ [20]. The characters 
are again class-functions, i.e. constant on conjugacy classes.

It is important to note that for semi-simple Lie groups any group element g is conjugate to 
an element g◦ of a maximal torus, i.e. of a subgroup with the Cartan sub-algebra of L as Lie 
algebra. In other words: each group element can be diagonalised by an inner automorphism [20]. 
This leads to a relation between so-called Lie algebra characters5 chΛ and the desired Lie group 
characters χΛ. In fact, for each element g◦ of a maximal torus of a compact Lie group L, one 
can find an element h of the Cartan sub-algebra of the Lie algebra of L such that exph = g◦. The 
Lie algebra character chΛ(h) of this element equals the Lie group character of g [20],

5 Lie algebra characters chΛ are defined as [20]

chΛ(λ) :=
∑
λ′

multΛ(λ′) e(λ, λ′) , (4.2)

where the sum runs over all weights λ′ of the representation defined by Λ and multΛ(λ′) is the multiplicity of λ′ in the 
weight diagram. Moreover, the parenthesis denote the scalar product on weight space.
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Table 1
This table is a partial reproduction of [20, (10.29)] and shows the group 
structures and orders of the Weyl groups of the classical Lie algebras.

g W |W |
Ar Sr+1 (r + 1)!
Br Z

r
2 � Sr 2r r!

Cr Z
r
2 � Sr 2r r!

Dr Z
r−1
2 � Sr 2r−1 r!

chΛ(h) = χΛ(exph) = χΛ(g◦) = χΛ(g) . (4.3)

It is, hence, possible to compute all Lie group characters using this equivalence with Lie 
algebra characters given a formula for the latter. In fact, there is a closed formula for Lie algebra 
characters called Weyl character formula, which in its modern form is given by [20]

chΛ(h) = chΛ (λh) =
∑

w∈W sign(w) e(w(Λ+ρ), λh)∑
w∈W sign(w) e(w(ρ), λh)

. (4.4)

This formula requires some explanation. Note that the element h of the Cartan sub-algebra for 
which the character is computed is specified by its weight λh, which can be obtained by project-
ing h onto the Cartan generators using the Killing form. Further, the sums run over all elements 
of the Weyl group W . This is the group generated by all reflections in weight space at planes 
orthogonal to the simple roots, i.e. it is generated by all so-called Householder transformations 
corresponding to the simple roots. The sign of an element w of the Weyl group is defined as 
sign(w) := (−1)length(w), where the length of an element is the (unique) minimal number of re-
flections defined by simple roots that is needed to generate the reflection w. The structures of 
the Weyl groups of the classical Lie algebras are shown in Table 1. Moreover, (· , ·) is the scalar 
product on weight space and ρ denotes the Weyl vector of the Lie algebra, which is given by half 
the sum of the positive roots,

ρ := 1

2

∑
α>0

α . (4.5)

It has Dynkin labels ρi = 1 for all i = 1, . . . , rankL.

4.2. Notation for the Weyl character formulas in terms of eigenvalues

The Weyl character formula will finally be applied to Lie group elements that are also ele-
ments of the finite subgroup in order to compute the branching rules using the character scalar 
product (3.4). In the case of embeddings as described in Section 2, these Lie group elements g
are not specified by weights but by an explicit representation matrix ρN(g) in the fundamental 
representation. Instead of first translating this information into the language of weights, one can 
also compute the characters directly in terms of the eigenvalues εi(g) of these representation 
matrices [19,21,26]. In this case, the irreducible Lie group representation whose character is to 
be computed is conventionally not labelled by Dynkin labels but by its so-called partition, a nota-
tion related to Young tableaux. For SU(N), i.e. Lie algebra Ar=N−1, the relation of Dynkin labels 
Λ = (Λ1, Λ2, . . . , ΛN−1) to partitions can be understood from the fact that Λi is the number of 
columns with i boxes in the Young tableau corresponding to Λ. The partition is then the list of 
row lengths fi of the Young tableau, which can be computed from the Dynkin labels by
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fi :=
N−1∑
k=i

Λk , i = 1, . . . ,N − 1 , (4.6)

and which results naturally in the ordering fi ≥ fi+1 [21,26].
Partitions are also the conventional way to label irreducible representations of U(N) [19]. 

However, in this case an additional integer fN has to be specified. Furthermore, all fi≤N−1 as 
computed with the formula above have to be increased by this fN . Restricting representations 
from U(N) to its SU(N) subgroup, all representations differing only in this global shift are 
identical and fN can be set to zero without loss of generality.

For representations Λ of the symplectic group USp(2N), i.e. Lie algebra Cr=N , the N la-
bels fi of the corresponding Young tableau are again obtained by equation (4.6) with the sum 
extending up to N this time [21].

The definition of Young tableaux and partitions for orthogonal groups is more complicated 
and not unique; thus, one has to be careful when comparing different approaches. In addition 
to that, one has to distinguish SO(2N), i.e. Lie algebra Dr=N , and SO(2N + 1), i.e. Lie algebra 
Br=N . We adopt the conventions of [21,26].6 Hence, the partition corresponding to Λ is obtained 
from

fi :=
N−1∑
k=i

Λk + ΛN

2
, i = 1, . . . ,N , for SO(2N + 1) and (4.7a)

fi :=
N−2∑
k=i

Λk + ΛN−1 + ΛN

2
, i = 1, . . . ,N − 1 ,

fN := ΛN − ΛN−1

2
, for SO(2N), (4.7b)

where the sums are set to zero if i is larger than their upper limit. All fi are integers for 
non-spinorial representations but half-integer for spinor representations. This does not pose any 
problem for the present approach since only subgroups of SO(N) are considered, and, therefore, 
only non-spinorial representations are allowed as input.

It will turn out to be convenient to furthermore introduce the abbreviation


i := fi − i + N , i = 1, . . . ,N , (4.8)

setting fN := 0 for SU(N).

4.3. The Weyl character formulas in terms of eigenvalues

After introducing this notation, the character formulas simply take the form of determinants. 
Taking SU(N) as an example, this can be seen starting from (4.4). The sum over the Weyl group 
of the signum of the Weyl group elements times an exponential resembles, the Weyl group of 
SU(N) being SN , the Leibniz formula for the determinant of a matrix. After some algebraic 
manipulations one can indeed write both numerator and denominator as determinants. Further, 
the weights corresponding to a group element g can be related to the eigenvalues εi(g) of its 

6 The conventions by Weyl [19] differ only slightly from the other two. He uses the absolute value of fN for SO(2N)

and adds a prime to distinguish between representations with positive and negative fN .
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representation matrix in the fundamental representation. The final result for the Weyl character 
formula for SU(N) in terms of these eigenvalues εi(g) using the 
i introduced in (4.8) is then [19]

χΛg =
det

[
ε

j

i (g)
]
ij

det
[
ε
N−j
i (g)

]
ij

. (4.9)

Here, det[A]ij is the determinant of the n × n matrix A with entries labelled by 1 ≤ i, j ≤ n. 
This expression is also called a Schur polynomial [21]. In fact, the denominator can be simplified 
because it is just a Vandermonde determinant, yielding

χΛ(g) =
det

[
ε

j

i (g)
]
ij∏

i<j

(
εi(g) − εj (g)

) . (4.10)

This formula holds also for U(N) [19].
The other compact classical Lie groups can be treated similarly. However, in all these cases 

only half of the eigenvalues are independent because they always come in complex conjugate 
pairs.7 Hence, for all groups besides the unitary groups, only one eigenvalue of each pair is to 
be used in the formulas below such that their number matches the rank of the Lie algebra. The 
formulas for all compact classical Lie groups are then [19,21]

χΛ(g) =
det

[
ε

j

i (g)
]
ij∏

i<j

(
εi(g) − εj (g)

) for SU(N), (4.11a)

χΛ(g) =
det

[
ε

j +1
i (g) − ε

−
j −1
i (g)

]
ij

det
[
ε
N+1−j
i (g) − ε

−N−1+j
i (g)

]
ij

for USp(2N), (4.11b)

χΛ(g) =
det

[
ε

j +1/2
i (g) − ε

−
j −1/2
i (g)

]
ij

det
[
ε
N+1/2−j
i (g) − ε

−N−1/2+j
i (g)

]
ij

for SO(2N + 1),

(4.11c)

χΛ(g) =
det

[
ε

j

i (g) + ε
−
j

i (g)
]
ij

+ det
[
ε

j

i (g) − ε
−
j

i (g)
]
ij

det
[
ε
N−j
i (g) + ε

−N+j
i (g)

]
ij

for SO(2N). (4.11d)

These formulas are implemented in the MATHEMATICA package DecomposeLGReps.
Unfortunately, there is a computational difficulty because all determinants are zero if any two 

eigenvalues coincide. This can be most easily seen in the case of SU(N), where the Vandermonde 
determinant clearly vanishes for two identical eigenvalues. Fortunately, this is just a removable 
discontinuity. In the original formula (4.4) this can be ameliorated by adding a multiple of the 
Weyl vector t · ρ to the weight λ and taking the limit t → 0 after computing the determinant. In 
(4.11) the same can be achieved by the replacement εj → εj eij t and the limit t → 0.

7 Matrices of SO(2N + 1) have an additional eigenvalue +1 which also has to be dropped from the list.
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The formulas are computationally rather demanding because of the possibly large determi-
nants. Computation time should roughly grow as (r + 1)!, where r is the rank of the Lie group. 
However, for the ranks of Lie groups usually used in model building this is not a major concern.

A big advantage of these formulas is that they are closed, i.e. they do not involve any recursion 
in contrast to, for example, the Freudenthal formula [20]. Hence, they can be used to derive 
general properties for subgroups of classical Lie groups, see Section 6 below.

4.4. An alternative formulation of the Weyl character formulas

If one only needs a result for fixed integer Dynkin labels, a second form of the character 
formulas can be advantageous. This form circumvents the limit procedure, which, otherwise, con-
siderably slows down the computation. It can be derived using a correspondence between Schur 
polynomials and determinants of complete homogeneous symmetric polynomials hi , which are 
defined by

1∏
i (1 − z xi)

=:
∑
j

hj (xi) zj , (4.12)

see [19,21]. In the present case the hi are to be evaluated at the eigenvalues of the repre-
sentation matrix. In fact, the quantities from which the characters can be computed are the 
coefficients pi of the generating function for one divided by the characteristic polynomial of 
this matrix [19,21],

1

det (1 − zρΛ(g))
= 1∏

i (1 − z εi(g))
=

∑
j

hj (εi(g)) zj =:
∑
j

pj (g) zj . (4.13)

The final formulas for the characters of U(N), SU(N) and USp(2N) are given by [19]

χΛ(g) = det
[
p
i−N+j (g)

]
ij

for U(N) and SU(N), (4.14a)

χΛ(g) = 1

2
det

[
p
i−N+j (g) + p
i−N−j+2(g)

]
ij

for USp(2N). (4.14b)

Formulas for SO(N) cannot be found in [19], but for O(2N) and O(2N + 1)

χΛ(g) = det
[
p
i−N+j (g) − p
i−N−j (g)

]
ij

.

The irreducible representations of SO(2N + 1) and O(2N + 1) coincide such that the character 
formula for O(2N + 1) can also be used for SO(2N + 1). However, only irreducible representa-
tions of SO(2N) whose last two Dynkin labels are equal are also irreducible representations of 
O(2N), in which case the characters are again identical. Irreducible representations of SO(2N)

with Dynkin labels ΛN−1 = ΛN are not representations of O(N). Instead, the direct sum of 
the two conjugate representations (Λ1, . . . , ΛN−1, ΛN) and (Λ1, . . . , ΛN, ΛN−1) of SO(2N)

forms an irreducible representation of O(2N) [21]. Using a determinant formula from [26] on 
(4.11d) and comparing with (4.11b) one can derive the formula for the remaining representa-
tions of SO(2N). It depends on the sign of ΛN−1 − ΛN . In summary, the results for SO(N)

are

χΛ(g) = det
[
p
i−N+j (g) − p
i−N−j (g)

]
ij

for SO(2N + 1), (4.14c)

χΛ(g) = det
[
p
 −N+j (g) − p
 −N−j (g)

]
for SO(2N) with ΛN−1 = ΛN , (4.14d)
i i ij
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χΛ(g) = 1

2
det

[
p
i−N+j (g) − p
i−N−j (g)

]
ij

+ sign(
N)

4

∏
k

(εk(g) − εk(g)−1) det
[
p
i−N+j−1(g) + p
i−N−j+1(g)

]
ij

for SO(2N) with,ΛN−1 = ΛN . (4.14e)

The Weyl character formulas thus obtained can be implemented on a computer with the help of 
a computer algebra system like MATHEMATICA which provides routines for the series computa-
tion (4.13) needed to determine the pi . This has been done in the package DecomposeLGReps
presented in the following section.

5. The package

The MATHEMATICA package DecomposeLGReps can be found on the webpage

http :/ /einrichtungen .ph .tum .de /T30e /codes /DecomposeLGReps

It contains implementations of the Weyl character formulas (4.11) as well as of the alternative 
form (4.14). For a detailed explanation of the functions and their options, the reader is referred 
to the package documentation shipped with the package. Here only the basic usage is briefly 
explained.

After loading the package with

Needs["DecomposeLGReps‘"];

one has to specify the finite group that is to be embedded into a Lie group. This is done by 
providing a list containing one list for each irreducible representation of the finite group with the 
representation matrices of all group elements. Schematically this looks like

group = { { list of representation matrices of representation 1 },
{ list of representation matrices of representation 2 },
...
{ list of representation matrices of representation n } };

This list can, for example, be computed with the GAP interface package Discrete [27]. Alter-
natively, it is also possible just to specify representation matrices for one representative of each 
conjugacy class, see the package documentation for more information.

After this preparation, the finite group can be embedded into a Lie group using embedinLG,

embed = embedinLG[group, 12, "A"];

where the first argument is the list prepared before, the second argument specifies the represen-
tation that is used for the embedding following Section 2, and the last argument specifies the Lie 
group type.8 If a reducible representation is to be embedded, a list of its irreducible constituents 
can be provided instead of a single integer as second argument. Hence, in the example the group 
is embedded into SU(N) ∼ AN−1 ∼ "A" using the 12th representation in the list group, where 

8 Possible types are "A" for SU(N) and U(N), "B" for SO(2N + 1), "C" for USp(2N) and "D" for SO(2N).

http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps
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N is automatically chosen as the dimension of representation number 12. The representation 
chosen should, of course, be faithful; otherwise, the embedded group is not the desired one but a 
subgroup of it. An error is displayed if this is detected.

The last step is to compute the decomposition of a representation of the Lie group specified 
by the Dynkin labels of its highest weight. This is done by the function decomposeLGRep in 
the following way:

decomposeLGRep[{a1, a2,..., aN}, embed]

The first argument is a list with the Dynkin labels and the second argument is the output of
embedinLG. The Lie group type is also taken from there in order to avoid a mismatch be-
tween the Lie group of the embedding and the Lie group for which the branching rule is to be 
computed. The output of decomposeLGRep is a list containing the multiplicities of represen-
tations of the finite group in the decomposition of the Lie group representation with the Dynkin 
labels (a1, a2, . . . , aN). The order of the multiplicities in the output is identical to the one of 
representations 1 to n specified earlier in the variable group.

As an example, let a4Matrices contain the representation matrices of the tetrahedral group 
A4 in the form shown above and in the order (1, 1′, 1′′, 3) where the notation of [23] is used. 
The tetrahedral group can be embedded into SU(3) using the faithful triplet representation 3.9

This is done by the command

embedA4 = embedinLG[a4Matrices, 4, "A"];

To avoid confusion with the group name A4, let us remark that the 4 stands for the fourth rep-
resentation in the list a4Matrices, which is assumed to be ordered as (1, 1′, 1′′, 3), and "A"
for the Lie algebra of SU(N). The decomposition of the fundamental representation of SU(3)

can then be computed by

decomposeLGRep[{1, 0}, embedA4]

which yields

{0, 0, 0, 1}

i.e. the fundamental of SU(3) contains once the 3 of A4 and no other representation. This just 
shows that the embedding worked out correctly. One can now compute more branching rules, 
e.g.

decomposeLGRep[{2, 0}, embedA4] -> {1, 1, 1, 1}
decomposeLGRep[{1, 1}, embedA4] -> {0, 1, 1, 2}
decomposeLGRep[{23, 15}, embedA4] -> {640, 640, 640, 1920}

For more examples and explanations of all options, see the package manual included in the 
download.

Note that the package was checked for correctness against results for branching rules from 
the literature. Indeed, all branching rules presented by Luhn [15] and Luhn and Ramond [31]

9 In fact, it is a subgroup of SO(3), see the following section.
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were reproduced successfully. For the decompositions SO(3) → A4, SO(3) → S4 and SU(3) →
�(27), this consistency check can easily be repeated by specialising the general formulas shown 
in the following section to the representations of smallest dimension.

6. Examples for small finite groups

Using the MATHEMATICA package DecomposeLGReps presented in the previous section, 
one can derive general results for branching rules to some well-known finite groups. This can 
be done by applying the character formulas (4.11), which allow for generic non-negative integer 
inputs for the Dynkin labels of the representations which are to be decomposed. In all cases not 
only the exact functions determining the branching are interesting. In addition, the insight gained 
on the structure, i.e. on which representations are contained within which (congruence) class [28]
of representations of the continuous group, is very helpful for model building. The examples 
chosen are A4, T′, S4, A5, �(27) and �(54). Further information on all these groups can be 
found in [2] although the notation used here is partly different. References to the notations used 
are given for each case individually below. In many cases, the results are actually independent of 
the specific naming convention, e.g. in A4 the results do not depend on which representation is 
called 1′ and which one 1′′.

The following abbreviations will be used for functions that occur several times:

f (n,m) := (1 + n) (1 + 3m + n) (2 + 3m + 2n) , (6.1a)

p+(n) := cos
(nπ

3

)
+ 1√

3
sin

(nπ

3

)
=

⎧⎨
⎩

1, n ≡ 0,1 (mod 6),

0, n ≡ 2,5 (mod 6),

−1, n ≡ 3,4 (mod 6),

(6.1b)

p−(n) := cos
(nπ

3

)
− 1√

3
sin

(nπ

3

)
=

⎧⎨
⎩

1, n ≡ 0,5 (mod 6),

0, n ≡ 1,4 (mod 6),

−1, n ≡ 2,3 (mod 6),

(6.1c)

q(n) := cos

(
4nπ

3

)
+ 1√

3
sin

(
4nπ

3

)
=

⎧⎨
⎩

1, n ≡ 0 (mod 3),

0, n ≡ 2 (mod 3),

−1, n ≡ 1 (mod 3).

(6.1d)

6.1. A4

The tetrahedral group A4 is very popular in model building because it can lead to the so-
called tri-bi-maximal mixing structure for the neutrino mixing matrix [29,30]. It is a subgroup 
of SO(3); the embedding proceeds via the only three-dimensional representation 3. The other 
representations are named as in [23].

The decomposition formulas are most easily displayed if the SO(3) representations are split 
into five classes with Dynkin labels taking the forms (12 n + 2m) for m = 0, . . . , 5.10 The result-
ing multiplicities are displayed in Table 2. Setting n to zero one obtains the branching rules for 
SO(3) representations up to dimension 11. They are identical to the decomposition rules derived 
by Luhn and Ramond [31].

10 Note that, since A4 is a subgroup of SO(3) not SU(2), only non-spinorial, i.e. genuine, representations of SO(3) are 
considered, see the discussion at the end of Section 2.
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Table 2
Branching rules for the embedding A4 ↪→ SO(3) using the 
triplet representation of A4. SO(3) representations are denoted 
by the Dynkin labels Λ of their highest weights. Only proper 
SO(3) representations are considered, i.e. Λ is even, see Sec-
tion 2. For the conventions used, see [23].

Λ → 1 1′ 1′′ 3

(12n) → n + 1 n n 3n

(12n + 2) → n n n 3n + 1
(12n + 4) → n n + 1 n + 1 3n + 1
(12n + 6) → n + 1 n n 3n + 2
(12n + 8) → n + 1 n + 1 n + 1 3n + 2
(12n + 10) → n n + 1 n + 1 3(n + 1)

The smallest SO(3) representation containing a trivial A4 singlet is the representation with 
Dynkin label (6), which using its dimension can also be denoted 7.

6.2. T′

The double covering group T′ of A4 is not a subgroup of SO(3) but can be embedded into 
SU(2) using the representation 20. It can also lead to tri-bi-maximal neutrino mixing [32]. The 
conventions are taken from [33, Appendix A.1].

Splitting the SU(2) representations into the two classes of vector (2 n) and spinor (2 n + 1)

representations, the decomposition yields

(2n) → 1

12

[
2n + (−1)n

(
8p−(n) + 9

) + 1
] × 10

⊕ 1

12

[
2n + (−1)n

(−4p−(n) + 9
) + 1

] × (11 ⊕ 12)

⊕ 1

4

(
2n + (−1)n+1 + 1

)
× 3 , (6.2a)

(2n + 1) → 1

3

(
n + 2 (−1)n p+(n) + 1

) × 20

⊕ 1

3

(
n + (−1)1+n p+(n) + 1

)
× (21 ⊕ 22) . (6.2b)

In fact, the decomposition for vector representations is exactly the same as the one for A4 ↪→
SO(3) shown in Table 2 with the change of notation 1 → 10, 1′ → 11 and 1′′ → 12. For spinor 
representations the formulas above can be recast as shown in Table 3. This shows that the doublet 
representations of T′, which are not representations of A4, are “spinor” representations and can 
only be obtained from spinor representations of SU(2). In particular, spinor representations of 
SU(2) cannot be used to break SU(2) to T′ because they do not contain trivial T′ singlets.

6.3. S4

The same classes as for A4 can be used for S4, which is also a subgroup of SO(3). It was 
used early on in flavour model building [34] and is still popular because it, too, can lead to tri-
bi-maximal mixing. The embedding proceeds via representation 3′. The other three-dimensional 
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Table 3
Branching rules for the embedding T′ ↪→ SU(2) using the dou-
blet 20 of T′ . SU(2) representations are denoted by the Dynkin 
labels Λ of their highest weights. Only spinor representations 
are considered because the branching rules for non-spinorial 
representations are the same as for A4 shown in Table 2. For 
the T′ notation used, see [33, Appendix A.1].

Λ → 20 21 22

(12n + 1) → 2n + 1 2n 2n

(12n + 3) → 2n 2n + 1 2n + 1
(12n + 5) → 2n + 1 2n + 1 2n + 1
(12n + 7) → 2(n + 1) 2n + 1 2n + 1
(12n + 9) → 2n + 1 2(n + 1) 2(n + 1)

(12n + 11) → 2(n + 1) 2(n + 1) 2(n + 1)

Table 4
Branching rules for the embedding S4 ↪→ SO(3) using the triplet representation 3′ of S4. SO(3) representations are 
denoted by the Dynkin labels Λ of their highest weights. For the conventions used, see [23].

Λ → 1 1′ 2 3 3′

(12n) → 2n+(−1)n+3
4

2n+(−1)n+1+1
4 n

6n+(−1)n−1
4

6n+(−1)n+1+1
4

(12n + 2) → 2n+(−1)n−1
4

2n+(−1)n+1+1
4 n

6n+(−1)n+3
4

6n+(−1)n+1+1
4

(12n + 4) → 2n+(−1)n+1+1
4

2n+(−1)n−1
4 n + 1 6n+(−1)n+1+1

4
6n+(−1)n+3

4

(12n + 6) → 2n+(−1)n+1+1
4

2n+(−1)n+3
4 n

6n+(−1)n+1+5
4

6n+(−1)n+3
4

(12n + 8) → 2n+(−1)n+3
4

2n+(−1)n+1+1
4 n + 1 6n+(−1)n+3

4
6n+(−1)n+1+5

4

(12n + 10) → 2n+(−1)n−1
4

2n+(−1)n+1+1
4 n + 1 6n+(−1)n+7

4
6n+(−1)n+1+5

4

representation 3 would lead to an embedding into O(3) because not all its determinants are +1. 
Again the notation from [23] is used.

The results are shown in Table 4. The first trivial singlet occurs for the representation with 
Dynkin label (8), which can also be called 9.

Again, the results for SO(3) representations up to dimension 11 are the same as already pre-
sented in [31].

6.4. A5

The last missing subgroup of SO(3) with an irreducible triplet representation is the icosahedral 
group, which is isomorphic to the alternating group on five letters A5. It is the largest non-abelian 
subgroup of SO(3) with such a representation. A5 can lead to golden ratio mixing when applied 
to neutrino model building [35] and is, as a simple group, intrinsically anomaly-safe [36]. For 
recent model building approaches using this group see [37,38]. Again the notation from [23] is 
used.

The Dynkin labels of SO(3) are split into the classes (30 n + 2 m) for m = 0, . . . , 14. The 
results are shown in Table 5. They show that the first singlet is contained in representation 13
with Dynkin label (12).
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Table 5
Branching rules for the embedding A5 ↪→ SO(3) using the triplet representation 3 of A5. SO(3) representations are 
denoted by the Dynkin labels Λ of their highest weights. For the conventions used, see [23].

Λ → 1 3 3′ 4 5

(30n) → 2n+(−1)n+3
4

6n+(−1)n+1+1
4

6n+(−1)n+1+1
4 2n

10n+(−1)n−1
4

(30n + 2) → 2n+(−1)n+1+1
4

6n+(−1)n+3
4

6n+(−1)n−1
4 2n

10n+(−1)n+1+1
4

(30n + 4) → 2n+(−1)n−1
4

6n+(−1)n+1+1
4

6n+(−1)n+1+1
4 2n

10n+(−1)n+3
4

(30n + 6) → 2n+(−1)n+1+1
4

6n+(−1)n−1
4

6n+(−1)n+3
4 2n + 1 10n+(−1)n+1+1

4

(30n + 8) → 2n+(−1)n−1
4

6n+(−1)n+1+1
4

6n+(−1)n+1+1
4 2n + 1 10n+(−1)n+3

4

(30n + 10) → 2n+(−1)n+1+1
4

6n+(−1)n+3
4

6n+(−1)n+3
4 2n

10n+(−1)n+1+5
4

(30n + 12) → 2n+(−1)n+3
4

6n+(−1)n+1+5
4

6n+(−1)n+1+1
4 2n + 1 10n+(−1)n+3

4

(30n + 14) → 2n+(−1)n+1+1
4

6n+(−1)n+3
4

6n+(−1)n+3
4 2n + 1 10n+(−1)n+1+5

4

(30n + 16) → 2n+(−1)n−1
4

6n+(−1)n+1+1
4

6n+(−1)n+1+5
4 2n + 1 10n+(−1)n+7

4

(30n + 18) → 2n+(−1)n+1+1
4

6n+(−1)n+3
4

6n+(−1)n+3
4 2(n + 1)

10n+(−1)n+1+5
4

(30n + 20) → 2n+(−1)n+3
4

6n+(−1)n+1+5
4

6n+(−1)n+1+5
4 2n + 1 10n+(−1)n+7

4

(30n + 22) → 2n+(−1)n+1+1
4

6n+(−1)n+7
4

6n+(−1)n+3
4 2n + 1 10n+(−1)n+1+9

4

(30n + 24) → 2n+(−1)n+3
4

6n+(−1)n+1+5
4

6n+(−1)n+1+5
4 2(n + 1)

10n+(−1)n+7
4

(30n + 26) → 2n+(−1)n+1+1
4

6n+(−1)n+3
4

6n+(−1)n+7
4 2(n + 1)

10n+(−1)n+1+9
4

(30n + 28) → 2n+(−1)n−1
4

6n+(−1)n+1+5
4

6n+(−1)n+1+5
4 2(n + 1)

10n+(−1)n+11
4

6.5. �(27)

The group �(27) can be embedded into SU(3) using its triplet representation 3. It is part 
of the infinite series of �(3 · n2) subgroups of SU(3). �(27) is well known in model building 
for the so-called geometrical spontaneous CP violation [39–42]. The conventions are as in [33, 
Appendix A.2].

The decomposition properties of representations of SU(3) labelled by their Dynkin labels 
(a1, a2) can be most easily described by splitting them into three different classes. The Dynkin 
labels of these three classes take the forms (n, n + 3m), (n, n + 3m + 1) and (n, n + 3m + 2), 
where n and m are integers. These classes are related to the triality classes of SU(3) [28]. 
(n, n + 3m) is in class 0, i.e. real class or class of the adjoint representation, (n, n + 3m + 1) in 
class 2, i.e. class of the anti-fundamental representation, and (n, n + 3m + 2) in class 1, i.e. of 
the fundamental representation. The resulting decomposition rules for the three classes are

(n, n + 3m) → 1

18

(
f (n,m) + 16 (−1)np+(n)

) × 10

⊕ 1

18
(f (n,m) − 2q(n)) ×

8⊕
i=1

1i , (6.3a)

(n, n + 3m + 1) → 1

6
(1 + n) (2 + 3m + n) (3 + 3m + 2n) × 3 , (6.3b)

(n, n + 3m + 2) → 1
(1 + n) (3 + 3m + n) (4 + 3m + 2n) × 3 . (6.3c)
6
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Hence, all real representations of SU(3) branch to a direct sum of trivial singlets and full sets of 
non-trivial �(27) singlets. Moreover, the class of the fundamental SU(3) representation yields 
only triplets and, accordingly, the class of the anti-fundamental only anti-triplets of �(27). �(27)

is thus very much aligned with the structure of SU(3), making it, for example, impossible to 
obtain a CP breaking representation content via spontaneous breaking.

Specialising to SU(3) representations up to dimension 27, the results coincide with the ones 
presented in [15,31].

6.6. �(54)

As a second example of an SU(3) subgroup, consider �(54) embedded using its three-
dimensional representation 32. �(54) is part of the �(6 · n2) series of SU(3) subgroups. It turns 
out that, due to the additional continuous symmetries, �(54) is the realised discrete symmetry 
group of the �(27) Higgs potentials leading to geometrical CP violation [40,43,44]. The con-
ventions are the same as in [42, Appendix A].

The representations of SU(3) are again divided into the three classes described for �(27)

above. The resulting decomposition rules for the three classes are

(n, n + 3m) → 1

72

[
9 (−1)n

(
(−1)m (3m + n + 1) + n + 1

)
+ (3m + 2n + 2)

(
2 (n + 1) (3m + n + 1) + 9(−1)m

)
+ 32 (−1)n p+(n)

] × 10

⊕ 1

72

[−9 (−1)n
(
(−1)m (3m + n + 1) + n + 1

)
+ (3m + 2n + 2)

(
2 (n + 1) (3m + n + 1) − 9(−1)m

)
+ 32 (−1)n p+(n)

] × 11

⊕ 1

18

[
f (n,m) − 2q(n)

] ×
4⊕

i=1

2i , (6.4a)

(n, n + 3m + 1) → 1

24

[
(3m + 2n + 3)

(
2 (n + 1) (3m + n + 2) + 3 (−1)m

)

+ 3
(
(−1)m+1 (n + 1) + 3m + n + 2

)
(−1)m+n

]
× 32

⊕ 1

24

[
3 (−1)m

(
(−1)n+1 (3m + n + 2) − 3m − 2n − 3

)

+ (n + 1)
(
2 (3m + n + 2) (3m + 2n + 3) + 3 (−1)n

)] × 31 ,

(6.4b)

(n, n + 3m + 2) → 1

24

[
(3m + 2n + 4)

(
2 (n + 1) (3m + n + 3) − 3 (−1)m

)
− 3

(
(−1)m (n + 1) + 3m + n + 3

)
(−1)n+m

] × 32

⊕ 1

24

[
(3m + 2n + 4)

(
2 (n + 1) (3m + n + 3) + 3 (−1)m

)
+ 3

(
(−1)m (n + 1) + 3m + n + 3

)
(−1)n+m

] × 31 . (6.4c)
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Although the formulas are considerably more complicated than the ones for �(27), it is easy to 
see that �(54) is also closely aligned to the structure of SU(3). Again, the real class of SU(3)

representations yields trivial singlets and complete sets of doublets (which contain the non-trivial 
singlets of �(27)), whereas the fundamental and anti-fundamental classes contain triplets and 
anti-triplets, respectively.

The smallest representation of SU(3) containing a trivial �(54) singlet is the 27, which, in 
fact, contains three trivial �(54) singlets. This result is in agreement with [15].

7. Conclusion

Non-abelian finite symmetries are popular tools in model building. They can originate from 
spontaneously broken continuous symmetries, thereby evading the conjectured violation of 
global symmetries by gravitational effects. For model building purposes it is important to know 
the branching rules for this breaking. We have shown how to obtain these rules for the spe-
cific case of compact classical Lie groups and finite subgroups thereof using the character scalar 
product. The embedding of a finite subgroup into a Lie group is specified by an explicit ma-
trix representation of the finite group, which is then viewed as a restriction of the fundamental 
representation of the Lie group to the finite group.

To compute the characters of group elements for arbitrary irreducible Lie group representa-
tions, the Weyl character formula for Lie algebra characters has been reviewed and its appli-
cability to the problem in question established. Two different, but of course equivalent, forms 
of the Weyl character formula in terms of the eigenvalues of the representation matrices spec-
ifying the embedding have been presented. These formulas have been implemented in form of 
the MATHEMATICA package DecomposeLGReps that can be found online,11 and the usage 
of this package has briefly been outlined. It can be used to compute branching rules for arbi-
trary non-abelian finite subgroups of the compact classical Lie groups U(N), SU(N), SO(N)

and USp(2N), limited only by computational power.
As an application of the package, general branching rules as functions of the Dynkin labels for 

various small finite groups have been derived. The results allow to gain insight into the breaking 
patterns available for these finite groups. For example, it is possible to show explicitly that the 
doublet representations of T′ only arise as remnants of SU(2) spinor, in contrast to vector, repre-
sentations. Another result is that breaking SU(3) to �(27) one cannot obtain a single non-trivial 
singlet representation but only complete sets of non-trivial singlets. This information is useful 
for (flavour) model building with spontaneously broken continuous symmetries in that certain 
structures of the potential can be envisaged directly from the branching rules of the symmetry.
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