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1. Introduction and brief history

Let X be a topological space and E be a topological vector space. The vector space of all continuous functions from X
into E is denoted by C(X, E). Under the ordering

f<g << fx <gk) foreachxelX,

C(X, E) is a Riesz space whenever E is Riesz space. If X is compact and E is a normed space then C(X, E) is a normed
space under the norm

I fIl =sup| f@)|
xeX

and it is complete if E is Banach space. In particular, if E is a Banach lattice then C(X, E) is a Banach lattice. We write C(X)
instead of C(X, R).

The Banach-Stone theorem tells us that every surjective isometry between C(K) and C(M) must be of the form
T(f)(k) = h(k) f(o(k)) where o is a homeomorphism of the compact Hausdorff space K onto the compact Hausdorff
space M. On the other hand, the isomorphic type of C(K) is not sufficient to characterize K, for by Milutin’s theo-
rem, if K and M are uncountable metrizable compact spaces, then C(K) and C(M) are isomorphic. For compact metric
spaces K and M the Banach-Stone theorem proved by Banach [4] and generalized for arbitrary compact Hausdorff spaces
by Stone [13]. We refer to [9] for Riesz isomorphic and algebraic isomorphic versions of the Banach-Stone theorem.
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Jerison [11] was the first to consider Banach-Stone type theorem on C(X, E). We refer to [5] and [7] fore more details of
the Banach-Stone theorem on C(X, E).

Definition 1. Let X and Y be compact Hausdorff spaces, E and F be topological vector space and n be a natural number.
Amap T:C(X,E)— C(Y, F) is called n-separating if the following implication holds

Nfi'o=0s = (TG0 =0

i=1 i=1

T is called n-biseparating if

Nfilo=0 = NTUO=0

i=1 i=1

It is clear that if T is n-separating and m < n then T is also m-separating. In the literature 2-separating linear map
is called separating and 2-biseparating map is called biseparating, which was introduced in [3] and [10]. For realcompact
spaces X and Y it is an open question whether a linear separating bijection T :C(X) — C(Y) is automatically biseparating
(see [2]). In the last twenty years it has been shown that Banach-Stone theorem enjoys with separating property. Recently
the following theorems are proved:

Theorem 2. (See [8].) Let X and Y be compact Hausdorff spaces and, E and F be Banach spaces. Then every biseparating linear map
T :C(X,E) — C(Y, F) is a weighted composition operator, T(f)(y) = h(y) f (a(y)) for each f € C(X,E) and y € Y, where ¢ is a
homeomorphism from Y into X and h(y) is an invertible linear map from E into F.

A Riesz space (vector lattice) E is an ordered vector space in which sup{x, y} exists for every x, y € E. To each element
x € E we associate the absolute value |x| = sup{x, —x}, its positive part x™ = {x, 0} and the negative part x~ = sup{—x, 0}. A
subset A of a Riesz space is said to be solid if whenever |x| < |y| imply that y € A. A topological vector space on a Riesz
space E is said to be locally solid if zero admits a fundamental system of solid neighborhoods. A norm ||.|| on a Riesz space
is said to be a lattice norm whenever |x| < |y| implies ||x|| < |ly¥|l. A Riesz space equipped with a lattice norm is known as
a normed Riesz space. If a normed Riesz space is also norm complete, then it is referred to as a Banach lattice. Normed Riesz
spaces are locally solid. If X is compact Hausdorff space and E is a normed Riesz space then C(X, E) is also a normed Riesz
space. The Riesz spaces E and F are said to be Riesz isomorphic if there exists a one-to-one and onto linear map T: E — F
such that T(x) > 0 if and only if x > 0. In this case T is called a Riesz isomorphism. For more details on Riesz spaces, locally
solid Riesz spaces and Riesz algebras we refer to [1] and [14].

Theorem 3. (See [12].) Let X, Y be compact Hausdorff spaces and let E, F be both Banach lattices and Riesz algebras. It is shown that
if F has no zero-divisor and if there exists a 1-separating Riesz algebraic isomorphism @ : C(X, E) — C(Y, F), then X is homeomorphic
to Y and E is Riesz algebraically isomorphic to F.

Theorem 4. (See [6].) For compact Hausdorff spaces X, Y and Z, and Banach lattice E, if = : C(X, E) — C(Y,C(2)) is a 1-separating
Riesz isomorphism then X and Y are homeomorphic, and E and C(Z) are Riesz isomorphic spaces.

In [6] it was asked whether C(Z) can be replaced by an arbitrary Banach lattice. The aim of this paper is to give a
positive answer to this conjecture and generalize main result of [7].

2. The result

We are ready to state our main result as follows. This generalizes Theorems 4 and 5 and gives answer to a conjecture
in [6].

Theorem 5. Let X and Y be compact Hausdorff spaces and, E and F be locally solid Riesz spaces. If m : C(X,E) — C(Y,F) isa
1-biseparating Riesz isomorphism then X and Y are homeomorphic and, E and F are Riesz isomorphic spaces.

IfeceE and f e C(X) then f®e: X — E is defined by f ® e(x) = f(x)e. Similar notation is used for e € F and f € C(Y).

Lemma 6. For each x € X there exists a unique o (x) € Y such that
Uz =[x (H'0): fezw}={o®}

where
Zx) ={feC(X,E)y: f(x)=0}.
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Proof. Let fq,..., fn € Z(x) be given. Then f1 Vv fo v ---V f € Z(x). From the following equation
(T ONT DT O N NT ()T O =71V VeV ) TH0)

{m(f)~1(0): f e Z(x)} has the finite intersection property. Since Y is compact UZ(x) is nonempty. Let a, b € UZ(x) and a # b.
Then there exists g € C(Y, F)4 such that g(a) =0 and g(b) # 0. Then 7~ 1(g)(x) > 0. (Indeed, if 7~ 1(g)(x) =0 then
71 (g) € Z(x), so g(b) =m (1 (g)(b) =0.) Let

e=n"'(g® and t=|r"'(g)-1®e€|.
Then t(x) =0, so t € Z(x). From the following

m(®)@=|7(r" () -r(1®e)@=0
we have

0=g@=nm(1®e)(a)>0.

This contradiction completes the proof. O

Lemma 7. For each f € C(X, E) and x € X we have
T(He@)=m(18 f®)(oX).

Proof. Let fy=|f—1® f(x)|. Then 0< f and f(x) =0, so fx € Z(x). Hence  (fx)(o(x)) =0. As it is a Riesz homomorphism
we have 7 (f)(c(x) =7 (1® f(X)(o(x)). O

Lemma 8. Let x € X. Then 7w (f)(o (x)) = 0 if and only if f(x) = 0.

Proof. Let f € C(X,E)4+ be given. By the definition, if f(x) =0 we have 7 (f)(c(x)) =0. If w(f)(oc(x)) =0, then
7(1® f(x))(o(x)) =0. This implies 0 € 1 ® f(x)(X), so we must have f(x)=0. O

Lemma 9. o is one-to-one.

Proof. Let a,b € X with o(a) = o (b). Suppose that a # b. Then f(a) > 0 and f(b) =0 for some f € C(X, E)y. From the
previous lemma we have

7(f)(o@)#0 and m(f)(o(b))=0.

This is a contradiction. O
Lemma 10. o is continuous.

Proof. Let x, — x in X. We show that o (xy,) — o (x). U C Y be an open set with o (x) € U. There exists f € C(X, E)+ with
T (f)(o ) #0 and 7 (f)(Y \ U) ={0}. Then f(x) > 0. Since f(xy) — f(x) there exists g such that f(x,) > 0 for each
o > ap. This implies that o (x,) ¢ Y \ U for each o > g, so o (xy) € U for each o > op. Hence o (x,) — o(x). O

Lemma 11. o is onto.

Proof. Suppose that there exists y € Y with y ¢ o (X). Since o a continuous and X is compact, o (X) is compact. Then there
exists f € C(X, E);+ with

(i #0 and w(f)(o(X))={0}.

From Lemma 9 f(X) = {0}, so w(f)(y) =0. This is a contradiction. Hence, o is onto. O
Hence we have proved the following.
Corollary 12. X and Y are homeomorphic.

Lemma 13. E and F are Riesz isomorphic spaces.
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Proof. Let x € X be given. Then it is clear that the map T : E — F defined by T(e) =7 (1 ® e)(o (X)) is a one to one Riesz
homomorphism and T(e) > 0 if and only if e > 0. Let a € F be given. Then

T(1®e)(o®)=a,

wheree=7"11Qa)(x). O
Hence combining the above lemmas we have proved Theorem 6.
3. Questions

Let X and Y be compact Hausdorff spaces and E, F be locally convex spaces with duals E’ and F’, respectively. We shall
call amap T:C(X,E)— C(Y, F) is n-weakly separating if for each v € F’ and f1, fo, ..., fa € C(X, E),

n

NvoT) ' =0

i=1

whenever ﬂL](u o f{)~1 =@ for each u € E’. It is clear that if E and F are normed spaces then an n-separating map T is
weakly n-separating. But we do not know the converse of this. On the other hand, we believe that many Banach Stone type
theorem related to n-biseparating can be obtained also for n-weakly biseparated linear maps.
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