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Abstract

We study the combinatorics and topology of general arrangements of sub-spaces of th
D +SPn−d (X) in symmetric productsSPn(X) whereD ∈ SPd(X). Symmetric productsSPm(X) :=
Xm/Sm, also known as the spaces of effective “divisors” of orderm, together with their companio
spaces of divisors/particles, have been studied from many points of view in numerous pap
[P. Blagojevíc et al., in: B. Dragovíc, B. Sazdovíc (Eds.) Summer School in Modern Mathemati
Physics, 2004, math.AT/0408417; S. Kallel, Trans. Amer. Math. Soc. 350 (1998), 1350] for th
erences. In this paper we approach them from the point of view of geometric combinatorics.
the topological technique ofdiagrams of spacesalong the lines of [V. Welker et al., J. Reine Ange
Math. 509 (1999), 117; G.M. Ziegler, R.T. Živaljević, Math. Ann. 295 (1993) 527] we calculate t
homology of the union and the complement of these arrangements. As an application we in
computation of the homology of thehomotopy end spaceof the open manifoldSPn(Mg,k), where
Mg,k is a Riemann surface of genusg punctured atk points, a problem which was originally mot
vated by the study of commutative(m + k,m)-groups [K. Treňcevski, D. Dimovski, J. Algebra 24
(2001) 338].
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214 P. Blagojević et al. / Topology and its Applications 148 (2005) 213–232

1. Arrangements of symmetric products
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The study of homotopy types of arrangements of subspaces with an emphasis on
underlying combinatorial structure is a well establish part of geometric and topolo
combinatorics. Originally the focus was on the arrangements of linear or affine sub-sp
[7,18,27,37]. Gradually other, more general arrangements of spaces were introduced
studied. Examples include arrangements of pseudolines/pseudospheres, in connection w
the realizations of (oriented) matroids [6,31], arrangements of projective and Gras
varieties, partially motivated by a geometrization of the Stanley ring construction [16
arrangements of classifying spacesBH for a family of subgroups of a given group, su
space arrangements over finite fields [5] etc. With the introduction into combinator
the technique ofdiagrams of spacesand the associatedhomotopy colimits[35,38], it be-
came apparent that arrangements of subspaceshave much in common with other importa
and well studied objects like stratified spaces/discriminants and their geometric resolutions
[34], toric varieties viewed as combinatorial objects associated to face latices of poly
[10,12,35] etc. All this serves as a motivation for the study of general subspace ar
ments carrying interesting combinatorial structure.

Symmetric products of spacesSPn(X) are classical mathematical objects [1,2,4,11,
15,17,20,23–25,28,36] which appear in different areas of mathematics and mathe
physics as orbit spaces, divisor spaces, particle spaces etc., see [8] for a leisurely in
tion and a review of old and new applications. The case of 2-manifoldsM is of particular
interest since in this caseSPn(M) is a manifold. ElementsD ∈ SPd(M) are called divisors
of order|D| = d . In this paper we study arrangements inSPn(X) of the form

A = {
Di + SPn−|Di |(X)

}k

i=1, (1)

where the case of open or closed surfaces is of special interest.
Given an arrangementA = {F1, . . . ,Fk} of subspaces in an ambient spaceV , theunion

or thelink of A is D(A) := ⋃k
i=1 Fi and the complement isM(A) := V \ D(A). In this

paper we compute the homology of the link and, in the case of Riemann surfacesMg , the
homology of the complement of the arrangement (1). As an application we compu
homology of the “homotopy-end-space” ofSPn(Mg,k) whereMg,k := Mg \ {x1, . . . , xk} is
the so called(g, k)-amoeba, see Figure 1, and discuss the connection of this compu
with the problem of existence of commutative(m + k,m)-groups and the problem wh
information about the original surfaceM can be reconstructed from the symmetric prod
SPn(M), Section 2.3.

Note that ifg = 0 and ifDi = xi , are all distinct divisors of order 1, then the comp
ment of the arrangement (1) is homeomorphic to the complement of a generic arrangem
of k − 1 hyperplanes inCn, studied by Hattori [19,27]. So the results aboutSPn(Mg,k) can
be viewed as an extension of some classical results about complex hyperplane a
ments. On the technical side, we would like to emphasize the role of the relation ofproper
domination between simple diagrams, Definition 1.6 in Section 1.1, which often allow
demonstrated in Section 1.3, the study of naturality properties for Goresky and Ma
son [16] and Ziegler and Živaljević [38,35] type formulas. The same concept allows u
extend (Theorems 1.8 and 1.11) the classical Steenrod’s theorem on the decomposi
symmetric products, to the case od diagrams of spaces.
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1.1. Homology of the unionD(A) = ⋃
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We approach the computation of the homologyH∗(D(A)) by the method ofdiagrams of
spaces. The references emphasizing applicationsof this technique in geometric combin
torics are [35] and [38]. The reader is referred to these papers for the notation and stand
facts. Aside from standard tools like theProjection Lemmaor theHomotopy Lemma, we
make a special use of the idea of an “ample space” diagram outlined in Section 5.4 o

Let A = {F i
n}ki=1 be an arrangement of subspaces inSPn(X) where F i

n := xi +
SPn−1(X) ∼= SPn−1(X) and{xi}ki=1 is a collection of distinct points inX. LetP = P(A) be
the intersection poset ofA. By definition [27,35,38],P has an element for each non-emp

intersectionFI
n = F

i0
n ∩ F

i1
n ∩ · · · ∩ F

ip
n whereI = {i0, i1, . . . , ip} ⊂ [k] := {1, . . . , k}. If

n � k thenP is isomorphic to the power setP ′[k] = P[k] \ {∅} or alternatively, the face
poset of an abstract simplexΣ with vertices{1, . . . , k}. If n � k thenP is isomorphic to
the posetP ′

�n[k] of all non-empty subsetsI of cardinality at mostn or alternatively the

(n − 1)-skeletonΣn−1 of Σ .
More generally assume thatA = {F i

n}ri=1 is an arrangement of subspaces of the form

F i
n = Di + SPn−di (X), whereDi ∈ SPdi (X), i = 1, . . . , r. (2)

Moreover, we assume that for eachi the corresponding divisorDi has the form

Di = αi
1x1 + · · · + αi

kxk

where all pointsxi ∈ X are distinct and fixed in advance whileαi are non-negative integer
The associated intersection poset has several useful interpretations. LetJ = {j1 < · · · <

jm} be a subsequence of[k] = {1, . . . , k}. SinceK ∈ ⋂m
α=1(Djα +SPn−djα (X)) if and only

if K ∈ SPn(X) andDjα � K for eachα = 1, . . . ,m we observe thatK � Dj1,j2,...,jm =:
DJ whereDJ is the least upper bound of divisorsDjα , α = 1, . . . ,m. Another description
is in terms ofmultisets[30] or the associated monomials. Given an effective divisorD =
α1x1 + · · · + αrxr , where pointsxi are distinct andαi are the corresponding multiplicitie
the associated multiset (monomial) isx

α1
1 · · ·xαr

r . Then the intersection posetP = P(A)

can be described as the collection of all multisets inX of cardinality at mostn which
can be represented as unions of multisets associated to original divisorsDi . Yet another
description arises if multisetsxα1

1 · · ·xαr
r are interpreted as natural numbersp

α1
1 · · ·pαr

r

wherepi are distinct prime integers. This shows that the combinatorics of intersec
posets of arrangements of subspaces inSPn(X) is directly connected with the classic
elementary number theory.

Caveat. All spaces we deal with areadmissiblein the sense of Definition 1.14. Elemen
of the intersection posetP = P(A) are often denoted byp,q, r etc. but when we want t
emphasize that they are actually divisors (multisets) we use the notationI, J,K,Dj etc.

Let A be an arrangement of subspaces described by (2). LetD :P → Top be an as-
sociated diagram of spaces and inclusion maps, [35,38]. EachI ∈ P is of the form
I = β1x1 + · · · + βkxk where|I | = β1 + · · · + βk � n. Hence,

D(I) := β1x1 + · · · + βkxk + SPn−|I |(X).
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By Projection Lemma, [35, Lemma 4.5], or by [3, Proposition 6.9 on p. 49],
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A ∼= colim D ∼= hocolim D. (3)

Definition 1.1. ForA ⊂ SPp(X) andB ∈ SPq(X), the “Minkowski” sumA+B is a subse
of SPp+q(X) defined byA + B := {a + b | a ∈ A, b ∈ B}.

SinceX is an admissible space, Definition 1.14, there exists a closed, contractib
C ⊃ {x1, . . . , xk} such that the projection mapX → X/C is a homotopy equivalence
Moreover,C contracts to a pointy ∈ C which can be prescribed in advance.

DefineE :P → Top to be the diagram of spaces and inclusion maps determined b

E(I) := |I |y + SPn−|I |(X) for eachI ∈ P.

Note thatE(I) depends only on the order|I | of the divisorI . We would like to show that

hocolim D 
 hocolim E .

Since there does not exist an obvious map between these diagrams, we define a n
gramC, a so called “ample space” diagram, which contains bothD andE as subdiagrams

Let C :P → Topbe the diagram of spaces and inclusion maps defined by

C(I) := SP|I |(C) + SPn−|I |(X) for eachI ∈ P.

Proposition 1.2. Let

α :D → C and β :E → C
be the morphisms of diagrams whereαI :D(I) → C(I) andβI :E(I) → C(I) are obvious
inclusions. Thenα andβ induce the homotopy equivalences of the corresponding h
topy colimits,

hocolim D α̂ hocolim C hocolim E .
β̂

Proof. The proposition is an immediate consequence of the Homotopy Lemma, [3
Lemma 4.6], and Proposition 1.13 from Section 1.5.�
1.2. Steenrod’s theorem for diagrams

In the previous section the calculation of the homology of the union of the arrange
A = {Di +SPn−di (X)}ri=1 was reduced to the calculation ofH∗ (hocolim E) for a diagram
E of particularly simple form, cf. Definition 1.4.

Our objective in this section is to establish a decomposition result (Theorem 1.
pressing the homology ofhocolim E in simpler terms. Theorem 1.8 can be seen as
offspring and a generalization of the well known Steenrod’s theorem,

H∗
(
SPm(X);A

) ∼=
m⊕

j=0

H∗
(
SPj (X),SPj−1;A

)
where by definitionSP−1(X) = ∅ andA is an arbitrary Abelian group.
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Definition 1.3. Assume thaty ∈ X is a point fixed in advance. Astandardinclusion

h

g

t

t

ms

d

ep,q : SPp(X) ↪→ SPq(X),

associated to a pair of integersp � q , is by definition the map defined byep,q(Y ) :=
(q − p)y + Y for eachY ∈ SPp(X).

Definition 1.4. A diagram of spacesD :P → Top is calledsimpleif

(a) for eachp ∈ P there existsµ = µ(p) such thatD(p) = SPµ(X),
(b) the mapDq,p : SPµ(p)(X) → SPµ(p)(X) → SPµ(q)(X) is a standard inclusion for eac

pairq � p.

The monotone functionµ :P → N is called therank function ofD. If µ(p) = µ(q) for
each pairp,q ∈ P we say thatD is aconstantdiagram.

Remark 1.5. Note that a diagram of spacesD :P → Top is simple if and only if there
exists a strictly increasing sequencem = c0 < c1 < · · · < ck = M and a strictly decreasin
sequencePm = Pc0 ⊃ Pc1 ⊃ · · · ⊃ Pck = PM of ideals inP such that Im(µ) = {ci}ki=0 and
for eachp ∈ Pci \ Pci+1,D(p) = SPci (X).

Definition 1.6. Suppose thatE1 andE2 are both simple diagrams over the same poseP

and letµ1 andµ2 be the corresponding rank functions. We writeE1 � E2 and say that the
diagramE1 is dominated by the diagramE2 if µ1 � µ2. We writeE1 �P E2 and say tha
the diagramE1 is properly dominated byE2 if µ1 = min{µ2, c} for some constantc ∈ N.

It is obvious that both� and�P are partial orders on the set of all simple diagra
overP . If either E1 � E2 or E1 �P E2, there is a unique morphismα :E1 → E2 such that
αp :E1(p) → E2(p) is a standard inclusion for eachp ∈ P .

Proposition 1.7. Suppose thatE1 �P E2 �P E3 and letE1
α−→ E2

β−→ E3 be the associate
chain of morphisms. Suppose that

XE1

α̂−→ XEc2

β̂−→ XE3

is the corresponding chain of homotopy colimitsXEi
:= hocolim Ei , i = 1,2,3. Then the

map

H∗(XE2,XE1;A) → H∗(XE3,XE1;A)

is injective and the associated long exact sequence of the triple splits.

Proof. It is sufficient to prove that the map

α̂ :H∗(XD;A) → H∗(XE ;A) (4)
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is injective for each pair of simple diagrams such thatD �P E . Indeed, on applying this
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result on pairsE1 �P E2 andE1 �P E3 we obtain a commutative diagram with exact row

0 H∗(XE1) H∗(XE2) H∗(XE2,XE1) 0

0 H∗(XE1) H∗(XE3) H∗(XE3,XE1) 0

The first vertical arrow from the left is an isomorphism and the second is a monomorp
so the result follows from a version of 5-lemma.

Let us observe that (4) is obvious if bothD andE are constant simple diagrams in t
sense that for some integersm � n,D(p) = SPm(X) andE(p) = SPn(X) for eachp ∈ P .
Indeed, in this case (4) reduces to the monomorphism

H∗
(
SPm(X) × ∆(P)

) → H∗
(
SPn(X) × ∆(P)

)
. (5)

In light of the fact that by Steenrod’s theoremH∗(SPm(X)) → H∗(SPn(X)) is always a
monomorphism to a direct summand ofH∗(SPn(X)), (5) follows from Künneth formula
and the 5-lemma. Next we observe that (4) is true even if onlyD is a constant diagram
Indeed, letF be a constant simple diagram such thatE � F . Then the composition̂β ◦ α̂

in the diagram

H∗(XD)
α̂−→ H∗(XE )

β̂−→ H∗(XF )

is a monomorphism, hencea alone is also a monomorphism.
The general case of (4) is established by induction on the size of the posetP . Let C

be a maximal constant simple diagram overP such thatC � D. In other words ifD(p) =
SPµ(p)(X) for eachp ∈ P thenC(p) := SPm(X) wherem := min{µ(p)}p∈P . Let P ′ be a
subposet ofP defined byP ′ := {p ∈ P | µ(p) > m}. Note thatP ′ is actually an ideal inP .
DefineC ′,D′,E ′ respectively as the restrictions of diagramsC,D,E on the subposetP ′.
Then by the excision axiom there is a commutative diagram of long exact sequence

· · · H∗(XD′,XC′)



H∗(XE ′ ,XC′)



H∗(XE ′ ,XD′)




· · ·

· · · H∗(XD,XC) H∗(XE ,XC) H∗(XE ,XD) · · ·
(6)

The conditionC �P D �P E impliesC ′ �P D′ �P E ′ and by the inductive assumptio
the first row splits. Hence there is a short exact sequence

0 → H∗(XD,XC)
1−1−→ H∗(XE ,XC) → H∗(XE ,XD) → 0.

Finally, from the commutative diagram

0 H∗(XC)



H∗(XC) 0

0 H∗(XD)
α̂

H∗(XE ) H∗(XE ,XD) 0

0 H∗(XD,XC)
1−1

H∗(XE ,XC) H∗(XE ,XD) 0
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we deduce thatα is a monomorphism. �

Given a simple diagramD :P → Top, p �→ SPµ(p)(X), let m := min{µ(p)}p∈P and

M := max{µ(p)}p∈P . Let us assemble the elements of the set{µ(p)}p∈P into an increas-
ing sequence

m = c0 < c1 < · · · < ck = M. (7)

DefinePj := {p ∈ P | µ(p) � j }. Note that

P = Pm ⊇ Pm+1 ⊇ · · · ⊇ PM (8)

is a decreasing sequence of ideals inP . In light of (7) we observe that

Pm = Pc0 ⊃ Pc1 ⊃ · · · ⊃ Pck = PM (9)

is a subsequence of (8) obtained by removing the redundant posets.

Theorem 1.8. Assume thatD :P → Top is a simple diagram whereµ :P → N is the cor-
responding rank function,m = min{µ(p)}p∈P , M = max{µ(p)}p∈P andPj := {p ∈ P |
µ(p) � j }. Then the homology ofXD = hocolim D with coefficients in a groupA admits
the decomposition

H∗(XD) ∼= H∗
(
SPm(X) × ∆(P)

) M⊕
j=m+1

H∗
((

SPj (X),SPj−1(X)
) × ∆(Pj )

)

∼= H∗
(
SPm(X) × ∆(P)

) k⊕
p=1

H∗
((

SPcp (X),SPcp−1(X)
) × ∆(Pcp )

)
. (10)

Proof. The result is easily deduced from Proposition 1.7. Let

D0 �P D1 �P · · · �P Dk−1 �P Dk =D

be the sequence of simple diagrams overP whereDj (p) = SPcj (X) if p ∈ Pcj and
Dj (p) =D(p) otherwise, while(cj )

k
j=0 is the sequence defined in (7). In other wordsDj

is the simple diagram associated to the rank functionµj = min{µ,cj }. By Proposition 1.7

H∗(XD) ∼= H∗(XD0) ⊕
k⊕

i=1

H∗(XDi
,XDi−1). (11)

SinceD0 is a constant simple diagram we know that

H∗(XD0)
∼= H∗

(
SPm(X)

) × H∗
(
∆(P)

)
. (12)

Let Ei and Fi be constant simple diagrams overPci such thatEi (p) = SPci (X) and
Fi (p) = SPci−1(X) for eachp ∈ Pci . By the excision axiom

H∗(XDi
,XDi−1)

∼= H∗(XEi
,XFi

) ∼= H∗
((

SPci (X),SPci−1(X)
) × ∆(Pci )

)
. (13)

The formulas (10) follow from (11)–(13), the observation that
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H∗
((

SPci (X),SPci−1(X)
) × ∆(Pci )

)
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f

,

∼=
ci⊕

j=ci−1+1

H∗
((

SPj (X),SPj−1(X)
) × ∆(Pj )

)
(14)

and the fact thatPj = Pci for eachj in the interval(ci−1, ci]. �
As an immediate consequence of Proposition 1.2, Theorem 1.8, the homotopy equiv

lence (3) and the fact thatE is a simple diagram, we obtain the following result.

Theorem 1.9. Suppose thatA = {F i
n}ri=1 is a diagram of sub spaces of SPn(X) where

F i
n = Di +SPn−|Di |(X). LetP be the associated intersection poset andµ :P → N the cor-

responding rank function. Define m andM respectively as the minimum and the maxim
of the setµ(P) ⊂ N and letPj := µ−1(N�j ). Then, for the homology with coefficients
a groupA,

H∗
(⋃

A
) ∼= H∗

(
SPm(X) × ∆(P)

)
⊕

M⊕
j=m+1

H∗
((

SPj (X),SPj−1(X)
) × ∆(Pj )

)
. (15)

The following corollary of Theorem 1.9 is needed in the proof of Theorem 2.5.

Corollary 1.10. LetA = {F i
n}ki=1 be an arrangement of sub spaces in SPn(X) whereF i

n :=
xi +SPn−1(X) andx1, . . . , xk are distinct points inX. Then, for the homology with rationa
coefficients,

H∗
(⋃

A;Q
) ∼= H∗

(
SPn−m(X)

) ⊕ H∗
(
Σm−1)

⊕
m−2⊕
p=0

H∗
(
SPn−p−1(X),SPn−p−2(X)

) ⊕ H∗
(
Σp

)
(16)

whereΣp is thep-skeleton of a simplexΣ with k vertices andm := min{n, k}.

1.3. Category of simple diagrams

In this section we take a closer look at the category of simple diagrams and rec
main results of Section 1.1 in a form suitable for applications in Section 1.4. The emp
is on functorial properties (naturality) of decompositions (10) and (15).

Let Pos be the category of finite posets and monotone (increasing) maps. LetRank
be the category of abstract rank functions defined on finite posets. The objects oRank
are monotone (decreasing) functionsµ :P → N. A monotone mapF :P → Q defines a
morphismF :µ → ν of two abstract rank functionsµ andν if µ � ν ◦ F , i.e., if µ(p) �
ν ◦F(p) for eachp ∈ P . If F = 1P is the identity map andµ � ν then, as in Definition 1.6
we say thatµ is dominated byν and writeµ � ν.
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The categoryS-Diagof simple diagrams is formally isomorphic to the categoryRankof
ple

m

a-

d

h

th

nd
abstract rank functions. Objects ofS-Diagare diagrams over finite posets which are sim
in the sense of Definition 1.4. Suppose thatD :P → Top and E :Q → Top are simple
diagrams with the associated rank functionsµ :P → N andν :Q → N. Then a morphism
(F,α) :D → E is defined ifF :P → Q is a monotone map andµ � ν ◦ F , in which case
α(p) :D(p) → E(F (p)) is a standard inclusion in the sense of Definition 1.3. IfF is clear
from the context, for example in the case of an identity map, the corresponding morphis
is simply denoted byα. A morphism(F,α) induces a continuous mapX(F,α) :XD → XE
of the corresponding homotopy colimits. Again we simplify and often writeα̂ instead of
X(F,α) if F :P → Q is self-understood.

Suppose thatµ :P → N is an object inRankand letD be the associated simple di
gram. Givenj ∈ N, let µj :P → N be defined byµj(p) = min{µ(p), j } for eachp ∈ P .
DefineDj as the simple diagram associated toµj and letαj :Dj → D be the associate
morphism. The associated homotopy colimitsXDj

are subspaces ofXD which define a
filtration

XD0 ⊆ XD1 ⊆ · · · ⊆ XDj
⊆ · · · ⊆ XD. (17)

Then in light of the decomposition (14), Theorem 1.8 can be rewritten as follows

Theorem 1.11. Assume thatD :P → Top is a simple diagram whereµ :P → N is the
corresponding rank function. LetPj := {p ∈ P | µ(p) � j }. Then, for the homology wit
coefficients in an arbitrary groupA,

H∗(XD;A) ∼=
∞⊕

j=0

H∗
((

SPj (X),SPj−1(X)
) × ∆(Pj )

)
(18)

where by definition SP−1(X) := ∅ =: ∆(∅).

The following proposition essentially claimsthat the decomposition (18) is natural wi
respect to morphisms(F,α) :D → E in the categoryS-Diag.

Proposition 1.12. Suppose that(F,α) :D → E is a morphism of two simple diagrams a
let α̂ :XD → XE be the induced map of the associated homotopy colimits. If{XDj

}∞j=0
and{XEj

}∞j=0 are the filtrations ofXD andXE described by(17) thenα̂(XDj
) ⊆ XEj

. It
follows that there exists a homomorphism

H∗
((

SPj (X),SPj−1(X)
) × ∆(Pj )

) → H∗
((

SPj (X),SPj−1(X)
) × ∆(Qj)

)
(19)

of the corresponding terms in the decompositions(18) of H∗(XD) and H∗(XE ) respec-
tively. The homomorphism(19) is induced by the map∆(Fj ) :∆(Pj) → ∆(Qj) where
Fj :Pj → Qj is the restriction ofF to Pj .

Proof. The conditionµ � ν ◦ F implies

µj = min{µ,j } � min{ν ◦ F, j } = min{ν, j } ◦ F = νj ◦ F.
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It follows that there is a morphism inS-Diagof diagramsDj andEj and an associated
ere

that

ity

, the
pair

m

ng
i-
ned

t

continuous map̂αj :XDj
→ XEj

of the corresponding homotopy colimits. Moreover, th
is a ladder of commutative diagrams

· · · XDj−1

α̂j−1

XDj

α̂j

XDj+1

α̂j+1

· · · XD

α̂

· · · XEj−1 XEj
XEj+1 · · · XE

(20)

where the horizontal maps are the inclusions coming from the filtration (17). It follows
there is a homomorphism

H∗(XD;A) ∼=
∞⊕

j=0

H∗(XDj
,XDj−1;A) →

∞⊕
j=0

H∗(XEj
,XEj−1;A) ∼= H∗(XE ;A) (21)

whereXD−1 = XD−1 = ∅. The final part of Proposition 1.12 follows from the natural
of the excision operation or more precisely from the naturality of the diagram (6).�
1.4. Homology of the complement SPn(Mg) \ ⋃

A

In this section we focus our attention on the homology of the complementSPn(Mg)\Fn

of the arrangementA whereMg is an orientable surface of genusg. We will be pri-
marily interested in the homology with rational coefficients. By Poincaré duality
evaluation of these groups is equivalent to the evaluation of the homology of the
H∗((SPn(Mg),Fn);Q) which is directly related to the evaluation of the kernelAj and
the cokernelBj of the homomorphism

Hj

(⋃
A

)
→ Hj

(
SPn(X)

)
(22)

for an arrangementA in SPn(X) whereX is anadmissiblespace.
Given a map of diagramsα :E1 → E2, there is a commutative square

hocolim E1 hocolim E2

colim E1 colim E2

(23)

In light of the fact that for each arrangement of subspacesF and the corresponding diagra
of spacesDF⋃

F ∼= colimDF ,

the square (23) allows us to compare spacesFn = ⋃
A and SPn(X) by comparing the

associated diagrams.
The diagramsC,D,E , the associated intersection posetP etc. have the same meani

as in Section 1.1. Let̂P := P ∪ {0} be the posetP with added a possibly new min
mum element 0. LetD : P̂ → Top be a diagram of spaces and inclusion maps defi
by D0(0) = SPn(X) andD0(p) = D(p) for eachp ∈ P . Similarly, C0 and E0 are de-
fined as the diagrams over̂P which extend the diagramsC andE respectively, such tha
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C0(0) = E0(0) = SPn(X). The inclusione :P → P̂ extends to the corresponding mor-

otopy

-
he

al
phisms of diagrams

C γ−→ C0, D δ−→D0, E η−→ E0.

Moreover, there is a commutative diagram

XD
α̂

δ̂

XC

γ̂

XE
β̂

η̂

XD0
α̂0 XC0 XE0

β̂0

(24)

where all horizontal maps are homotopy equivalences and as beforeXG = hocolim G. An
instance of the commutative diagram (23) is the following square

XD
δ̂ XD0

⋃
A SPn(Mg)

(25)

By Projection Lemma, [35, Lemma 4.5], the vertical arrows in this diagram are hom
equivalences. In light of (24) we conclude that the groupsAd andBd are respectively the
kernel and the cokernel of the map

Hd(XE )
η∗ Hd(XE0). (26)

By Theorem 1.11 each of the groupsHd(XE ) and Hd(XE0) admits a direct sum de
composition of the form (18). By Proposition 1.12 this decomposition is natural and t
corresponding terms are mapped to each other. More precisely there is a homomorphism

H∗
((

SPj (X),SPj−1(X)
) × ∆(Pj )

) → H∗
((

SPj (X),SPj−1(X)
) × ∆

(
P̂j

))
(27)

induced by the map∆(ej ) :∆(Pj) → ∆(P̂j ) whereej is an inclusion map.
Note that∆(P̂j ) is contractible whenever̂Pj �= ∅. It immediately follows that for the

homology withrational coefficients, Ad
∼= A

(1)
d ⊕ A

(2)
d where

A
(1)
d

∼=
+∞⊕
j=0

q>0⊕
p+q=d

Hp

(
SPj (X),SPj−1(X)

) ⊕ Hq

(
∆(Pj )

)
, (28)

A
(2)
d

∼=
∞⊕

j=9

Hd

(
SPj (X),SPj−1) ⊕ Ωj (29)

whereΩj := Ker{H0(∆(Pj )) → H0(∆(P̂j ))} = H̃0(∆(Pj )) is the reduced, 0-dimension
homology ofPj . Similarly,

Bd
∼= Hd

(
SPn(X),SPM(X)

)
(30)

whereM = max{µ(p)}p∈P is the maximum of the associated rank function.
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1.5. An auxiliary result

et

-

at

or
Proposition 1.13. Suppose thatX is anadmissiblespace in the sense of Definition1.14.
Given a finite setF = {y, y1, . . . , yd} in Z, let C be an associated contractible supers
of F . LetY = y1 + y2 + · · · + yd ∈ SPd (X). Then the inclusion map

Y + SPn−d (X)
α−→ SPd(C) + SPn−d (X) (31)

is a homotopy equivalence.

Proof. We prove the lemma first in the special case when all pointsyi coincide. More
precisely we prove that the mapdy + SPn−d (X) ↪→ SPd(C) + SPn−d (X) is a homotopy
equivalence.

It follows from the assumptions onX,C andy ∈ C that there exists a homotopyh :X ×
I → X, keepingy fixed andC invariant, such thatp :X → X, defined byp(x) := h(x,1)

satisfies the conditionp(C) = {y} and 1X = h(·,0) is the identity map.
Let H : SPn(X) × I → SPn(X) be the homotopy induced onSPn(X) by h. In other

words ifZ = z1 +· · ·+ zn ∈ SPn(X), thenH(Z, t) := h(z1, t)+· · ·+h(zn, t). We observe
that bothV := dy + SPn−d (X) andW := SPd(C) + SPn−d (X) areH -invariant, so the
restrictions ofH on these subspaces define the homotopiesH 1 :V × I → V andH 2 :W ×
I → W . The mapp :X → X induces a map fromSPn(X) to SPn(X) which restrict to a
map p̂ :W → V . It turns out thatp̂ is a homotopy inverse to the inclusioni :V ↪→ W .
Indeed,

H 1: 1V 
 p̂ ◦ i and H 2: 1W 
 i ◦ p̂.

Now we turn to the case of a general divisorY = y1 + · · · + yd ∈ SPd(X) and the asso
ciated inclusion mapY + SPn−d (X)

α→ SPd(C) + SPn−d (X). Let φ :dy + SPn−d (X) →
Y + SPn−d (X) be the homeomorphism defined byφ(da + Z) = Y + Z.

The key observation is the following equality

p̂ ◦ α ◦ φ = p̂ ◦ i.

Sincep̂ andi are homotopy equivalences andφ is a homeomorphism, we conclude th
α is also a homotopy equivalence.�
Definition 1.14. A spaceX is called admissible if for each finite collection of pointsF =
{y, x1, . . . , xk} ⊂ X, there exists a subspaceC ⊂ X such that

(a) C containsF as a subset,
(b) C can be continuously deformed toy insideC keeping the pointy fixed, i.e. 1C 
 cy

(rel y) wherecy(x) = y for eachx ∈ C,
(c) the inclusion mapi :C ↪→ X is a closed cofibration.

Remark 1.15. All connected spaces that can be triangulated areadmissiblein the sense
of Definition 1.14. This is a very large class including all connected CW-complexes
connected semi-algebraic sets.
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2. Applications
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2.1. End spaces

Definition 2.1. Suppose thatY is a locally compact, Hausdorff space. LetP = (K,⊆) be
the poset of all compact subspaces ofY . Let D :P → Top be the diagram of topologica
spaces overP defined byD(K) := Y \ K for Q ∈ M. The end spacee(Y ) of Y is by
definition the homotopy limit of the diagramD,

e(Y ) := holim D.

Ref. [21] is recommended as a valuable source of information about the general
the history, and some of the latest applications of end spaces. The end space is obvio
a topological invariant ofY , that is ifY andY ′ are two locally compact, Hausdorff spac
such thatY ∼= Y ′ then the associated end spacese(Y ) ande(Y ′) are also homeomorphic
Consequently the homotopy type ofe(Y ), its homology etc. are homeomorphism invaria
of Y . If Y admits a cofinal sequence

K0 ⊆ K1 ⊆ · · · ⊆ Km ⊆ · · ·
of compact sets inY , i.e. a sequence such thatY = ⋃∞

m=0 Km, then

e(Y ) 
 holimm�→∞Y \ Km.

The following proposition allows us to “compute” the end space in the case the inclus
mapKm ↪→ Km+1 is a homotopy equivalence for eachm.

Proposition 2.2. Let E :N → Top be a diagram of topological spaces overN such that
D(m) → D(m + 1) is a homotopy equivalence for eachm. Then

holim E 
D(0).

As an illustration here is a computation of the (stable) homotopy type of the end
of some interesting spaces.

Proposition 2.3. Let Y = Sn \ X whereX is a closed set in the sphereSn. LetDn(A) be
the stable homotopy type of the geometric dual ofA ⊂ Sn, [29]. Then the end space ofY

is stably equivalent to the geometric dual of the disjoint sumX ∪ Dn(X),

e(Y ) 
P Dn

(
X ∪ Dn(X)

) 
P Sn−1 ∨ X ∨ Dn(X).

Proof. In light of the formula

Dn(A ∪ B) 
P Dn

(
S0 ∨ A ∨ B

) 
P Sn−1 ∨ Dn(A) ∨ Dn(B)

whereA andB are disjoint, compact subsets ofSn, it is sufficient to observe that compa
sets inY = Sn \ X which are deformation retracts ofY are cofinal in the poset of a
compact subsets ofY . �
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2.2. End (co)homology groups

rs,

to
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The diagramD :P → Top from Definition 2.1, in combination with standard functo
provides other interesting invariants or the homeomorphism type ofY .

Definition 2.4. Let φ : Top→ Ab be a covariant (contravariant) functor from spaces
Abelian groups. Letφ(D) :P → Ab be the associated (co)diagram defined by the corre
spondenceK �→ φ(Y \ K). The (co)limit of φ(D) is an Abelian group which is calle
the endφ-group associated toY . If φ is a homology (cohomology) functor with ra
tional coefficients, thenφ(D) is denoted byH∗ and H∗ respectively. In other word
H∗(K) := H∗(Y \ K;Q) andH∗(K) := H ∗(Y \ K;Q). The associatedend(co)homology
groupsare defined by

E∗(Y ) := limH∗, E∗(Y ) := colim H∗.

In the following theorem we compute the groupE∗(SPn(Mg,k)) whereMg,k is the
orientable surface of genusg punctured atk distinct points. Sometimes we call the surfa
Mg,k a (g, k)-amoeba, see Fig. 1 where the amoebasM1,3 andM2,1 are shown. Note tha
although the amoebasMg,k andMg′,k′ are homeomorphic if and only if(g, k) = (g′, k′),
they have the same homotopy type if and only if 2g + k = 2g′ + k′.

Theorem 2.5. LetMg,k = Mg \ {x1, . . . , xk} be a(g, k)-amoeba, i.e., the Riemann surfa
of genusg with k distinct points removed. Let SPn(Mg,k) be the associated symmetr
product. If

Ep
(
SPn(Mg,k)

) := colimHp = colimW∈PHp
(
SPn(Mg,k) \ K;Q

)
is the associated p-dimensional end cohomology group then

rank
(
Ep

(
SPn(Mg,k)

)) =




(2g+k−1
p

)
, p � n − 2,(2g+k

n

) − (2g
n

)
, p = n − 1 or p = n,(2g+k−1

2n−1−p

)
, p � n + 2.

(32)

Fig. 1.M1,3 andM2,1.
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Proof. Let us choose a local metric in the vicinity of each pointxi , say by choosing a local

et

rs

t
ifold

e

group

he
coordinate system in the neighborhood of each of these points. LetV i
m = V (xi,

1
m

) be an
open disc inMg with the center atxi of radius 1

m
, defined relative to the chosen metric. L

Wi
m := V i

m \ {xi} be the corresponding punctured disc. ThenCm = Mg \ ⋃k
i=1 V (xi,

1
m

)

is a compact subset inMg,k andKm := SPn(Cm) is a compact subset inSPn(Mg,k). The
sequence{Km}∞m=1 is cofinal in the posetP of all compact subsets inY = SPn(Mg,k)

since (
⋃+∞

m=1 Km = SPn(Mg,k). Note thatY \ Km is described as the space of all diviso
D ∈ SPn(Mg,k) such thatD ∩ V i

m �= ∅ for somei.

Claim 1. The inclusionY \ Km+1 ↪→ Y \ Km induces an isomorphismH∗(Y \ Km;Q) →
H ∗(Y \ Km+1;Q) of the associated cohomology groups.

The claim is an easy consequence of Poincaré duality. Indeed, bothY and its compac
subsetsKm and Km+1 are identified with the corresponding subsets of the man
SPn(Mg). Let Fn := SPn(Mg) \ Y be the subspace of all divisorsD ∈ SPn(Mg) such that
D ∩ {x1, . . . , xk} �= ∅. Equivalently,

Fn :=
k⋃

j=1

(
xj + SPn−1(Mg)

)
.

There is a duality isomorphism

H ∗(Y \ Kj) → H2n−∗
(
SPn(Mg);Fn ∪ Kj

)
(33)

natural with respect the inclusionsKj ↪→ Kj+1. Then the claim follows from the fiv
lemma and the fact thatKm is a deformation retract ofKm+1, which in turn implies the
isomorphismH∗(Fn ∪ Km) → H∗(Fn ∪ Km+1).

A consequence of the claim is the isomorphism

Ep
(
SPn(Mg,k)

) ∼= Hp(Y \ Km) ∼= H2n−p

(
SPn(Mg);Fn ∪ Km

)
. (34)

Hence, in order to complete the proof of the theorem it is sufficient to compute the
Hd(SPn(Mg);Fn ∪ Km). �
Proposition 2.6. Let ∆

n,g
d be the rank of the groupHd(SPn(Mg);Fn ∪ Km) ∼=

H 2n−d(SPn(Mg) \ Fn ∪ Km). Then,

∆
n,g

d =




(2g+k−1
d−1

)
, d � n − 1,(2g+k

n

) − (2g
n

)
, d = n or d = n + 1,(2g+k−1

2n−d

)
, d � n + 2.

(35)

Proof. The spacesFn and Km are disjoint compact subspaces ofSPn(Mg) and Km 

SPn(Mg,k) has the homotopy type of ann-dimensional CW-complex. Consequently, t
exact sequence of the pair(SPn(Mg),Fn ∪ Km) has the form

Hd(Fn) ⊕ Hd(Km)
Λd−→ Hd

(
SPn(Mg)

) → Hd

(
SPn(Mg);Fn ∪ Km

)
→ Hd−1(Fn) ⊕ Hd−1(Km)

Λd−1−→ Hd−1
(
SPn(Mg)

) → ·· · (36)
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An immediate consequence of (36) is the isomorphism

-

If

he

si-

r
n.

ual

of a

,
d.
Hd

(
SPn(Mg);Fn ∪ Km

) ∼= Ad−1 ⊕ Bd

where Ad := Ker(Λd) and Bd := Coker(Λd). Note that Λd = αd + βd where
αd :Hd(Fn) → Hd(SPn(Mg)) and βd :Hd(SPn(Mg,k)) → Hd(SPn(Mg)) are the homo
morphisms induced by the inclusionsFn ↪→ SPn(Mg) andSPn(Mg,k) ↪→ SPn(Mg).

Claim 2. Suppose thatα :A → C and β :B → C a linear maps of vector spaces.
α + β :A ⊕ B → C is the map defined by(α + β)(x ⊕ y) := α(x) + β(y) then∣∣Ker(α + β)

∣∣ = ∣∣Ker(α)
∣∣ + ∣∣Ker(β)

∣∣ + ∣∣Im(α) ∩ Im(β)
∣∣ (37)

where|V | is the dimension ofV .

An immediate consequence of the Claim 2 is the following equation

∆
n,g

d = ∣∣Ker(αd−1)
∣∣ + ∣∣Ker(βd−1)

∣∣ + ∣∣Im(αd−1 ∩ Im(βd−1)
∣∣

+ Θ
n,g
d − ∣∣Im(αd)

∣∣ − ∣∣Im(βd)
∣∣ + ∣∣Im(αd) ∩ Im(βd)

∣∣ (38)

where∆
n,g

d := |Ad−1|+ |Bd | andΘ
n,g

d := |Hd(SPn(Mg))|. The long exact sequence of t
pair (SPn(Mg),Fn) and the Poincaré duality imply that∣∣Ker(αd−1)

∣∣ + Θ
n,g
d − ∣∣Im(αd)

∣∣
= ∣∣Hd

(
SPn(Mg);Fn

)∣∣ = ∣∣H 2n−d
(
SPn(Mg) \ Fn

)∣∣ = Φ
n,g,k

d (39)

whereΦ
n,g,k
d = (2g+k−1

2n−d

)
if n � d and 0 otherwise. It follows from Eq. (39), Propo

tions 3.1 and 3.2 that in order to compute the quantity∆
n,g

d we need to discuss the fou
casesd � n − 1, d = n, d = n + 1 andd � n + 2. The rest is an elementary calculatio
This completes the proof of both Proposition 2.6 and Theorem 2.5.�
2.3. Commutative(m + k,m)-groups

A commutative(m + k,m)-groupoid is a pair(X,µ) where the “multiplication”µ is a
mapµ : SPm+k(X) → SPm(X). The operationµ is associative if for eachc ∈ SPm+2k(X)

and each representationc = a + b, wherea ∈ SPm+k(X) and b ∈ SPk(X), the result
µ(µ(a) ∗ b) is always the same, i.e., independent from the particular choice ofa andb

in the representationc = a + b. A commutative and associative(m + k,m)-groupoid is
a (m + k,m)-group if the equationµ(x + a) = b has a solutionx ∈ SPm(X) for each
a ∈ SPk(X) and b ∈ SPm(X). The (2,1)-groups are essentially the groups in the us
sense of the word. IfX is a topological space then(X,µ) is a topological(m + k,m)-
group if it is a(m + k,m)-group and the mapµ : SPm+k(X) → SPm(X) is continuous.

For the motivation and other information about commutative(m + k,m)-groups the
reader is referred to [33,32]. The only known surfaces that support the structure
(m + k,m)-group for(m + k,m) �= (2,1) are of the formC \ A whereA is a finite set.
It was proved in [32], see also Theorem 6.1 in [33] that if(M,µ) is a locally Euclidean
topological, commutative,(m + k,m)-group thenM must be an orientable 2-manifol
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Moreover, a 2-manifold that admits the structure of a commutative(m + k,m)-group sat-

-

f

quence
v-

exist

More

. Note
uation

ssary
n (B)
stated
isfies a strong necessary condition that the symmetric powerSPm(M) := Mm/Sm is of the
form Ru × (S1)v .

This was a motivation for the authors to formulate in [9] the following problems

(A) To what extent is the topology of a surfaceM determined by the topology of its sym
metric productSPm(M) for a givenm?

(B) Are there examples of non-homeomorphic (open) surfacesM andN such that the
associated symmetric productsSPm(M) andSPm(N) are homeomorphic?

These problems are particularly interesting for the so called(g, k)-amoebasMg,k,
the surfaces defined byMg,k := Mg \ {x1, . . . , xk} whereMg is the Riemann surface o
genusg, see Fig. 1.

Since the end homology groups are invariants of homeomorphism types, a conse
of Theorem 2.5 is that both the genusg and the numberk of points removed can be reco
ered from the knowledge of the end spacee(SPn(Mg,k)) in the case 2g � n (question (A)).
As a corollary we obtain the main result of [9, Theorem 1.1], which says that there
open, orientable surfacesM andN such that the associated symmetric productsSPm(M)

andSPm(N) are not homeomorphic although they have the same homotopy type.
precisely, this is always true ifM = Mg,k andN = Mg′,k′ (k, k′ � 1) and

• 2g + k = 2g′ + k′,
• g �= g′ and max{g,g′} � m/2.

This result puts some restrictions on potential examples asked for in question (B)
that this result was proved in [9] by completely different methods based on the eval
of the signature of general symmetric productsSPG(Mg,k) := (Mg,k)

n/G whereG is a
subgroup ofSn. The fact that two different methods led to the exactly same nece
condition 2g � n is intriguing and may be an indication that the answer to the questio
is in fact positive. This however remains an interesting open problem which can be re
as follows.

Question. Could it be that some symmetric powers of amoebasM1,3 andM2,1 or more
generally amoebasMg,k andMg′,k′ where(g, k) �= (g′, k′) but 2g + k = 2g′ + k′ are actu-
ally homeomorphic?

Appendix A

A.1. Homology of symmetric products

It is well known [22,26] that the Pontriagin algebra ofSP∞(Mg) has the form

H∗
(
SP∞(Mg);A

) ∼= Λ(e1, e2, . . . , e2g) ⊗ Γ [M] (A.1)
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whereΛ(e1, e2, . . . , e2g) is an exterior algebra andΓ [M] is the divided power algebra with

for all

e of
ducts

y

so

2.5 in

sition
generatorsγk, k = 1,2, . . . . On tensoring withQ one has an isomorphism

H∗
(
SP∞(Mg);Q

) ∼= Λ(e1, e2, . . . , e2g) ⊗ Q[γ ] (A.2)

whereQ[γ ] is a polynomial algebra. The following classes

E(I,q) = eI γ
q = ei1ei2 · · ·eip · γ q, I = {i1 < i2 < · · · < ip}

form an additive basis of (41). Moreover,

H∗
(
SP∞(Mg)

) ∼=
⊕
m∈N

H∗
(
SPm(Mg),SPm−1(Mg)

)
(A.3)

andH∗(SPm(Mg)) is the subgroup spanned by all classesE(I,q) = ei1ei2 · · ·eipγ q where
p + q � m.

Recall [22,26] that by a classical result of Steenrod, the decomposition (42) holds
connected CW-complexesX, in particularH∗(SPm(X);A) → H∗(SPn(X);A) is always a
monomorphism form � n. Similarly, the isomorphism (41) can be seen as an instanc
the celebrated result of Dold and Thom [15] which says that infinite symmetric pro
admit a decomposition into a product of Eilenberg–MacLane spaces

SP∞(X) 

∏
ν�0

(
K

(
H̃ν;A

)
, ν

)
. (A.4)

Suppose thatY = ∨m
j=1 S1

j wedge ofm circles. Then it is not difficult to show directl
that

H∗
(
SP∞(Y ;Q)

) ∼= Λ(e1, . . . , em). (A.5)

SinceMg,k = Mg \ {x1, . . . , xk} 
 ∨2g+k−1
j=1 S1

j we conclude that

H∗
(
SP∞(Mg,k);A

) ∼= Λ(e1, e2, . . . , e2g+k−1). (A.6)

The groupH∗(SPm(Mg,k);Q) is generated by the classesFI = ei1 · · ·eip where I =
{i1, . . . , ip} ⊂ [2g + k − 1] and p � m. Moreover, the generators can be chosen
that β∗(FI ) = EI,0 = eI if I ⊂ [2g] and 0 otherwise whereβ∗ :H∗(SPm(Mg,k);Q) →
H∗(SPn(Mg);Q) is the map induced by the inclusionSPm(Mg,k) ↪→ SPm(Mg). As an im-
mediate consequence we have the following result needed in the proof of Theorem
Section 2. As before,|V | is the rank of a vector spaceV .

Proposition A.1.

∣∣Ker(βd)
∣∣ =

{(2g+k−1
d

) − (2g
d

)
, d � n,

0, d � n + 1,∣∣Im(βd)
∣∣ =

{(2g
d

)
, d � n,

0, d � n + 1.
(A.7)

As a consequence of results from Section 1.3 we deduce the following propo
which is also used in the proof of Theorem 2.5.
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Proposition A.2. Let αp :Hp(Fn) → Hp(SPn(Mg)) and βp :Hp(SPn(Mg,k)) →

-

s

-

s,

bina-

cts,

92)

and
Hp(SPn(Mg)) be the homomorphisms induced by the inclusionsFn ↪→ SPn and
SPn(Mg,k) ↪→ SPn(Mg). If αp + βp :Hp(Fn) ⊕ Hp(SPn(Mg,k) → Hp(SPn(Mg)) is the
map defined by(αp + βp)(x ⊕ y) = αp(x) + βp(y), then

∣∣Im(αp) ∩ Im(βp)
∣∣ =

{(2g
p

)
, p � n − 1

0, p � n.
(A.8)

Proof. By the results of Sections 1.3 and 1.4 the groupHp(Fn) has the following decom
position

Hp(Fn) ∼=
+∞⊕
ν=0

⊕
i+j=p

Hi

(
SPν(Mg),SPν−1(Mg)

) ⊕ Hj

(
∆(Pν)

)
. (A.9)

Define

Hp(Fn)
(0) :=

+∞⊕
ν=0

Hp

(
SPν(Mg),SPν−1(Mg)

) ⊕ H0
(
∆(Pν)

)
(A.10)

and letα′
p :Hp(Fn)

(0) → Hp(SPn(Mg)) be the restriction ofαp on Hp(F
(0)
n ). Let us ob-

serve that

Hp(Fn)
(0) = (

Hp

(
SPn−1(Mg),SPn−2(Mg)

) ⊗ Qk
) ⊕ Hp

(
SPn−2(Mg)

)
. (A.11)

Moreover, Im(αp) = Im(α′
p) = Hp(SPn−1(Mg)) ⊂ Hp(SPn(Mg)).

By the analysis preceding Proposition A.1 we know that Im(βp) is spanned by classe
E(I,0) = eI = ei1 · · ·eip where 1� i1 < · · · < ip � 2g andp � n. A conclusion is that

Im(αp) ∩ Im(βp) = span
{
eI | I : 1� i1 < · · · < ip � 2g, p � n − 1

}
and a simple calculation completes the proof of the proposition.�
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232 P. Blagojević et al. / Topology and its Applications 148 (2005) 213–232
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