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Let X and Y be compact Hausdorff spaces, and E and F be locally solid Riesz spaces.
If π : C(X, E) → C(Y , F ) is a 1-biseparating Riesz isomorphism then X and Y are
homeomorphic, and E and F are Riesz isomorphic. This generalizes the main results of
[Z. Ercan, S. Önal, Banach–Stone theorem for Banach lattice valued continuous functions,
Proc. Amer. Math. Soc. 135 (9) (2007) 2827–2829] and [X. Miao, C. Xinhe, H. Jiling, Banach–
Stone theorems and Riesz algebras, J. Math. Anal. Appl. 313 (1) (2006) 177–183], and
answers a conjecture in [Z. Ercan, S. Önal, Banach–Stone theorem for Banach lattice valued
continuous functions, Proc. Amer. Math. Soc. 135 (9) (2007) 2827–2829].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and brief history

Let X be a topological space and E be a topological vector space. The vector space of all continuous functions from X
into E is denoted by C(X, E). Under the ordering

f � g: ⇐⇒ f (x) � g(x) for each x ∈ X,

C(X, E) is a Riesz space whenever E is Riesz space. If X is compact and E is a normed space then C(X, E) is a normed
space under the norm

‖ f ‖ = sup
x∈X

∥∥ f (x)
∥∥

and it is complete if E is Banach space. In particular, if E is a Banach lattice then C(X, E) is a Banach lattice. We write C(X)

instead of C(X,R).
The Banach–Stone theorem tells us that every surjective isometry between C(K ) and C(M) must be of the form

T ( f )(k) = h(k) f (σ (k)) where σ is a homeomorphism of the compact Hausdorff space K onto the compact Hausdorff
space M . On the other hand, the isomorphic type of C(K ) is not sufficient to characterize K , for by Milutin’s theo-
rem, if K and M are uncountable metrizable compact spaces, then C(K ) and C(M) are isomorphic. For compact metric
spaces K and M the Banach–Stone theorem proved by Banach [4] and generalized for arbitrary compact Hausdorff spaces
by Stone [13]. We refer to [9] for Riesz isomorphic and algebraic isomorphic versions of the Banach–Stone theorem.
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Jerison [11] was the first to consider Banach–Stone type theorem on C(X, E). We refer to [5] and [7] fore more details of
the Banach–Stone theorem on C(X, E).

Definition 1. Let X and Y be compact Hausdorff spaces, E and F be topological vector space and n be a natural number.
A map T : C(X, E) → C(Y , F ) is called n-separating if the following implication holds

n⋂

i=1

f −1
i (0) = ∅ 	⇒

n⋂

i=1

T ( f i)
−1(0) = ∅.

T is called n-biseparating if
n⋂

i=1

f −1
i (0) = ∅ ⇐⇒

n⋂

i=1

T ( f i)
−1(0) = ∅.

It is clear that if T is n-separating and m � n then T is also m-separating. In the literature 2-separating linear map
is called separating and 2-biseparating map is called biseparating, which was introduced in [3] and [10]. For realcompact
spaces X and Y it is an open question whether a linear separating bijection T : C(X) → C(Y ) is automatically biseparating
(see [2]). In the last twenty years it has been shown that Banach–Stone theorem enjoys with separating property. Recently
the following theorems are proved:

Theorem 2. (See [8].) Let X and Y be compact Hausdorff spaces and, E and F be Banach spaces. Then every biseparating linear map
T : C(X, E) → C(Y , F ) is a weighted composition operator, T ( f )(y) = h(y) f (α(y)) for each f ∈ C(X, E) and y ∈ Y , where α is a
homeomorphism from Y into X and h(y) is an invertible linear map from E into F .

A Riesz space (vector lattice) E is an ordered vector space in which sup{x, y} exists for every x, y ∈ E . To each element
x ∈ E we associate the absolute value |x| = sup{x,−x}, its positive part x+ = {x,0} and the negative part x− = sup{−x,0}. A
subset A of a Riesz space is said to be solid if whenever |x| � |y| imply that y ∈ A. A topological vector space on a Riesz
space E is said to be locally solid if zero admits a fundamental system of solid neighborhoods. A norm ‖.‖ on a Riesz space
is said to be a lattice norm whenever |x| � |y| implies ‖x‖ � ‖y‖. A Riesz space equipped with a lattice norm is known as
a normed Riesz space. If a normed Riesz space is also norm complete, then it is referred to as a Banach lattice. Normed Riesz
spaces are locally solid. If X is compact Hausdorff space and E is a normed Riesz space then C(X, E) is also a normed Riesz
space. The Riesz spaces E and F are said to be Riesz isomorphic if there exists a one-to-one and onto linear map T : E → F
such that T (x) � 0 if and only if x � 0. In this case T is called a Riesz isomorphism. For more details on Riesz spaces, locally
solid Riesz spaces and Riesz algebras we refer to [1] and [14].

Theorem 3. (See [12].) Let X , Y be compact Hausdorff spaces and let E, F be both Banach lattices and Riesz algebras. It is shown that
if F has no zero-divisor and if there exists a 1-separating Riesz algebraic isomorphism Φ : C(X, E) → C(Y , F ), then X is homeomorphic
to Y and E is Riesz algebraically isomorphic to F .

Theorem 4. (See [6].) For compact Hausdorff spaces X, Y and Z , and Banach lattice E, if π : C(X, E) → C(Y , C(Z)) is a 1-separating
Riesz isomorphism then X and Y are homeomorphic, and E and C(Z) are Riesz isomorphic spaces.

In [6] it was asked whether C(Z) can be replaced by an arbitrary Banach lattice. The aim of this paper is to give a
positive answer to this conjecture and generalize main result of [7].

2. The result

We are ready to state our main result as follows. This generalizes Theorems 4 and 5 and gives answer to a conjecture
in [6].

Theorem 5. Let X and Y be compact Hausdorff spaces and, E and F be locally solid Riesz spaces. If π : C(X, E) → C(Y , F ) is a
1-biseparating Riesz isomorphism then X and Y are homeomorphic and, E and F are Riesz isomorphic spaces.

If e ∈ E and f ∈ C(X) then f ⊗ e : X → E is defined by f ⊗ e(x) = f (x)e. Similar notation is used for e ∈ F and f ∈ C(Y ).

Lemma 6. For each x ∈ X there exists a unique σ(x) ∈ Y such that

UZ(x) :=
⋂{

π( f )−1(0): f ∈ Z(x)
} = {

σ(x)
}
,

where

Z(x) = {
f ∈ C(X, E)+: f (x) = 0

}
.
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Proof. Let f1, . . . , fn ∈ Z(x) be given. Then f1 ∨ f2 ∨ · · · ∨ fn ∈ Z(x). From the following equation

π( f1)
−1(0) ∩ π( f2)

−1(0) ∩ · · · ∩ π( fn)−1(0) = π( f1 ∨ f2 ∨ · · · ∨ fn)−1(0)

{π( f )−1(0): f ∈ Z(x)} has the finite intersection property. Since Y is compact UZ(x) is nonempty. Let a,b ∈ UZ(x) and a 
= b.
Then there exists g ∈ C(Y , F )+ such that g(a) = 0 and g(b) 
= 0. Then π−1(g)(x) > 0. (Indeed, if π−1(g)(x) = 0 then
π−1(g) ∈ Z(x), so g(b) = π(π−1(g))(b) = 0.) Let

e = π−1(g)(x) and t = ∣∣π−1(g) − 1 ⊗ e
∣∣.

Then t(x) = 0, so t ∈ Z(x). From the following

π(t)(a) = ∣∣π
(
π−1(g)

) − π(1 ⊗ e)
∣∣(a) = 0

we have

0 = g(a) = π(1 ⊗ e)(a) > 0.

This contradiction completes the proof. �
Lemma 7. For each f ∈ C(X, E) and x ∈ X we have

π( f )
(
σ(x)

) = π
(
1 ⊗ f (x)

)(
σ(x)

)
.

Proof. Let fx = | f −1⊗ f (x)|. Then 0 � f and f (x) = 0, so fx ∈ Z(x). Hence π( fx)(σ (x)) = 0. As π is a Riesz homomorphism
we have π( f )(σ (x)) = π(1 ⊗ f (x))(σ (x)). �
Lemma 8. Let x ∈ X. Then π( f )(σ (x)) = 0 if and only if f (x) = 0.

Proof. Let f ∈ C(X, E)+ be given. By the definition, if f (x) = 0 we have π( f )(σ (x)) = 0. If π( f )(σ (x)) = 0, then
π(1 ⊗ f (x))(σ (x)) = 0. This implies 0 ∈ 1 ⊗ f (x)(X), so we must have f (x) = 0. �
Lemma 9. σ is one-to-one.

Proof. Let a,b ∈ X with σ(a) = σ(b). Suppose that a 
= b. Then f (a) > 0 and f (b) = 0 for some f ∈ C(X, E)+ . From the
previous lemma we have

π( f )
(
σ(a)

) 
= 0 and π( f )
(
σ(b)

) = 0.

This is a contradiction. �
Lemma 10. σ is continuous.

Proof. Let xα → x in X . We show that σ(xα) → σ(x). U ⊂ Y be an open set with σ(x) ∈ U . There exists f ∈ C(X, E)+ with
π( f )(σ (x)) 
= 0 and π( f )(Y \ U ) = {0}. Then f (x) > 0. Since f (xα) → f (x) there exists α0 such that f (xα) > 0 for each
α > α0. This implies that σ(xα) /∈ Y \ U for each α � α0, so σ(xα) ∈ U for each α � α0. Hence σ(xα) → σ(x). �
Lemma 11. σ is onto.

Proof. Suppose that there exists y ∈ Y with y /∈ σ(X). Since σ a continuous and X is compact, σ(X) is compact. Then there
exists f ∈ C(X, E)+ with

π( f )(y) 
= 0 and π( f )
(
σ(X)

) = {0}.
From Lemma 9 f (X) = {0}, so π( f )(y) = 0. This is a contradiction. Hence, σ is onto. �

Hence we have proved the following.

Corollary 12. X and Y are homeomorphic.

Lemma 13. E and F are Riesz isomorphic spaces.
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Proof. Let x ∈ X be given. Then it is clear that the map T : E → F defined by T (e) = π(1 ⊗ e)(σ (x)) is a one to one Riesz
homomorphism and T (e) � 0 if and only if e � 0. Let a ∈ F be given. Then

π(1 ⊗ e)
(
σ(x)

) = a,

where e = π−1(1 ⊗ a)(x). �
Hence combining the above lemmas we have proved Theorem 6.

3. Questions

Let X and Y be compact Hausdorff spaces and E , F be locally convex spaces with duals E ′ and F ′ , respectively. We shall
call a map T : C(X, E) → C(Y , F ) is n-weakly separating if for each v ∈ F ′ and f1, f2, . . . , fn ∈ C(X, E),

n⋂

i=1

(
v ◦ T ( f i)

)−1 = ∅

whenever
⋂n

i=1(u ◦ f i)
−1 = ∅ for each u ∈ E ′ . It is clear that if E and F are normed spaces then an n-separating map T is

weakly n-separating. But we do not know the converse of this. On the other hand, we believe that many Banach Stone type
theorem related to n-biseparating can be obtained also for n-weakly biseparated linear maps.
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