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a b s t r a c t

Let G be a simple connected graph and di be the degree of its ith vertex. In a recent paper
[D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and
arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–1376]
the ‘‘first geometric–arithmetic index’’ of a graph G was defined as

GA1 =

− 
di dj

(di + dj)/2

with summation going over all pairs of adjacent vertices. We obtain lower and upper
bounds onGA1 and characterize graphs forwhich these bounds are best possible.Moreover,
we discuss the effect on GA1 of inserting an edge into a graph.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, a large number of mathematical investigations were reported on graph invariants whose origin is
from chemistry, and which are claimed to have chemical applications (see the books [9,14], the recent papers [1,2,6,4,11,
16], and the references quoted therein). Quite a few of these graph invariants are based on vertex degrees (see e.g., [3,7,10,
13]). A whole class of newly studied graph invariants are the ‘‘geometric–arithmetic indices’’ whose general definition is

GAgeneral = GAgeneral(G) =

−
vivj∈E(G)


QiQj

1
2 (Qi + Qj)

(1)

where Qi is some quantity that in a unique manner can be associated with the vertex vi of the graph G.
The name of this class of indices is evident from their definition. Namely, these are obtained from the ratio of geometric

and arithmetic means of some properties of adjacent vertices.
The first GA-index was proposed by Vukičević and one of the present authors [15], and was simply named

‘‘geometric–arithmetic index’’. Since in the meantime at least two additional GA-indices were conceived, we now refer to
the original GA-index as the ‘‘first geometric–arithmetic index’’ and denote it by GA1 = GA1(G). It is defined as follows [15]:

GA1 = GA1(G) =

−
vivj∈E(G)


didj

1
2 (di + dj)

(2)

where vivj is an edge of the graph G connecting the vertices vi and vj, where di stands for the degree of the vertex vi, and
where the summation goes over all edges of G. Needless to say that GA1 is one more vertex-degree-based graph invariant.
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The chemical applicability of the GA1 index was examined and documented in detail in the paper [15] and the reviews
[8,5].

This paper is organized as follows. In Section 2, we specify the notation used and provide the necessary definitions. In
Section 3, we give lower and upper bounds on the GA1 index of a connected graph, and characterize graphs for which these
bounds are best possible. In Section 4, we discuss the change on GA1 when an edge is inserted into the graph.

2. Preparations

Let G = (V , E) be a simple connected graph with vertex and edge sets V (G) and E(G), where V (G) = {v1,
v2, . . . , vn}, |V (G)| = n, and |E(G)| = m. Let di be the degree of vertex vi for i = 1, 2, . . . , n. The maximum vertex
degree is denoted by ∆, the minimum by δ and the minimum non-pendent vertex degree by δ1. The second Zagreb index
M2(G) is equal to the sum of the products of the degrees of pairs of adjacent vertices of the underlying graph G, that is,
M2(G) =

∑
vivj∈E(G) didj.

If the vertex set V (G) is the disjoint union of two nonempty sets V1(G) and V2(G), such that every vertex in V1(G) has
degree r and every vertex in V2(G) has degree s ≠ r , then G is said to be (r, s)-semiregular. When r = s, then G is a regular
graph (of degree r).

A vertex of a graph is said to be pendent if its neighborhood contains exactly one vertex. An edge of a graph is said to be
pendent if one of its vertices is a pendent vertex.

As usual, we denote by Kn and Ka,b the complete graph on n vertices and the complete bipartite graph on a + b vertices,
with parts of size a and b. In particular, K1,n−1 the n-vertex star; all its edges are pendent.

3. Bounds on geometric–arithmetic index

In this section we establish lower bounds on GA1(G) of a graph G in terms of number of vertices n, number of edges m,
maximum vertex degree ∆, minimum non-pendent vertex degree δ1, number of pendent vertices p, and the second Zagreb
indexM2.

Theorem 1. Let G be a simple connected graph of order n with m edges, maximum degree ∆, and minimum non-pendent vertex
degree δ1. Then

GA1(G) ≥
2p

√
∆

∆ + 1
+

1
∆


M2 − p∆ + (m − p)(m − p − 1)δ2

1 . (3)

The equality holds in (3) if and only if G ∼= K1,n−1 or G is isomorphic to a regular graph or G is isomorphic to a (∆, 1)-semiregular
graph.

Proof. For brevity write

Ξ1 =

−
vivj∈E(G), di,dj>1

4didj
(di + dj)2

Ξ2 =

−
vivj,vkvℓ∈E(G), di,dj,dk,dℓ>1

4

didjdkdℓ

(di + dj)(dk + dℓ)

Ξ3 =

−
vivj∈E(G), di,dj>1

didj

Ξ4 =

−
vivj,vkvℓ∈E(G), di,dj,dk,dℓ>1


didjdkdℓ.

Then we have

GA1(G) =

−
vivj∈E(G)

2

didj

di + dj
(4)

=

−
vivj∈E(G), dj=1

2

didj

di + dj
+

−
vivj∈E(G), di,dj>1

2

didj

di + dj

≥
2p

√
∆

∆ + 1
+


Ξ1 + 2Ξ2 as di ≤ ∆ (5)
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≥
2p

√
∆

∆ + 1
+

1
∆


Ξ3 + 2Ξ4 (6)

≥
2p

√
∆

∆ + 1
+

1
∆


M2 − p∆ + (m − p)(m − p − 1)δ2

1 as 1 ≠ di ≥ δ1. (7)

Suppose now that equality holds in (3). Then all inequalities in the above argumentmust be equalities. In particular, from
equality in (5), we get that di = ∆ and dj = 1 for each pendent edge vivj ∈ E(G).

Analogously, from equality in (6) it follows that di = ∆ for each non-pendent vertex vi ∈ V (G), whereas equality in (7)
implies that di = δ1 for each non-pendent vertex vi ∈ V (G).

We now need to distinguish between two cases (a)m = p and (b) m > p.
Case (a):m = p, i.e., all the edges are pendent. Hence G is isomorphic to the star K1,n−1 as G is assumed to be connected.
Case (b):m > p. If p = 0, then we have ∆ = δ1 and hence G is isomorphic to a regular graph. Otherwise,m > p > 0. In this
case we have di = ∆ = δ1 for non-pendent vertex vi ∈ V (G). Hence G is isomorphic to a (∆, 1)-semiregular graph.

Conversely, one can easily see that the equality holds in (3) for the star K1,n−1 or a regular graph or a (∆, 1)-semiregular
graph. �

If in inequality (3), δ1 is replaced by δ, then it holds as equality for the two-vertex graph K2. In addition, by setting p = 0
into (3) and bearing in mind that δ ≤ δ1, we obtain the following.

Corollary 2. Let G be a simple connected graph of order n with m edges, maximum degree ∆, and minimum degree δ. Then

GA1(G) ≥
1
∆


M2 + m(m − 1)δ2

with equality if and only if G is isomorphic to a regular graph.

Lemma 3 ([12]). Let (a1, a2, . . . , an) be positive n-tuples such that there exist positive numbers A and a satisfying

0 < a ≤ ai ≤ A.

Then

n
n∑

i=1
a2i

n∑
i=1

ai

2 ≤
1
4


A
a

+


a
A

2

. (8)

The inequality becomes an equality if and only if a = A or

q =
A/a

A/a + 1
n

is an integer and q of the numbers ai coincide with a and the remaining n − q of the ai’s coincide with A(≠a).

Theorem 4. Let G be a simple connected graph of order n(n > 2), with degree sequences d1, d2, . . . , dn. Then

GA1(G) ≥
2p

√
∆

∆ + 1
+


8(∆ + δ1)

√
∆δ1

(
√

∆ +
√

δ1)2

(m − p)2 −
m − p
4δ2

1


n−

i=1

d3i − 2M2 − p(δ1 − 1)2

. (9)

The equality holds in (9) if and only if G ∼= K1,n−1 or G is isomorphic to a regular graph or G is isomorphic to a (∆, 1)-semiregular
graph.

Proof. For δ1 ≤ di, dj ≤ ∆, we have ∆

δ1
≥

di
dj

≥
δ1
∆

and thus
di
dj

−


dj
di

≤


∆

δ1
−


δ1

∆
.

This implies
di
dj

+


dj
di

2

=


di
dj

−


dj
di

2

+ 4

≤


∆

δ1
−


δ1

∆

2

+ 4 =


∆

δ1
+


δ1

∆

2
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and finally we get

2
√

∆δ1

∆ + δ1
≤

2

didj

di + dj
≤ 1. (10)

Now, since

2

didj

di + dj
=


1 −


di − dj
di + dj

2

and m − p is the number of non-pendent edges in G, using (8) and (10) we get −
vivj∈E(G), di,dj≠1

2

didj

di + dj

2

≥
8(m − p)(∆ + δ1)

√
∆δ1

(
√

∆ +
√

δ1)4

−
vivj∈E(G), di,dj≠1


1 −


di − dj
di + dj

2


. (11)

Now, −
vivj∈E(G), di,dj≠1

(di − dj)2 =

−
vivj∈E(G)

(di − dj)2 −

−
vivj∈E(G),dj=1

(di − 1)2

=

n−
i=1

d3i − 2
−

vivj∈E(G)

didj −
−

vivj∈E(G),dj=1

(di − 1)2

≤

n−
i=1

d3i − 2M2(G) − p(δ1 − 1)2

and therefore,−
vivj∈E(G), di,dj≠1


1 −


di − dj
di + dj

2


≥ m − p −
1

4δ2
1

−
vivj∈E(G), di,dj≠1

(di − dj)2

≥ m − p −
1

4δ2
1


n−

i=1

d3i − 2M2 − p(δ1 − 1)2


. (12)

Combining (12) with (11), we get

−
vivj∈E(G), di,dj≠1

2

didj

di + dj
≥


8(∆ + δ1)

√
∆δ1

(
√

∆ +
√

δ1)2

(m − p)2 −
m − p
4δ2

1


n−

i=1

d3i − 2M2 − p(δ1 − 1)2


(13)

which implies

GA1(G) =

−
vivj∈E(G), di=1

2

dj

dj + 1
+

−
vivj∈E(G), di,dj≠1

2

didj

di + dj
. (14)

For 2 ≤ dj ≤ ∆, we have
dj

dj + 1
≥

√
∆

∆ + 1
.

By (13) and using (14), we get the required result (9).
Suppose now that equality holds in (9). Then all inequalities in the above argument must be equalities. In particular,

from (12),

di = dj = δ1 for any vivj ∈ E(G), di, dj ≠ 1,m − p > 0.

Also, we have

dj = ∆ for vivj ∈ E(G), di = 1.

If m = p, then n − 1 ≤ m = p ≤ n − 1, as G is connected. Hence G is isomorphic to the star K1,n−1. Otherwise, m > p.
When p = 0, then G is isomorphic to a regular graph. When p ≠ 0, then G is isomorphic to a (∆, 1)-semiregular graph, as G
is connected.

Conversely, one can easily see that the equality holds in (9) for the star K1,n−1 or a (∆, 1)-semiregular graph or a regular
graph. �
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Corollary 5. Let G be same as in Theorem 4, except that it has no pendent vertices. Then,

GA1(G) ≥


8m(∆ + δ)

√
∆δ

(
√

∆ +
√

δ)2

m −
1

4δ2


n−

i=1

d3i − 2M2


. (15)

Moreover, the equality holds in (15) if and only if G is isomorphic to a regular graph.

Proof. The proof follows directly from Theorem 4. �

Note that if we permit pendent vertices, then in the case of the two-vertex graph K2, formula (15) holds as equality.

Theorem 6. Let G be a simple connected graph of order n with m edges. Then

GA1(G) ≥
2m

√
2(n − 1)
n + 1

− 2p

√
2(n − 1)
n + 1

−

√
n − 1
n


. (16)

The equality holds in (16) if and only if G ∼= K1,n−1 or G ∼= K3.

Proof. For each pendent edge vivj ∈ E(G), we have either di = 1 or dj = 1. Thus,

1
n − 1

≤
di
dj

≤ n − 1

which implies
di
dj

−


dj
di

≤
√
n − 1 −


1

n − 1

i.e.,


di
dj

+


dj
di

=

di
dj

−


dj
di

2

+ 4 ≤
√
n − 1 +


1

n − 1

i.e.,


didj

di + dj
≥

√
n − 1
n

. (17)

Moreover, the equality holds in (17) if and only if di = n − 1 and dj = 1 for di ≥ dj.
For each non-pendent edge vivj ∈ E(G), we have

2 ≤ di, dj ≤ n − 1 i.e.,
2

n − 1
≤

di
dj

≤
n − 1
2

.

Similarly as before we get
didj

di + dj
≥

√
2(n − 1)
n + 1

. (18)

Moreover, the equality holds in (18) if and only if di = n − 1 and dj = 2 for di ≥ dj.
Since G has p pendent vertices, by (17) and (18), we obtain

GA1(G) =

−
vivj∈E(G), dj=1

2

di dj

di + dj
+

−
vivj∈E(G), di,dj≠1

2

didj

di + dj

≥
2
√
n − 1
n

p +
2
√
2(n − 1)
n + 1

(m − p). (19)

From (19) we arrive at (16).
Suppose now that equality holds in (16). Then equality holds in (19). If p = 0, then all the edges are non-pendent. From

equality in (18), we have di = n − 1 and dj = 2 for each edge vivj ∈ E(G) and di ≥ dj, that is, there is a common neighbor
between the vertices vi and vj, for any edge vivj ∈ E(G). Thus G is isomorphic to the complete graph K3 as G is connected.

Otherwise, p > 0. First we assume that m = p. Thus all the edges are pendent, and hence G is isomorphic to the star
K1,n−1 as G is connected. Next, assume that m > p > 0. In this case, the maximum degree vertex, say vi, by equality in
(17) has degree n − 1. Thus G is a supergraph of the star K1,n−1. Since m > p, there exists at least one non-pendent edge in
G, and hence two vertices, say, vj and vk adjacent to vertex vi, are adjacent. By equality in (18), for the non-pendent edge
vjvk ∈ E(G), either dj = n − 1 or dk = n − 1. Thus we do not have any pendent vertex in G as di = n − 1, a contradiction.

Conversely, one can see easily that the equality holds in (16) for the star K1,n−1 or the complete graph K3. �
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Fig. 1. By joining the vertices vi and vj by a new edge, in the case ofH1 the GA1 index increases (from 6.919 to 7.919), whereas in the case ofH2 it decreases
(from 92.38 to 92.34).

Theorem 7. Let G be a simple connected graph. Then

1
∆


M2 + m(m − 1)δ2 ≤ GA1(G) ≤

1
δ


M2 + m(m − 1)∆2. (20)

Moreover, the equality holds on both sides if and only if G is a regular graph.
Proof. We have

[GA1(G)]2 =

−
vivj∈E(G)

4didj
(di + dj)2

+ 2
−

vivj≠vkvℓ

2

didj

di + dj
·
2
√
dkdℓ

dk + dℓ

. (21)

Since 2δ ≤ di + dj ≤ 2∆ for each edge vivj ∈ E(G), and δ ≤ di ≤ ∆ for each vertex vi ∈ V (G), (20) follows from (21).
Moreover, equality on the both sides of (20) holds if and only if G is isomorphic to a regular graph. �

We now give an upper bound on the GA1 index.

Theorem 8. Let G be a simple connected graph with m edges and with minimum degree δ. Then

GA1(G) ≤

√
mM2

δ
. (22)

The equality holds in (22) if and only if G is isomorphic to a regular graph.
Proof. By the Cauchy–Schwarz inequality,−

vivj∈E(G)

2

didj

di + dj
≤

 −
vivj∈E(G)

4didj
−

vivj∈E(G)

1
(di + dj)2

≤


mM2

δ2
. (23)

Moreover, equality holds in (23) if and only if di = δ for all vi ∈ V (G). Hence equality holds in (22) if and only if G is
isomorphic to a regular graph. �

4. Effect on GA1 index of inserting an edge into the graph G

In this section we consider the change of the GA1 index when a new edge is inserted into the underlying graph. Suppose
that the vertices vi and vj of the graph G are not adjacent, and insert a new edge vivj into G to obtain the graph G+ {vivj}. In
the general case, the transformation G → G + {vivj} may either increase or decrease the GA1-value.

In Fig. 1 are given two examples: in one the GA1 index increases, whereas in the other it decreases when two nonadjacent
vertices are joined by a new edge.

Theorem 10 provides a partial characterization of the graphs for which GA1(G + {vivj}) > GA1(G). The general solution
of this problem remains open.

We first state the following elementary lemma.

Lemma 9. Let

f (x) =

√
x

√
k + 6x

, k > 0.

Then f (x) is an increasing function for x > 0.

Now we are ready to prove the theorem.

Theorem 10. Let G be a simple graph with nonadjacent vertices vi and vj. Let dr = max{dk | vivk ∈ E(G)} and ds = max{dk |

vjvk ∈ E(G)}. If

di
dj

≤ min

di
dr

,
dj
ds


then GA1(G + {vivj}) > GA1(G).
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Proof. We start by observing that

GA1(G + {vivj}) − GA1(G) = 2
−
vk∈Ni

[√
(di + 1)dk

di + dk + 1
−

√
didk

di + dk

]
+ 2

−
vk∈Nj


(dj + 1)dk

dj + dk + 1
−


djdk

dj + dk



+
2


(di + 1)(dj + 1)
di + dj + 2

(24)

where Ni denotes the set of first neighbors of the vertex vi.
Since

di + 1 =


di


1 +

1
di

≥


di


1 +

1
2di

−
1

8d2i


=


di +

1
2
√
di

−
1

8d3/2i

we have

√
didk

di + dk
−

√
(di + 1)dk

di + dk + 1
≤

√
di(di + dk + 1) − (di + dk)


√
di + 1

2
√
di

−
1

8d3/2i


(di + dk)(di + dk + 1)


dk

=


di − dk +

di+dk
4di

√
dk

2
√
di(di + dk)(di + dk + 1)

. (25)

For di ≥ dk, we have to show that
di − dk +

di+dk
4di

√
dk

2
√
di(di + dk)(di + dk + 1)

<

√
dk

2di
√
di + 6dk

that is,
(di + 3dk)2 − 9d2k


di − dk +

di + dk
4di


< (di + dk)(di + dk + 1)

that is,
(di + 3dk)2 − 9d2k


di − dk +

di + dk
4di


< (di + 3dk)


di − dk +

di + dk
4di


< (di + dk)(di + dk + 1)

which, evidently, is always obeyed as di ≥ dk. For di ≥ dk, by Lemma 9 we have
√
didk

di + dk
−

√
(di + 1)dk

di + dk + 1
<

√
dk

2di
√
di + 6dk

≤

√
dr

2di
√
di + 6dr

as dr ≥ dk for all vk such that vivk ∈ E(G). Moreover, one can easily see that
√
didk

di + dk
−

√
(di + 1)dk

di + dk + 1
< 0 for dk > di.

Thus,
√
didk

di + dk
−

√
(di + 1)dk

di + dk + 1
<

√
dr

2di
√
di + 6dr

. (26)

Let t1 = di/dj, t2 = di/dr , and t3 = dj/ds. Then from (26) it follows

−
vk∈Ni

 
djdk

dj + dk
−


(dj + 1)dk

dj + dk + 1


<

√
dr

2
√
di + 6dr

=
1

2
√
t2 + 6

. (27)

Similarly,

−
vk∈Ni

 
djdk

dj + dk
−


(dj + 1)dk

dj + dk + 1


≤

1
2
√
t3 + 6

. (28)
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Without loss of generality, we can assume that t2 ≤ t3. Then,

1
2
√
t2 + 6

+
1

2
√
t3 + 6

≤
1

√
t2 + 6

. (29)

By simple calculation, using t2 ≥ t1, we get

1
√
t2 + 6

<


t1 +

1
dj

 
1 +

1
dj


t1 + 1 + 2/dj

=


(di + 1)(dj + 1)
di + dj + 2

. (30)

Using (27)–(30), we get−
vk∈Ni

[ √
didk

di + dk
−

√
(di + 1)dk

di + dk + 1

]
+

−
vk∈Nj

 
djdk

dj + dk
−


(dj + 1)dk

dj + dk + 1


<


(di + 1)(dj + 1)
di + dj + 2

.

Combining the above inequality with Eq. (24) we arrive at Theorem 10. �
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