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Abstract

We study the combinatorics and topology of general arrangements of sub-spaces of the form
D+ SF”_d(X) in symmetric product§P* (X) whereD € SP’(X). Symmetric productSP" (X) :=
X™ /Sy, also known as the spaces of effective “divisors” of orgetogether with their companion
spaces of divisors/particles, have been studied from many points of view in numerous papers, see
[P. Blagojevt et al., in: B. Dragow, B. Sazdowi (Eds.) Summer School in Modern Mathematical
Physics, 2004, math.AT/0408417; S. Kallel, Trans. Amer. Math. Soc. 350 (1998), 1350] for the ref-
erences. In this paper we approach them from the point of view of geometric combinatorics. Using
the topological technique afiagrams of spacealong the lines of [V. Welker et al., J. Reine Angew.
Math. 509 (1999), 117; G.M. Ziegler, R.T. ZivaljéviMath. Ann. 295 (1993) 527] we calculate the
homology of the union and the complement of these arrangements. As an application we include a
computation of the homology of tHeomotopy end spacaf the open manifol&P' (M, ¢), where
M, i is a Riemann surface of gengspunctured ak points, a problem which was originally moti-
vated by the study of commutatiye: + k, m)-groups [K. Tre@evski, D. Dimovski, J. Algebra 240
(2001) 338].
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1. Arrangementsof symmetric products

The study of homotopy types of arrangemeeof subspaces with an emphasis on the
underlying combinatorial structure is a well establish part of geometric and topological
combinatorics. Origpally the focus was on the arrangements of linear or affine sub-spaces
[7,18,27,37]. Gradually other, more genesierangements of spaces were introduced and
studied. Examples include arrangementssaymlolines/pseudospheres, in connection with
the realizations of (oriented) matroids [6,31], arrangements of projective and Grassmann
varieties, partially motivated by a geometrization of the Stanley ring construction [16,35],
arrangements of classifying spaded for a family of subgroups of a given group, sub-
space arrangements over finite fields [5] etc. With the introduction into combinatorics of
the technique ofliagrams of spaceand the associatdtbmotopy colimit$35,38], it be-
came apparent that arrangements of subsgaesmuch in common with other important
and well studied objects like stratified spaceg/diminants and their gemetric resolutions
[34], toric varieties viewed as combinatorial objects associated to face latices of polytopes
[10,12,35] etc. All this serves as a motivation for the study of general subspace arrange-
ments carrying interesting combinatorial structure.

Symmetric products of spac& (X) are classical mathematical objects [1,2,4,11,13—
15,17,20,23-25,28,36] which appear in different areas of mathematics and mathematical
physics as orbit spaces, divisor spaces, particle spaces etc., see [8] for a leisurely introduc-
tion and a review of old and new applications. The case of 2-manifdlds of particular
interest since in this ca®® (M) is a manifold. Element® € SP(M) are called divisors
of order|D| = d. In this paper we study arrangementsSiH (X) of the form

A={D; +sPPIx))_, 1)
where the case of open or closed surfaces is of special interest.

Given an arrangememt = { F1, ..., Fy} of subspaces in an ambient spa¢etheunion
or thelink of A is D(A) := Uf-‘zl F; and the complement i&f(A) := V \ D(A). In this
paper we compute the homology of the link and, in the case of Riemann suiMacéise
homology of the complement of the arrangement (1). As an application we compute the
homology of the “homotopy-end-space”8F' (M, ;) whereM  := M, \ {x1, ..., X} iS
the so calledg, k)-amoeba, see Figure 1, and discuss the connection of this computation
with the problem of existence of commutative + k, m)-groups and the problem what
information about the original surfadé can be reconstructed from the symmetric product
SP'(M), Section 2.3.

Note that ifg = 0 and if D; = x;, are all distinct divisors of order 1, then the comple-
ment of the arrangement (1) is homeomorphithie complement of a generic arrangement
of k — 1 hyperplanes ift”, studied by Hattori [19,27]. So the results ab8&t (M, ;) can
be viewed as an extension of some classical results about complex hyperplane arrange-
ments. On the technical side, we would like to emphasize the role of the relatiwopr
domination between simple diagrams, Definition 1.6 in Section 1.1, which often allows, as
demonstrated in Section 1.3, the study of naturality properties for Goresky and MacPher-
son [16] and Ziegler and Zivalje¥i[38,35] type formulas. The same concept allows us to
extend (Theorems 1.8 and 1.11) the classical Steenrod’s theorem on the decompositions od
symmetric products, to the case od diagrams of spaces.
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1.1. Homology of the unioP(A) = J.A

We approach the computation of the homolafyy( D(.A)) by the method ofliagrams of
spacesThe references emphasizing applicatiohthis technique in geometric combina-
torics are [35] and [38]. The reader is referredtiese papers for the notation and standard
facts. Aside from standard tools like tigojection Lemmaor theHomotopy Lemmawve
make a special use of the idea of an “ample space” diagram outlined in Section 5.4 of [35].

Let A = {F,i}f.‘zl be an arrangement of subspacesSH'(X) where F,;' =x; +
SP~1(X) = SP~1(X) and{x;}*_, is a collection of distinct points . Let P = P(A) be
the intersection poset of. By definition [27,35,38]P has an element for each non-empty
intersectionF! = F,°NFtN---N F,” wherel = {ig, i1, . L ipy C Lkl =11, ... k). If
n > k then P is isomorphic to the power s@'[k] = P[k] \ {#} or alternatively, the face
poset of an abstract simpleX with vertices{1, ..., k}. If n <k then P is isomorphic to
the poseﬂ?’gn[k] of all non-empty subsets of cardinality at mosk or alternatively the

(n — 1)-skeletonz™ 1 of .
More generally assume that= {F,;}/_, is an arrangement of subspaces of the form

Fl=D; +SP~%(X), whereD; eSPi(X), i=1,...,r. (2)
Moreover, we assume that for eacthe corresponding divisap; has the form
D; =(xix1—|—~~+oe,’;xk

where all points; € X are distinct and fixed in advance whileare non-negative integers.
The associated intersection poset has several useful interpretations=Lél; < --- <
Jjm} be asubsequencefdf = {1, ..., k}. SinceK € (), _1(Dj, +SP i« (X)) if and only

if K € SP'(X) andD;, < K for eacha =1,...,m we observe thak > Dj, j, . ;. =:
D; whereDj is the least upper bound of divisois;,, « =1, ..., m. Another description
is in terms ofmultisets[30] or the associated monomials. Given an effective dividos
a1x1+ - -+ a-x,., Where points; are distinct and; are the corresponding multiplicities,
the associated multiset (monomial)ya'%1 --.x7. Then the intersection pos@t= P(A)
can be described as the collection of all multisetsXirof cardinality at most: which
can be represented as unions of multisets associated to original dizisovet another
description arises if multisets;? - --x;/" are interpreted as natural number§' - - - p;”
where p; are distinct prime integers. This shows that the combinatorics of intersections
posets of arrangements of subspaceSI(X) is directly connected with the classical
elementary number theory.

Caveat. All spaces we deal with aradmissiblein the sense of Definition 1.14. Elements
of the intersection poset = P(A) are often denoted by, ¢, r etc. but when we want to
emphasize that they are actually divisors (multisets) we use the nofatioi’, D; etc.

Let A be an arrangement of subspaces described by (2)DL& — Top be an as-
sociated diagram of spaces and inclusion maps, [35,38]. EachP is of the form
I = Bix1+--- + Brxx where|l| = 1 +--- + fr < n. Hence,

D(I) := Brx1+ - - - + Brxx + SP(X).
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By Projection Lemma, [35, Lemma 4.5], or by [3, Proposition 6.9 on p. 49],
F,=|_JA= colimD = hocolim D. (3)

Definition 1.1. For A ¢ SP’(X) andB € SP! (X), the “Minkowski” sumA + B is a subset
of SPP14(X) defined byA + B:={a+b|ac A, b e B}.

SinceX is an admissible space, Definition 1.14, there exists a closed, contractible set
C D {x1,...,xx} such that the projection mag — X/C is a homotopy equivalence.
Moreover,C contracts to a poing € C which can be prescribed in advance.

Define& : P — Topto be the diagram of spaces and inclusion maps determined by

E():=|Ily+SP~1l(x) foreachl e P.
Note thatg (I) depends only on the ordgk| of the divisorl. We would like to show that
hocolim D ~ hocolim £.

Since there does not exist an obvious map between these diagrams, we define a new dia-
gramcC, a so called “ample space”atiram, which contains bot and& as subdiagrams.
LetC: P — Topbe the diagram of spaces and inclusion maps defined by

c(1):=SP'l(c)+sPl(x) foreachl € P.

Proposition 1.2. Let
a:D—-C and B:£E—C

be the morphisms of diagrams wherge: D(I) — C(I) and8; : £(I) — C(I) are obvious
inclusions. Themr and 8 induce the homotopy equivalences of the corresponding homo-
topy colimits,

hocolim D;'A‘>hocolim Céhocolim E.

Proof. The proposition is an immediate coasence of the Homotopy Lemma, [35,
Lemma 4.6], and Proposition 1.13 from Section 1.5

1.2. Steenrod’s theorem for diagrams

In the previous section the calculation of the homology of the union of the arrangement
A={D;+Sp (X)};_, was reduced to the calculation &f, (hocolim £) for a diagram
£ of particularly simple form, cf. Definition 1.4.

Our objective in this section is to establish a decomposition result (Theorem 1.8) ex-
pressing the homology dfocolim £ in simpler terms. Theorem 1.8 can be seen as an
offspring and a generalization of the well known Steenrod’s theorem,

H.(SP"(X); A) = @ H.(SP (X),SP™%; A)
j=0

where by definitiorSP-1(X) = ¢ andA is an arbitrary Abelian group.
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Definition 1.3. Assume thay € X is a point fixed in advance. Standardinclusion
ep.q SPP(X) — SP(X),

associated to a pair of integers< ¢, is by definition the map defined by, ,(Y) :=
(g — p)y +Y foreachy € SP(X).

Definition 1.4. A diagram of space® : P — Topis calledsimpleif

(a) for eachp € P there existgt = u(p) such thatD(p) = SP*(X),
(b) the magD, ,: SP*) (X) — SP“P)(X) — SP%)(X) is a standard inclusion for each
pairg < p.

The monotone functiop : P — N is called therank function of D. If u(p) = u(g) for
each pairp, g € P we say thaD is aconstantdiagram.

Remark 1.5. Note that a diagram of spacé&s: P — Topis simple if and only if there
exists a strictly increasing sequenge=cg < c¢1 < --- < ¢y = M and a strictly decreasing
sequence’,, = P, D Pe; D --- D P, = Py ofideals inP such that Ingu) = {c,-}f.‘:O and
foreachp € P, \ P.,,,, D(p) = SP(X).

Definition 1.6. Suppose thaf, and &> are both simple diagrams over the same pdset
and letu; anduz be the corresponding rank functions. We widtex £, and say that the
diagramé&; is dominated by the diagraép if u1 < 2. We write &1 <p £2 and say that

the diagrant; is properly dominated by, if 1 = min{uz, ¢} for some constant € N.

It is obvious that bothg and < p are partial orders on the set of all simple diagrams
over P. If either &1 < &2 or €1 <p &2, there is a unique morphism: £1 — &> such that
o, €1(p) = E2(p) is a standard inclusion for eaghe P.

Proposition 1.7. Suppose thafi < p & < p & and let&r - & 2> &3 be the associated
chain of morphisms. Suppose that

Q B
Xg N XEe, — Xg,

is the corresponding chain of homotopy colimitg, := hocolim &;, i =1, 2, 3. Then the
map

H*(nga Xgl’ A) - H*(X537 Xgl’ A)

is injective and the associated long exact sequence of the triple splits.

Proof. Itis sufficient to prove that the map

a:Hi(Xp; A) > Hi(Xg; A) (4)
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is injective for each pair of simple diagrams such thak p £. Indeed, on applying this
result on pair€1 <p £2 and&1 < p £3 we obtain a commutative diagram with exact rows,

N l

0—— Hi(Xg)) —— Hi(Xgy) —— Hi(Xgy. Xg)) ——0

The first vertical arrow from the left is an isomorphism and the second is a monomorphism,
so the result follows from a version of 5-lemma.

Let us observe that (4) is obvious if bothand& are constant simple diagrams in the
sense that for some integens< n, D(p) = SP"(X) and&(p) = SP'(X) for eachp € P.
Indeed, in this case (4) reduces to the monomorphism

H,(SP"(X) x A(P)) > H.(SP'(X) x A(P)). (5)
In light of the fact that by Steenrod’s theorel) (SP" (X)) — H,.(SP'(X)) is always a
monomorphism to a direct summand 8f (SP' (X)), (5) follows from Kiinneth formula
and the 5-lemma. Next we observe that (4) is true even if @nig a constant diagram.

Indeed, letF be a constant simple diagram such thiat F. Then the compositiofi o &
in the diagram

H(Xp) <5 Ho(Xe) 2> H.(Xp)

is a monomorphism, heneealone is also a monomorphism.

The general case of (4) is established by induction on the size of the posett C
be a maximal constant simple diagram oyesuch thatC < D. In other words ifD(p) =
SPP)(X) for eachp € P thenC(p) := SP"(X) wherem := min{u(p)},cp. Let P’ be a
subposet o defined byP’ :={p € P | u(p) > m}. Note thatP’ is actually an ideal irP.
DefineC’, D', £’ respectively as the restrictions of diagrath<D, £ on the subposep’.
Then by the excision axiom there is a commutative diagram of long exact sequences

c——=H,(Xp, X¢)) —=H:(Xg, Xor) —= Hy(Xgr, Xp) —— -+
:\L :i :\L (6)
oo ——H(Xp, X¢) —— H.(X¢g, X¢) —— H(Xg, Xp) —— -+

The conditionC <p D <p £ impliesC’ <xp D’ <p & and by the inductive assumption
the first row splits. Hence there is a short exact sequence

0— Ho(Xp, X¢) =5 H,(Xg, X¢) — Ho(Xe, Xp) — O.
Finally, from the commutative diagram
0———=H.(X¢) ————H.(Xe) ————0

l l |

0— > Hy(Xp) —% > H.(Xg) — Hy(Xg, Xp) —>0

L

0—— Hu(Xp, X¢) — H,(Xg, X¢) — Hy(Xg, Xp) —=0
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we deduce that is a monomorphism. O

Given a simple diagrar®: P — Top, p - SP“?)(X), let m := min{u(p)} pep and
M :=max{u(p)}yecp. Let us assemble the elements of the{gdlp)} ,c p into an increas-
ing sequence

m=co<ci<---<cy=M. (7
DefineP; :={p € P | u(p) = j}. Note that

P=Py2Ppy12--2 Py (8)
is a decreasing sequence of ideal®inin light of (7) we observe that

Pp=PyDP; D -DPy=Py 9)
is a subsequence of (8) obtained by removing the redundant posets.
Theorem 1.8. Assume thaD: P — Top is a simple diagram wheyge: P — N is the cor-
responding rank functioniz = min{u(p)}pep, M = maX{(p)}pep and P; :={p € P |

uw(p) = j}. Then the homology df» = hocolim D with coefficients in a groupg admits
the decomposition

H(Xp) = Hy(SP"(X) x A(P) L((SP (X), SP1(X)) x A(P)))

H
= H.(SP"(X) x A(P) +((SP7(X), SPr-1(X)) x A(P,)). (10)

M
j=m+1
k
) DH
p=1
Proof. The result is easily deduced from Proposition 1.7. Let
DospDisp--spDir_1spDr=D
be the sequence of simple diagrams oyewhere D;(p) = SP/(X) if p € P, and

D;(p) =D(p) otherwise, while(cj)’j‘.:O is the sequence defined in (7). In other woRs
is the simple diagram associated to the rank functipe= min{., c;}. By Proposition 1.7

k

H.(Xp) = Hy(Xpy) & P Hu(Xp,. Xp,_,).- (11)
i=1

SinceDy is a constant simple diagram we know that
Hy(Xpy) = Hy(SP" (X)) x Hy(A(P)). 12)

Let & and F; be constant simple diagrams ov&y, such that&;(p) = SP7(X) and
Fi(p) = SPi-1(X) for eachp € P.,. By the excision axiom

H*(XD,7 XD,_l) = H*(Xg, ’ Xﬁ) = H*((Spl (X)9 SFyl_l(X)) X A(PC,)) (13)
The formulas (10) follow from (11)—(13), the observation that
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H.((SP(X), SPi1(X)) x A(P,))
= EB H((SP (X), SP71(X)) x A(P))) (14)

j=ci—1+1

and the fact thaP; = P, for each; in the interval(c;_1, ¢;]. O

As an immediate consequence of Propositidy Theorem 1.8, the homotopy equiva-
lence (3) and the fact th&tis a simple diagram, we obtain the following result.

Theorem 1.9. Suppose thatd = {F,i}{:l is a diagram of sub spaces of SR) where
Fi=D;+ SPIPil(X). Let P be the associated intersection poset and® — N the cor-
responding rank function. Define m and respectively as the minimum and the maximum
of the setu(P) C N and letP; := M—l(N>j). Then, for the homology with coefficients in
a groupA,

H*(UA) H,(SP"(X) x A(P))

@ @ H,((SP (X), SP~1(X)) x A(P))). (15)

j=m+1
The following corollary of Theorem 1.9 is needed in the proof of Theorem 2.5.

Corollary 1.10. Let A = {F,;'}f.‘:l be an arrangement of sub spaces it §¥) whereF,;' =

xi +SP1(X) andx, ..., x; are distinct pointsinX. Then, for the homology with rational
coefficients,

(UA Q) H,(SP"(X)) @ H, (=" 1)
m—2
&P H.(SP 71 (X). SP P 72(X)) @ H,(Z7) (16)
p=0
whereX'? is the p-skeleton of a simpleX’ with k vertices andn := min{n, k}.

1.3. Category of simple diagrams

In this section we take a closer look at the category of simple diagrams and recast the
main results of Section 1.1 in a form suitable for applications in Section 1.4. The emphasis
is on functorial properties (naturality) of decompositions (10) and (15).

Let Pos be the category of finite posets and monotone (increasing) maps st
be the category of abstract rank functions defined on finite posets. The objdR&kf
are monotone (decreasing) functignsP — N. A monotone mapF: P — Q defines a
morphismF : u — v of two abstract rank functions andv if u <vo F,i.e., if u(p) <
vo F(p)foreachp € P. If F =1p istheidentity map ang < v then, as in Definition 1.6,
we say thajs is dominated by and writep < v.
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The categonB-Diagof simple diagrams is formally isomorphic to the categ@ankof
abstract rank functions. Objects®fDiagare diagrams over finite posets which are simple
in the sense of Definition 1.4. Suppose tHatP — Top and&: Q — Top are simple
diagrams with the associated rank functipnsP — N andv: Q — N. Then a morphism
(F,a):D — £ is defined if F: P — Q is a monotone map and < v o F, in which case
a(p):D(p) — E(F(p)) is a standard inclusion in the sense of Definition 1.3 i clear
from the context, for example in the case afidentity map, the corresponding morphism
is simply denoted by. A morphism(F, «) induces a continuous mafyr o) : Xp — X¢g
of the corresponding homotopy colimits. Again we simplify and often wiitestead of
X(F,o if F: P — Qis self-understood.

Suppose that.: P — N is an object inRankand letD be the associated simple dia-
gram. Givenj e N, let 4; : P — N be defined by (p) = min{u.(p), j} for eachp € P.
DefineD; as the simple diagram associatedutpand leta; : D; — D be the associated
morphism. The associated homotopy colimitp, are subspaces dfp which define a
filtration

Xp, S Xp, S-S Xp, S+ S Xp. a7
Then in light of the decomposition (14), Theorem 1.8 can be rewritten as follows
Theorem 1.11. Assume thaD: P — Top is a simple diagram where: P — N is the

corresponding rank function. L&®; :={p € P | u(p) > j}. Then, for the homology with
coefficients in an arbitrary group,

H,(Xp: A) = P H.((SP (X). SP1(X)) x A(P))) (18)
j=0

where by definition SP(X) := ¢ =: A(#).

The following proposition essentially claintisat the decomposition (18) is natural with
respect to morphism&, @) : D — £ in the categons-Diag.

Proposition 1.12. Suppose thatF, @) : D — £ is a morphism of two simple diagrams and
let@: Xp — Xg be the induced map of the associated homotopy colimi(§(¢fj}§°:0
and{X‘gj}?‘;0 are the filtrations ofXp and X¢ described by(17) then&(XDj) < Xg,. It

follows that there exists a homomorphism

H((SP (X), SP71(X)) x A(P))) = H.((SP'(X), SP~1(X)) x A(Q)))  (19)
of the corresponding terms in the decompositi¢h® of H.(Xp) and H.(X¢) respec-
tively. The homomorphisifi9) is induced by the mag\(F;): A(P;) — A(Q;) where
F;:P; — Qj is the restriction off to P;.
Proof. The conditionu < v o F implies

wi=min{u, j} <minfvo F, j} =min{v, jlo F=v;oF.
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It follows that there is a morphism i8-Diagof diagramsD; and&; and an associated
continuous mag; : Xp, — X¢; of the corresponding homotopy colimits. Moreover, there
is a ladder of commutative diagrams

Xp; 4 Xp; XD Xp
&jli &_/i &j+1l l& (20)
Xej Xe; X . Xe

where the horizontal maps are the inclusions coming from the filtration (17). It follows that
there is a homomorphism

o0 o0
Ho(Xp; A) =@ Ho(Xp,, Xp,_1: A) > @D Ho(Xe,. Xg,_13 A) = Ho(Xe: A)  (21)
Jj=0 j=0
whereXp , = Xp_, =¢. The final part of Proposition 1.12 follows from the naturality
of the excision operation or more precisely from the naturality of the diagram (6).

1.4. Homology of the complement"$F/,) \ [J A

In this section we focus our attention on the homology of the comple8#rit/,) \ F,
of the arrangementl where M, is an orientable surface of gengs We will be pri-
marily interested in the homology with rational coefficients. By Poincaré duality, the
evaluation of these groups is equivalent to the evaluation of the homology of the pair
H,((SP'(M,), F,); Q) which is directly related to the evaluation of the kermgl and
the cokerneB; of the homomorphism

H; (U A) — Hj(SP'(X)) (22)

for an arrangemend in SP*(X) whereX is anadmissiblespace.
Given a map of diagrams: &1 — &, there is a commutative square

hocolim £, ——hocolim &>
(23)
colim & ———colim &

Inlight of the fact that for each arrangement of subspacasad the corresponding diagram
of spaceD

U]—"% colimDg,

the square (23) allows us to compare spagges- | J.A and SP'(X) by comparing the
associated diagrams.

The diagramg’, D, £, the associated intersection pogeetc. have the same meaning
as in Section 1.1. LeP := P U {0} be the posetP with added a possibly new mini-
mum element 0. LeD: P — Top be a diagram of spaces and inclusion maps defined
by Do(0) = SP*(X) and Do(p) = D(p) for eachp € P. Similarly, Co and & are de-
fined as the diagrams ovér which extend the diagrantd and £ respectively, such that
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Co(0) = &(0) = SP'(X). The inclusione: P — P extends to the corresponding mor-
phisms of diagrams

Ci)C(), 'D—5>Do, 5—”)50.

Moreover, there is a commutative diagram

[

where all horizontal maps are homotopy equivalences and as béfosehocolim G. An
instance of the commutative diagram (23) is the following square
Xp —S> XDy
l l (25)
JA——SF (My)

By Projection Lemma, [35, Lemma 4.5], the vertical arrows in this diagram are homotopy
equivalences. In light of (24) we conclude that the groapsand B, are respectively the
kernel and the cokernel of the map

Hy(Xg) —V>Hy(Xg,). (26)

By Theorem 1.11 each of the group;(Xg) and Hy(Xg,) admits a direct sum de-
composition of the form (18). By Proposition1P this decomposition is natural and the
corresponding terms are mapped to eachrotere precisely there is a homomorphism

Hy((SP(X), SP1(X)) x A(P))) — H«((SP (X), SP1(X)) x A(P}))  (27)

induced by the map(e;): A(Pj) — A(f’j) wl\ereej is an inclusion map.
Note thatA(P;) is contractible wheneveP; # ¢. It immediately follows that for the
homology withrational coefficientsA, = A" @ AP where

+oo ¢>0

AP =P P H,(SFx).SP LX) @ Hy(A(P))). (28)
j=0p+q=d

AP =@ Hi(SP(X).SPY) @ 2; (29)
=9

wheres2; := Ker{ Ho(A(P;)) — Ho(A(P}))} = Ho(A(P;)) is the reduced, 0-dimensional
homology ofP;. Similarly,

By = Hy(SP'(X), SPY (X)) (30)

whereM = max{i.(p)} pep is the maximum of the associated rank function.
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1.5. An auxiliary result

Proposition 1.13. Suppose thak is anadmissiblespace in the sense of Definitidril4.
Given a finite setr = {y, y1,..., yq4} in Z, let C be an associated contractible superset
of F. LetY = y1 + y2 + - - - + yq € SP!(X). Then the inclusion map

Y +SP4(X) - SPI(C) + SPY(X) (31)

is a homotopy equivalence.

Proof. We prove the lemma first in the special case when all poiptsoincide. More
precisely we prove that the maky + SP*~(X) < SP!(C) 4+ SP*~“(X) is a homotopy
equivalence.

It follows from the assumptions oK, C andy € C that there exists a homotopy X x
I — X, keepingy fixed andC invariant, such thap : X — X, defined byp(x) := h(x, 1)
satisfies the conditiop(C) = {y} and 1y = k(-, 0) is the identity map.

Let H:SP'(X) x I — SP'(X) be the homotopy induced d8P*(X) by 4. In other
wordsifZ=z1+---+2z, € SP(X),thenH(Z,t) :=h(z1,t) +---+h(z,,1). We observe
that bothV := dy + SP"~4(X) and W := SP!(C) + SP'~¢(X) are H-invariant, so the
restrictions ofH on these subspaces define the homotofiesV x I — V andH?: W x
I — W. The mapp: X — X induces a map fronsP*(X) to SP*(X) which restrict to a
map p: W — V. It turns out thatp is a homotopy inverse to the inclusionV — W.
Indeed,

HY% 1y ~poi and HZ 1y ~iop.
Now we turn to the case of a general divigoe y1 + - - - + yg € SP/(X) and the asso-
ciated inclusion map’ + SP4(X) = SP/(C) + SP4(X). Let ¢ :dy + SP4(X) —

Y + SP~4(X) be the homeomorphism defined ¥yda + Z) =Y + Z.
The key observation is the following equality

poaop=poi.

Sincep andi are homotopy equivalences apds a homeomorphism, we conclude that
« is also a homotopy equivalenced

Definition 1.14. A spaceX is called admissible if for each finite collection of poirfis=
{y,x1,...,xr} C X, there exists a subspa€ec X such that

(a) C containsF as a subset,

(b) C can be continuously deformed toinside C keeping the poiny fixed, i.e. k ~c,
(rel y) wherec,(x) = y for eachx € C,

(c) theinclusion map: C — X is a closed cofibration.

Remark 1.15. All connected spaces that can be triangulatedaamissiblein the sense
of Definition 1.14. This is a very large clasncluding all connected CW-complexes or
connected semi-algebraic sets.
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2. Applications
2.1. End spaces

Definition 2.1. Suppose that is a locally compact, Hausdorff space. [2t= (K, ) be
the poset of all compact subspacesrofLet D:P — Top be the diagram of topological
spaces oveP defined byD(K) :=Y \ K for Q € M. The end space(Y) of Y is by
definition the homotopy limit of the diagram,

e(Y) :=holimD.
Ref. [21] is recommended as a valuable source of information about the general theory,
the history, and some of the latest applicas of end spaces. The end space is obviously
a topological invariant o, that is if Y andY’ are two locally compact, Hausdorff spaces
such thaty = Y’ then the associated end spae€g) ande(Y’) are also homeomorphic.

Consequently the homotopy typeaif’ ), its homology etc. are homeomorphism invariants
of Y. If Y admits a cofinal sequence

KoCKi<---CKp<---
of compact sets iy, i.e. a sequence such that=_J;,_, K, then
e(Y) ~holimy—ooY \ Kjyy.
The following proposition allows us to “comgitthe end space in the case the inclusion
mapk,, — K,,+1 is a homotopy equivalence for eaeh
Proposition 2.2. Let £:N — Top be a diagram of topological spaces ovérsuch that
D(@m) — D(m + 1) is a homotopy equivalence for eaeh Then
holim & >~ D(0).

As an illustration here is a computation of the (stable) homotopy type of the end space
of some interesting spaces.

Proposition 2.3. LetY = §" \ X whereX is a closed set in the sphef#. Let D,(A) be
the stable homotopy type of the geometric duadaf S”, [29]. Then the end space &f
is stably equivalent to the geometric dual of the disjoint sum D, (X),

e(Y) ~p Dp(X U Dy(X)) =p S"" 1V X V D,(X).

Proof. In light of the formula
Dy(AUB) ~p Dy(S°V AV B) ~p S""1 v D, (A) vV Dy(B)

whereA andB are disjoint, compact subsets §f, it is sufficient to observe that compact
sets inY = §" \ X which are deformation retracts of are cofinal in the poset of all
compact subsets of. O
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2.2. End (co)homology groups

The diagranD : P — Top from Definition 2.1, in combination with standard functors,
provides other interesting invariants or the homeomorphism type of

Definition 2.4. Let ¢ : Top— Ab be a covariant (contravariant) functor from spaces to
Abelian groups. Let (D) :P — Ab be the associated (co)diagn defined by the corre-
spondence&k — ¢ (Y \ K). The (co)limit of (D) is an Abelian group which is called
the end¢-group associated t&. If ¢ is a homology (cohomology) functor with ra-
tional coefficients, thermp (D) is denoted byH, and H* respectively. In other words
H«(K):= H. (Y \ K; Q) andH*(K) := H*(Y \ K; Q). The associateend(co)homology
groupsare defined by

E.(Y) :=limH,, E*(Y) :=colim H*.

In the following theorem we compute the grody (SP' (M, x)) where M, ; is the
orientable surface of gengspunctured ak distinct points. Sometimes we call the surface
M, a(g, k)-amoeba, see Fig. 1 where the amoelag and M ; are shown. Note that
although the amoeba¥,  and M, ,» are homeomorphic if and only @, k) = (g, k'),
they have the same homotopy type if and onlygf-Rk = 2¢’ + k'.

Theorem 2.5. Let M, = M, \ {x1, ..., x¢} be a(g, k)-amoeba, i.e., the Riemann surface
of genusg with k distinct points removed. Let S®M, ;) be the associated symmetric
product. If

EP(SP' (Mg 1)) := colimH? = colimycp H? (SP' (Mg 1) \ K; Q)

is the associated p-dimensional end cohomology group then

(Zgj_l)v p g n— 29
rank(E” (SP'(My.0))) =1 (3%) - (%), p=n—1orp=n, (32)
i1, pEnt2

A

Fig. 1.M1 3 andMp ;.
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Proof. Letus choose alocal metric in the vicinity of each paintsay by choosing a local
coordinate system in the neighbood of each of these points. L&, = V (x;, %) be an
open disc inM, with the center at; of radius%, defined relative to the chosen metric. Let
W}, := Vi \ {x;} be the corresponding punctured disc. Th@&n= M, \ J:_; V (x;, )

is a compact subset iW, ; and K, := SP'(C,,) is a compact subset 8P’ (M, «). The
sequencg K, }>°_; is cofinal in the poseP of all compact subsets ili = SP'(M, ;)
since (J;% K = SP'(M, x). Note thatY \ K,, is described as the space of all divisors

m=

D € SP (M, k) such thatD NV, # ¢ for somei.

Claim 1. The inclusionY \ K,,+1 < Y \ K,, induces an isomorphistH, (Y \ K,,;; Q) —
H*(Y \ K;,+1; Q) of the associated cohomology groups.

The claim is an easy consequence of Poincaré duality. Indeed,Ybatid its compact
subsetsk,, and K,,+1 are identified with the corresponding subsets of the manifold
SP'(M,). Let F,, :== SP'(M,) \ Y be the subspace of all divisois € SP'(M,) such that
D N {x1,...,x;} #@. Equivalently,
k
Fy = J(xj + SPH(My)).
j=1

There is a duality isomorphism

H*(Y \ Kj) > Hoy—(SP'(My); F, UK) (33)

natural with respect the inclusion§; < K;1. Then the claim follows from the five
lemma and the fact thak,, is a deformation retract ok,,+1, which in turn implies the
isomorphismH, (F,, U K;;,) > Hy(F, U Kjp+1).

A consequence of the claim is the isomorphism

EP(SP' (Mg 1)) = HP (Y \ Kyp) = Hoy—p(SP' (My); F U Kpp). (34)
Hence, in order to complete the proof of the theorem it is sufficient to compute the group
Hy(SP'(M,); F,UKy). O

Proposition 2.6. Let A¢ be the rank of the groupH;(SP'(My); F, U K,) =
H?=4(SP' (M) \ F, U Ky). Then,

i), - d<n-l
A =1 < (). d=nord=n+1, >
§ e R

Proof. The spaces, and K,, are disjoint compact subspaces $#' (M) and K,,, ~~
SP' (M, 1) has the homotopy type of arrdimensional CW-complex. Consequently, the
exact sequence of the paBP' (M), F, U K,,) has the form

Hy(Fy) @ Hy(Kp) 5 Hy(SP'(My)) — Hy(SP'(My): F, UK,)

— Hy 1(Fy) ® Hy1(Kn) 25" Hy_1(SP'(Mg)) — - (36)
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An immediate consequence of (36) is the isomorphism
Hd(SFn(Mg); F, U Km) =A4-1® By

where A; := Ker(A;) and B; := CokerA,). Note that Ay = ag + B4 where
oq:Hy(F,) — Hy(SP'(My)) and By : Hy(SP' (M, 1)) — Hy(SP'(My)) are the homo-
morphisms induced by the inclusiofs — SP' (M) andSP' (M, ;) — SP'(M,).

Claim 2. Suppose thatt: A — C and B8: B — C a linear maps of vector spaces. If
a+B:A® B — C isthe map defined bigr + B)(x & y) ;== a(x) + B(y) then
|Ker(e + B)| = | Ker(e)| + | Ker(B)| + |Im(a) N Im(B)| (37)

where|V| is the dimension of .

An immediate consequence of the Claim 2 is the following equation

Ay =|Ker(aa-1)| + | Ker(Ba—v)| + [Im(eg—1 N IM(Ba-1)|
05— [Im(etg)| — [IM(B) | + [Im(erg) N Im()| 9

whereA® ;= |Aq_1]+|Bq| and®);® := |Hy(SP'(My))|. The long exact sequence of the
pair (SP'(M,), F,) and the Poincaré duality imply that

|Ker(aa-1)| + @ % — [Im(aa)|

= |Ha(SP'(My); F,)| = |H? 4 (SP'(M,) \ F,)| = @78+ (39)
Whereq>Z’g’k = (2g2:$1) if n < d and 0 otherwise. It follows from Eq. (39), Proposi-

tions 3.1 and 3.2 that in order to compute the quarmiﬁyg we need to discuss the four
casesi<n—-1,d=n,d=n+1andd >n+ 2. The rest is an elementary calculation.
This completes the proof of both Proposition 2.6 and Theorem 2.5.

2.3. Commutativém + k, m)-groups

A commutative(m + k, m)-groupoid is a pai(X, u) where the “multiplication’u is a
mapu : SP"*(X) — SP”"(X). The operation is associative if for each e SP*t%(X)
and each representatien= a + b, wherea € SP**¥(X) and b € SP(X), the result
u(u(a) = b) is always the same, i.e., independent from the particular choieeawfd b
in the representation = a + b. A commutative and associative: + k, m)-groupoid is
a (m + k, m)-group if the equationu(x + a) = b has a solutiont € SP*(X) for each
a € SF(X) andb € SP"(X). The (2, 1)-groups are essentially the groups in the usual
sense of the word. 1K is a topological space theiX, 1) is a topologicalim + k, m)-
group if itis a(m + k, m)-group and the map : SP**t*(X) — SP"(X) is continuous.

For the motivation and other information about commutatime+ k, m)-groups the
reader is referred to [33,32]. The only known surfaces that support the structure of a
(m + k, m)-group for (m + k, m) # (2, 1) are of the formC \ A whereA is a finite set.

It was proved in [32], see also Theorem 6.1 in [33] thatMf, 1) is a locally Euclidean,
topological, commutativegn + k, m)-group thenM must be an orientable 2-manifold.



P. Blagojevt et al. / Topology and its Applications 148 (2005) 213-232 229

Moreover, a 2-manifold that admits the structure of a commutative- k, m)-group sat-
isfies a strong necessary condition that the symmetric p8Re(M) := M™/S,, is of the
form R x (S1yv.

This was a motivation for the authors to formulate in [9] the following problems

(A) To what extent is the topology of a surfage determined by the topology of its sym-
metric producSP" (M) for a givenm?

(B) Are there examples of non-homeomorphic (open) surfa¢eand N such that the
associated symmetric produ@8” (M) andSP"(N) are homeomorphic?

These problems are particularly interesting for the so callgd)-amoebasiM, x,
the surfaces defined b\,  := M, \ {x1,...,x} whereM, is the Riemann surface of
genusg, see Fig. 1.

Since the end homology groups are invariants of homeomorphism types, a consequence
of Theorem 2.5 is that both the gengiand the numbek of points removed can be recov-
ered from the knowledge of the end spa¢8P' (M, 1)) in the case g > n (question (A)).
As a corollary we obtain the main result of [9, Theorem 1.1], which says that there exist
open, orientable surfacég and N such that the associated symmetric prod &8 (M)
andSP"(N) are not homeomorphic although they have the same homotopy type. More
precisely, this is always true ¥ = Mg, andN = M (k, k' > 1) and

o 2g+k=2¢ +k,
o g#g andmaxg, g'} > m/2.

This result puts some restrictions on potential examples asked for in question (B). Note
that this result was proved in [9] by completely different methods based on the evaluation
of the signature of general symmetric produS®; (M, ) := (M, )" /G whereG is a
subgroup ofS,,. The fact that two different methods led to the exactly same necessary
condition Z > n is intriguing and may be an indication that the answer to the question (B)
is in fact positive. This however remains an interesting open problem which can be restated
as follows.

Question. Could it be that some symmetric powers of amoelbfiss and M2 1 or more
generally amoeba¥,  andM, v where(g, k) # (g', k') but 2¢ + k = 2¢’ + k’ are actu-
ally homeomorphic?

Appendix A

A.1. Homology of symmetric products

Itis well known [22,26] that the Pontriagin algebra®#°(M,) has the form

H, (SP®(Mg); A) = Aler, e2, ..., e24) @ I'[M] (A1)
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whereA(eq, ez, ..., e2,) is an exterior algebra and[ M is the divided power algebra with
generatorsy, k=1, 2,.... On tensoring witl) one has an isomorphism

H(SP°(My); Q) = Alen, e, ..., e20) ® Qly] (A.2)
whereQ[y] is a polynomial algebra. The following classes

Eqg=ery?=eiei, e, -yl, I={i1<iz<---<ip}
form an additive basis of (41). Moreover,

H,(SP*(My)) = P H.(SP" (M), SP" (M) (A.3)

meN

and H,(SP"(My)) is the subgroup spanned by all clas$gs ;) = e;, e, - - -¢;,y? wWhere
p+gs<m.

Recall [22,26] that by a classical result of Steenrod, the decomposition (42) holds for all
connected CW-complex@s, in particularH,(SP"(X); A) - H.(SP'(X); A) is always a
monomorphism form < n. Similarly, the isomorphism (41) can be seen as an instance of
the celebrated result of Dold and Thom [15] which says that infinite symmetric products
admit a decomposition into a product of Eilenberg—MacLane spaces

SPo(X) > [ [ (K (Hy: A).v). (A.4)

v>0

Suppose that = \/;fl:l S} wedge ofm circles. Then it is not difficult to show directly
that

H(SP(Y; Q) = Alen, ..., em). (A.5)

SinceM, x = M \ {x1, ..., xx} = \/55{"_1 S} we conclude that

H,(SP® (Mg ); A) = Alet, €2, ..., e2g4k—1). (A.6)

The group H.(SP" (Mg x); Q) is generated by the classé§ = e;, ---e;, where I =
{i1,...,ip} C[2¢ + k — 1] and p < m. Moreover, the generators can be chosen so
that B.«(F;) = Ej0 =e; if I C[2g] and O otherwise wherg, : H.(SP" (M, 1); Q) —
H.(SP'(Mg); Q) is the map induced by the inclusi®@P" (M, ;) — SP"(M,). As anim-
mediate consequence we have the following result needed in the proof of Theorem 2.5 in
Section 2. As beforgV | is the rank of a vector spadeé.

Proposition A.1.

. 2g+k—l) _ (Zg)’ d<n,
‘Ker(ﬁd”_{o, ! T odsny
= (Zg)’ dgn’
[Im (o)l {o,d d>n+1 A1

As a consequence of results from Section 1.3 we deduce the following proposition
which is also used in the proof of Theorem 2.5.
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Proposition A.2. Let «,:H,(F,) — H,(SP'(My)) and B,:H,(SP'(Mgk)) —
H,(SP'(M,)) be the homomorphisms induced by the inclusidips— SP' and
SP' (Mg ) — SP'(M,). If o), + B, Hy(Fy) @ Hy(SP' (Mg 1) — Hp(SP'(My)) is the
map defined byo, + 8,)(x ® y) =, (x) + B,(y), then

2g 1
lIm(e,) N IM(B,)| = {é,,,), i;. (A.8)

Proof. By the results of Sections 1.3 and 1.4 the gréijf F,,) has the following decom-
position

+00
Hy(F) =@ € Hi(SP (M,).SP~1(M,)) & H;(A(P))). (A.9)
v=0i+j=p
Define
+00
Hy(F,)© := P H,(SP' (M), SP~1(M,)) @ Ho(A(P,)) (A.10)
v=0

and leta), : H,(F,)© — H,(SP'(M,)) be the restriction of,, on Hp(Fn(o)). Let us ob-
serve that

Hy(F)© = (H,(SP1(My), SP2(M,)) @ QX) @ Hp(SP2(My)).  (A11)

Moreover, Infe,) = IM(at),) = H,(SP1(My)) C H,(SP'(My)).
By the analysis preceding Proposition A.1 we know thatdp) is spanned by classes
E(0=er=ej e, Where 1< ip < --- <ip < 2g andp <n. A conclusion is that

Im(ap)mlm(ﬂp):span{elu: 1<in<--<ip <2, pgn—l}

and a simple calculation compéstthe proof of the proposition.O
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