provided by Elsevier - Publisher Connector

Topology and its Applications

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The Banach–Stone theorem revisited

Z. Ercan^{a,*}, S. Önal^{b,1}

^a Abant Izzet Baysal University, Department of Mathematics, Gölköy Kampusu, 14280 Bolu, Turkey
^b Middle East Technical University, Department of Mathematics, 06531 Ankara, Turkey

ARTICLE INFO

Article history: Received 31 March 2008 Received in revised form 22 May 2008 Accepted 28 May 2008

MSC: primary 46E40

Keywords: Banach–Stone theorem Separating Biseparating Locally solid Riesz space

ABSTRACT

Let *X* and *Y* be compact Hausdorff spaces, and *E* and *F* be locally solid Riesz spaces. If $\pi : C(X, E) \rightarrow C(Y, F)$ is a 1-biseparating Riesz isomorphism then *X* and *Y* are homeomorphic, and *E* and *F* are Riesz isomorphic. This generalizes the main results of [*Z*. Ercan, S. Önal, Banach–Stone theorem for Banach lattice valued continuous functions, Proc. Amer. Math. Soc. 135 (9) (2007) 2827–2829] and [X. Miao, C. Xinhe, H. Jiling, Banach–Stone theorems and Riesz algebras, J. Math. Anal. Appl. 313 (1) (2006) 177–183], and answers a conjecture in [*Z*. Ercan, S. Önal, Banach–Stone theorem for Banach lattice valued continuous functions, Proc. Amer. Math. Soc. 135 (9) (2007) 2827–2829].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and brief history

Let X be a topological space and E be a topological vector space. The vector space of all continuous functions from X into E is denoted by C(X, E). Under the ordering

 $f \leq g$: $\iff f(x) \leq g(x)$ for each $x \in X$,

C(X, E) is a Riesz space whenever E is Riesz space. If X is compact and E is a normed space then C(X, E) is a normed space under the norm

 $\|f\| = \sup_{x \in X} \left\| f(x) \right\|$

and it is complete if *E* is Banach space. In particular, if *E* is a Banach lattice then C(X, E) is a Banach lattice. We write C(X) instead of $C(X, \mathbb{R})$.

The Banach–Stone theorem tells us that every surjective isometry between C(K) and C(M) must be of the form $T(f)(k) = h(k)f(\sigma(k))$ where σ is a homeomorphism of the compact Hausdorff space K onto the compact Hausdorff space M. On the other hand, the isomorphic type of C(K) is not sufficient to characterize K, for by Milutin's theorem, if K and M are uncountable metrizable compact spaces, then C(K) and C(M) are isomorphic. For compact metric spaces K and M the Banach–Stone theorem proved by Banach [4] and generalized for arbitrary compact Hausdorff spaces by Stone [13]. We refer to [9] for Riesz isomorphic and algebraic isomorphic versions of the Banach–Stone theorem.

^{*} Corresponding author. Tel.: +90 (374) 2541307; fax: +90 (374) 253 46 42. E-mail addresses: zercan@ibu.edu.tr (Z. Ercan), osul@metu.edu.tr (S. Önal).

¹ Tel.: +90 (313) 2105374; fax: +90 (312) 210 29 72.

^{0166-8641/\$ –} see front matter $\ \textcircled{}$ 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2008.05.018

Definition 1. Let *X* and *Y* be compact Hausdorff spaces, *E* and *F* be topological vector space and *n* be a natural number. A map $T : C(X, E) \rightarrow C(Y, F)$ is called *n*-separating if the following implication holds

$$\bigcap_{i=1}^{n} f_i^{-1}(0) = \emptyset \implies \bigcap_{i=1}^{n} T(f_i)^{-1}(0) = \emptyset.$$

T is called *n*-biseparating if

$$\bigcap_{i=1}^{n} f_i^{-1}(0) = \emptyset \quad \Longleftrightarrow \quad \bigcap_{i=1}^{n} T(f_i)^{-1}(0) = \emptyset$$

It is clear that if *T* is *n*-separating and $m \le n$ then *T* is also *m*-separating. In the literature 2-separating linear map is called *separating* and 2-biseparating map is called *biseparating*, which was introduced in [3] and [10]. For realcompact spaces *X* and *Y* it is an open question whether a linear separating bijection $T: C(X) \to C(Y)$ is automatically biseparating (see [2]). In the last twenty years it has been shown that Banach–Stone theorem enjoys with separating property. Recently the following theorems are proved:

Theorem 2. (See [8].) Let X and Y be compact Hausdorff spaces and, E and F be Banach spaces. Then every biseparating linear map $T : C(X, E) \rightarrow C(Y, F)$ is a weighted composition operator, $T(f)(y) = h(y)f(\alpha(y))$ for each $f \in C(X, E)$ and $y \in Y$, where α is a homeomorphism from Y into X and h(y) is an invertible linear map from E into F.

A Riesz space (vector lattice) *E* is an ordered vector space in which $\sup\{x, y\}$ exists for every $x, y \in E$. To each element $x \in E$ we associate the absolute value $|x| = \sup\{x, -x\}$, its positive part $x^+ = \{x, 0\}$ and the negative part $x^- = \sup\{-x, 0\}$. A subset *A* of a Riesz space is said to be *solid* if whenever $|x| \leq |y|$ imply that $y \in A$. A topological vector space on a Riesz space *E* is said to be *locally solid* if zero admits a fundamental system of solid neighborhoods. A norm ||.|| on a Riesz space is said to be a *lattice norm* whenever $|x| \leq |y|$ implies $||x|| \leq ||y||$. A Riesz space equipped with a lattice norm is known as a *normed Riesz space*. If a normed Riesz space is also norm complete, then it is referred to as a *Banach lattice*. Normed Riesz spaces are locally solid. If *X* is compact Hausdorff space and *E* is a normed Riesz space then C(X, E) is also a normed Riesz space. The Riesz spaces *E* and *F* are said to be *Riesz isomorphic* if there exists a one-to-one and onto linear map $T : E \to F$ such that $T(x) \ge 0$ if and only if $x \ge 0$. In this case *T* is called a *Riesz isomorphism*. For more details on Riesz spaces, locally solid Riesz spaces and Riesz algebras we refer to [1] and [14].

Theorem 3. (See [12].) Let X, Y be compact Hausdorff spaces and let E, F be both Banach lattices and Riesz algebras. It is shown that if F has no zero-divisor and if there exists a 1-separating Riesz algebraic isomorphism $\Phi : C(X, E) \to C(Y, F)$, then X is homeomorphic to Y and E is Riesz algebraically isomorphic to F.

Theorem 4. (See [6].) For compact Hausdorff spaces X, Y and Z, and Banach lattice E, if $\pi : C(X, E) \to C(Y, C(Z))$ is a 1-separating Riesz isomorphism then X and Y are homeomorphic, and E and C(Z) are Riesz isomorphic spaces.

In [6] it was asked whether C(Z) can be replaced by an arbitrary Banach lattice. The aim of this paper is to give a positive answer to this conjecture and generalize main result of [7].

2. The result

We are ready to state our main result as follows. This generalizes Theorems 4 and 5 and gives answer to a conjecture in [6].

Theorem 5. Let X and Y be compact Hausdorff spaces and, E and F be locally solid Riesz spaces. If $\pi : C(X, E) \rightarrow C(Y, F)$ is a 1-biseparating Riesz isomorphism then X and Y are homeomorphic and, E and F are Riesz isomorphic spaces.

If $e \in E$ and $f \in C(X)$ then $f \otimes e : X \to E$ is defined by $f \otimes e(x) = f(x)e$. Similar notation is used for $e \in F$ and $f \in C(Y)$.

Lemma 6. For each $x \in X$ there exists a unique $\sigma(x) \in Y$ such that

$$UZ(x) := \bigcap \{ \pi(f)^{-1}(0) \colon f \in Z(x) \} = \{ \sigma(x) \},\$$

where

 $Z(x) = \{ f \in C(X, E)_+ : f(x) = 0 \}.$

Proof. Let $f_1, \ldots, f_n \in Z(x)$ be given. Then $f_1 \vee f_2 \vee \cdots \vee f_n \in Z(x)$. From the following equation

$$\pi(f_1)^{-1}(0) \cap \pi(f_2)^{-1}(0) \cap \dots \cap \pi(f_n)^{-1}(0) = \pi(f_1 \vee f_2 \vee \dots \vee f_n)^{-1}(0)$$

 $\{\pi(f)^{-1}(0): f \in Z(x)\}$ has the finite intersection property. Since *Y* is compact UZ(x) is nonempty. Let $a, b \in UZ(x)$ and $a \neq b$. Then there exists $g \in C(Y, F)_+$ such that g(a) = 0 and $g(b) \neq 0$. Then $\pi^{-1}(g)(x) > 0$. (Indeed, if $\pi^{-1}(g)(x) = 0$ then $\pi^{-1}(g) \in Z(x)$, so $g(b) = \pi(\pi^{-1}(g))(b) = 0$.) Let

$$e = \pi^{-1}(g)(x)$$
 and $t = |\pi^{-1}(g) - 1 \otimes e|$.

Then t(x) = 0, so $t \in Z(x)$. From the following

$$\pi(t)(a) = \left| \pi \left(\pi^{-1}(g) \right) - \pi \left(1 \otimes e \right) \right| (a) = 0$$

we have

$$0 = g(a) = \pi (1 \otimes e)(a) > 0.$$

This contradiction completes the proof. \Box

Lemma 7. For each $f \in C(X, E)$ and $x \in X$ we have

 $\pi(f)\big(\sigma(x)\big) = \pi\big(1 \otimes f(x)\big)\big(\sigma(x)\big).$

Proof. Let $f_x = |f - 1 \otimes f(x)|$. Then $0 \le f$ and f(x) = 0, so $f_x \in Z(x)$. Hence $\pi(f_x)(\sigma(x)) = 0$. As π is a Riesz homomorphism we have $\pi(f)(\sigma(x)) = \pi(1 \otimes f(x))(\sigma(x))$. \Box

Lemma 8. Let $x \in X$. Then $\pi(f)(\sigma(x)) = 0$ if and only if f(x) = 0.

Proof. Let $f \in C(X, E)_+$ be given. By the definition, if f(x) = 0 we have $\pi(f)(\sigma(x)) = 0$. If $\pi(f)(\sigma(x)) = 0$, then $\pi(1 \otimes f(x))(\sigma(x)) = 0$. This implies $0 \in 1 \otimes f(x)(X)$, so we must have f(x) = 0. \Box

Lemma 9. σ is one-to-one.

Proof. Let $a, b \in X$ with $\sigma(a) = \sigma(b)$. Suppose that $a \neq b$. Then f(a) > 0 and f(b) = 0 for some $f \in C(X, E)_+$. From the previous lemma we have

 $\pi(f)(\sigma(a)) \neq 0$ and $\pi(f)(\sigma(b)) = 0$.

This is a contradiction. \Box

Lemma 10. σ is continuous.

Proof. Let $x_{\alpha} \to x$ in *X*. We show that $\sigma(x_{\alpha}) \to \sigma(x)$. $U \subset Y$ be an open set with $\sigma(x) \in U$. There exists $f \in C(X, E)_+$ with $\pi(f)(\sigma(x)) \neq 0$ and $\pi(f)(Y \setminus U) = \{0\}$. Then f(x) > 0. Since $f(x_{\alpha}) \to f(x)$ there exists α_0 such that $f(x_{\alpha}) > 0$ for each $\alpha > \alpha_0$. This implies that $\sigma(x_{\alpha}) \notin Y \setminus U$ for each $\alpha \ge \alpha_0$, so $\sigma(x_{\alpha}) \in U$ for each $\alpha \ge \alpha_0$. Hence $\sigma(x_{\alpha}) \to \sigma(x)$. \Box

Lemma 11. σ is onto.

Proof. Suppose that there exists $y \in Y$ with $y \notin \sigma(X)$. Since σ a continuous and X is compact, $\sigma(X)$ is compact. Then there exists $f \in C(X, E)_+$ with

 $\pi(f)(y) \neq 0$ and $\pi(f)(\sigma(X)) = \{0\}.$

From Lemma 9 $f(X) = \{0\}$, so $\pi(f)(y) = 0$. This is a contradiction. Hence, σ is onto.

Hence we have proved the following.

Corollary 12. X and Y are homeomorphic.

Lemma 13. E and F are Riesz isomorphic spaces.

Proof. Let $x \in X$ be given. Then it is clear that the map $T : E \to F$ defined by $T(e) = \pi (1 \otimes e)(\sigma(x))$ is a one to one Riesz homomorphism and $T(e) \ge 0$ if and only if $e \ge 0$. Let $a \in F$ be given. Then

$$\pi(1\otimes e)\big(\sigma(x)\big)=a,$$

where $e = \pi^{-1}(1 \otimes a)(x)$. \Box

Hence combining the above lemmas we have proved Theorem 6.

3. Questions

Let *X* and *Y* be compact Hausdorff spaces and *E*, *F* be locally convex spaces with duals *E'* and *F'*, respectively. We shall call a map $T : C(X, E) \rightarrow C(Y, F)$ is *n*-weakly separating if for each $v \in F'$ and $f_1, f_2, \ldots, f_n \in C(X, E)$,

$$\bigcap_{i=1}^{n} (v \circ T(f_i))^{-1} = \emptyset$$

whenever $\bigcap_{i=1}^{n} (u \circ f_i)^{-1} = \emptyset$ for each $u \in E'$. It is clear that if *E* and *F* are normed spaces then an *n*-separating map *T* is weakly *n*-separating. But we do not know the converse of this. On the other hand, we believe that many Banach Stone type theorem related to *n*-biseparating can be obtained also for *n*-weakly biseparated linear maps.

References

- C.D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, second ed., Mathematical Surveys and Monographs, vol. 105, American Mathematical Society, Providence, RI, 2003.
- [2] J. Araujo, Jesús realcompactness and Banach-Stone theorems, Bull. Belg. Math. Soc. Simon Stevin 11 (2) (2004) 247-258.
- [3] J. Araujo, E. Beckenstein, L. Narici, Biseparating maps and homeomorphic real-compactifications, J. Math. Anal. Appl. 192 (1) (1995) 258-265.
- [4] S. Banach, Theorie des operations lineares, Chelsea, Warshaw, 1932.
- [5] E. Behrends, M-structure and the Banach-Stone Theorem, Lecture Notes in Mathematics, vol. 736, Springer, Berlin, 1979.
- [6] Z. Ercan, S. Önal, Banach-Stone theorem for Banach lattice valued continuous functions, Proc. Amer. Math. Soc. 135 (9) (2007) 2827-2829.
- [7] R.J. Fleming, J.E. Jamison, Isometries on Banach Spaces: Function Spaces, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 129, Chapman Hall/CRC, Boca Raton, FL, 2003.
- [8] H.L. Gau, J.S. Jeang, N.C. Wong, Biseparating linear maps between continuous vector-valued function spaces, J. Aust. Math. Soc. 74 (1) (2003) 101–109.
- [9] L. Gillman, M. Jerison, Rings of continuous functions, Reprint of the 1960 edition Graduate Texts in Mathematics, vol. 43, Springer-Verlag, New York-Heidelberg, 1976.
- [10] S. Hernandez, E. Beckenstein, L. Narici, Banach-Stone theorems and separating maps, Manuscripta Math. 86 (4) (1995) 409-416.
- [11] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. (2) 52 (1950) 309-327.
- [12] X. Miao, C. Xinhe, H. Jiling, Banach-Stone theorems and Riesz algebras, J. Math. Anal. Appl. 313 (1) (2006) 177-183.
- [13] M. Stone, Applications of the theory of boolean ring, Trans. Amer. Math. Soc. 41 (1937) 375-481.
- [14] A.C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, 1983.