On the first geometric-arithmetic index of graphs

K.Ch. Das ${ }^{\text {a }}$, I. Gutman ${ }^{\text {b,* }}$, B. Furtula ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Sungkyunkwan University, Suwon, Republic of Korea
${ }^{\mathrm{b}}$ Faculty of Science, University of Kragujevac, Kragujevac, Serbia

ARTICLE INFO

Article history:

Received 9 December 2010
Received in revised form 18 April 2011
Accepted 18 June 2011
Available online 28 July 2011

Keywords:

Graph invariant
Vertex-degree-based graph invariant Geometric-arithmetic index Degree (of vertex)

Abstract

Let G be a simple connected graph and d_{i} be the degree of its i th vertex. In a recent paper [D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376] the "first geometric-arithmetic index" of a graph G was defined as $$
G A_{1}=\sum \frac{\sqrt{d_{i} d_{j}}}{\left(d_{i}+d_{j}\right) / 2}
$$ with summation going over all pairs of adjacent vertices. We obtain lower and upper bounds on $G A_{1}$ and characterize graphs for which these bounds are best possible. Moreover, we discuss the effect on $G A_{1}$ of inserting an edge into a graph.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, a large number of mathematical investigations were reported on graph invariants whose origin is from chemistry, and which are claimed to have chemical applications (see the books [9,14], the recent papers [1,2,6,4,11, $16]$, and the references quoted therein). Quite a few of these graph invariants are based on vertex degrees (see e.g., [3,7,10, 13]). A whole class of newly studied graph invariants are the "geometric-arithmetic indices" whose general definition is

$$
\begin{equation*}
G A_{\text {general }}=G A_{\text {general }}(G)=\sum_{v_{i} v_{j} \in E(G)} \frac{\sqrt{Q_{i} Q_{j}}}{\frac{1}{2}\left(Q_{i}+Q_{j}\right)} \tag{1}
\end{equation*}
$$

where Q_{i} is some quantity that in a unique manner can be associated with the vertex v_{i} of the graph G.
The name of this class of indices is evident from their definition. Namely, these are obtained from the ratio of geometric and arithmetic means of some properties of adjacent vertices.

The first GA-index was proposed by Vukičević and one of the present authors [15], and was simply named "geometric-arithmetic index". Since in the meantime at least two additional $G A$-indices were conceived, we now refer to the original $G A$-index as the "first geometric-arithmetic index" and denote it by $G A_{1}=G A_{1}(G)$. It is defined as follows [15]:

$$
\begin{equation*}
G A_{1}=G A_{1}(G)=\sum_{v_{i} v_{j} \in E(G)} \frac{\sqrt{d_{i} d_{j}}}{\frac{1}{2}\left(d_{i}+d_{j}\right)} \tag{2}
\end{equation*}
$$

where $v_{i} v_{j}$ is an edge of the graph G connecting the vertices v_{i} and v_{j}, where d_{i} stands for the degree of the vertex v_{i}, and where the summation goes over all edges of G. Needless to say that $G A_{1}$ is one more vertex-degree-based graph invariant.

[^0]The chemical applicability of the $G A_{1}$ index was examined and documented in detail in the paper [15] and the reviews [8,5].

This paper is organized as follows. In Section 2, we specify the notation used and provide the necessary definitions. In Section 3, we give lower and upper bounds on the $G A_{1}$ index of a connected graph, and characterize graphs for which these bounds are best possible. In Section 4, we discuss the change on $G A_{1}$ when an edge is inserted into the graph.

2. Preparations

Let $G=(V, E)$ be a simple connected graph with vertex and edge sets $V(G)$ and $E(G)$, where $V(G)=\left\{v_{1}\right.$, $\left.v_{2}, \ldots, v_{n}\right\},|V(G)|=n$, and $|E(G)|=m$. Let d_{i} be the degree of vertex v_{i} for $i=1,2, \ldots, n$. The maximum vertex degree is denoted by Δ, the minimum by δ and the minimum non-pendent vertex degree by δ_{1}. The second Zagreb index $M_{2}(G)$ is equal to the sum of the products of the degrees of pairs of adjacent vertices of the underlying graph G, that is, $M_{2}(G)=\sum_{v_{i} v_{j} \in E(G)} d_{i} d_{j}$.

If the vertex set $V(G)$ is the disjoint union of two nonempty sets $V_{1}(G)$ and $V_{2}(G)$, such that every vertex in $V_{1}(G)$ has degree r and every vertex in $V_{2}(G)$ has degree $s \neq r$, then G is said to be (r, s)-semiregular. When $r=s$, then G is a regular graph (of degree r).

A vertex of a graph is said to be pendent if its neighborhood contains exactly one vertex. An edge of a graph is said to be pendent if one of its vertices is a pendent vertex.

As usual, we denote by K_{n} and $K_{a, b}$ the complete graph on n vertices and the complete bipartite graph on $a+b$ vertices, with parts of size a and b. In particular, $K_{1, n-1}$ the n-vertex star; all its edges are pendent.

3. Bounds on geometric-arithmetic index

In this section we establish lower bounds on $G A_{1}(G)$ of a graph G in terms of number of vertices n, number of edges m, maximum vertex degree Δ, minimum non-pendent vertex degree δ_{1}, number of pendent vertices p, and the second Zagreb index M_{2}.

Theorem 1. Let G be a simple connected graph of order n with m edges, maximum degree Δ, and minimum non-pendent vertex degree δ_{1}. Then

$$
\begin{equation*}
G A_{1}(G) \geq \frac{2 p \sqrt{\Delta}}{\Delta+1}+\frac{1}{\Delta} \sqrt{M_{2}-p \Delta+(m-p)(m-p-1) \delta_{1}^{2}} . \tag{3}
\end{equation*}
$$

The equality holds in (3) if and only if $G \cong K_{1, n-1}$ or G is isomorphic to a regular graph or G is isomorphic to $a(\Delta, 1)$-semiregular graph.

Proof. For brevity write

$$
\begin{aligned}
& \Xi_{1}=\sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j}>1} \frac{4 d_{i} d_{j}}{\left(d_{i}+d_{j}\right)^{2}} \\
& \Xi_{2}=\sum_{v_{i} v_{j}, v_{k} v_{\ell} \in E(G), d_{i}, d_{j}, d_{k}, d_{\ell}>1} \frac{4 \sqrt{d_{i} d_{j} d_{k} d_{\ell}}}{\left(d_{i}+d_{j}\right)\left(d_{k}+d_{\ell}\right)} \\
& \Xi_{3}=\sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j}>1} d_{i} d_{j} \\
& \Xi_{4}=\sum_{v_{i} v_{j}, v_{k} v_{\ell} \in E(G), d_{i}, d_{j}, d_{k}, d_{\ell}>1} \sqrt{d_{i} d_{j} d_{k} d_{\ell}}
\end{aligned}
$$

Then we have

$$
\begin{align*}
G A_{1}(G) & =\sum_{v_{i} v_{j} \in E(G)} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \tag{4}\\
& =\sum_{v_{i} v_{j} \in E(G), d_{j}=1} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}}+\sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j}>1} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \\
& \geq \frac{2 p \sqrt{\Delta}}{\Delta+1}+\sqrt{\Xi_{1}+2 \Xi_{2}} \quad \text { as } d_{i} \leq \Delta \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \geq \frac{2 p \sqrt{\Delta}}{\Delta+1}+\frac{1}{\Delta} \sqrt{\Xi_{3}+2 \Xi_{4}} \tag{6}\\
& \geq \frac{2 p \sqrt{\Delta}}{\Delta+1}+\frac{1}{\Delta} \sqrt{M_{2}-p \Delta+(m-p)(m-p-1) \delta_{1}^{2}} \quad \text { as } 1 \neq d_{i} \geq \delta_{1} . \tag{7}
\end{align*}
$$

Suppose now that equality holds in (3). Then all inequalities in the above argument must be equalities. In particular, from equality in (5), we get that $d_{i}=\Delta$ and $d_{j}=1$ for each pendent edge $v_{i} v_{j} \in E(G)$.

Analogously, from equality in (6) it follows that $d_{i}=\Delta$ for each non-pendent vertex $v_{i} \in V(G)$, whereas equality in (7) implies that $d_{i}=\delta_{1}$ for each non-pendent vertex $v_{i} \in V(G)$.

We now need to distinguish between two cases (a) $m=p$ and (b) $m>p$.
Case (a): $m=p$, i.e., all the edges are pendent. Hence G is isomorphic to the star $K_{1, n-1}$ as G is assumed to be connected. Case (b): $m>p$. If $p=0$, then we have $\Delta=\delta_{1}$ and hence G is isomorphic to a regular graph. Otherwise, $m>p>0$. In this case we have $d_{i}=\Delta=\delta_{1}$ for non-pendent vertex $v_{i} \in V(G)$. Hence G is isomorphic to a ($\Delta, 1$)-semiregular graph.

Conversely, one can easily see that the equality holds in (3) for the star $K_{1, n-1}$ or a regular graph or a ($\Delta, 1$)-semiregular graph.

If in inequality (3), δ_{1} is replaced by δ, then it holds as equality for the two-vertex graph K_{2}. In addition, by setting $p=0$ into (3) and bearing in mind that $\delta \leq \delta_{1}$, we obtain the following.

Corollary 2. Let G be a simple connected graph of order n with m edges, maximum degree Δ, and minimum degree δ. Then

$$
G A_{1}(G) \geq \frac{1}{\Delta} \sqrt{M_{2}+m(m-1) \delta^{2}}
$$

with equality if and only if G is isomorphic to a regular graph.
Lemma 3 ([12]). Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be positive n-tuples such that there exist positive numbers A and a satisfying

$$
0<a \leq a_{i} \leq A
$$

Then

$$
\begin{equation*}
\frac{n \sum_{i=1}^{n} a_{i}^{2}}{\left(\sum_{i=1}^{n} a_{i}\right)^{2}} \leq \frac{1}{4}\left(\sqrt{\frac{A}{a}}+\sqrt{\frac{a}{A}}\right)^{2} \tag{8}
\end{equation*}
$$

The inequality becomes an equality if and only if $a=A$ or

$$
q=\frac{A / a}{A / a+1} n
$$

is an integer and q of the numbers a_{i} coincide with a and the remaining $n-q$ of the a_{i} 's coincide with $A(\neq a)$.
Theorem 4. Let G be a simple connected graph of order $n(n>2)$, with degree sequences $d_{1}, d_{2}, \ldots, d_{n}$. Then

$$
\begin{equation*}
G A_{1}(G) \geq \frac{2 p \sqrt{\Delta}}{\Delta+1}+\frac{\sqrt{8\left(\Delta+\delta_{1}\right) \sqrt{\Delta \delta_{1}}}}{\left(\sqrt{\Delta}+\sqrt{\delta_{1}}\right)^{2}} \sqrt{(m-p)^{2}-\frac{m-p}{4 \delta_{1}^{2}}\left[\sum_{i=1}^{n} d_{i}^{3}-2 M_{2}-p\left(\delta_{1}-1\right)^{2}\right]} . \tag{9}
\end{equation*}
$$

The equality holds in (9) if and only if $G \cong K_{1, n-1}$ or G is isomorphic to a regular graph or G is isomorphic to $a(\Delta, 1)$-semiregular graph.
Proof. For $\delta_{1} \leq d_{i}, d_{j} \leq \Delta$, we have $\frac{\Delta}{\delta_{1}} \geq \frac{d_{i}}{d_{j}} \geq \frac{\delta_{1}}{\Delta}$ and thus

$$
\sqrt{\frac{d_{i}}{d_{j}}}-\sqrt{\frac{d_{j}}{d_{i}}} \leq \sqrt{\frac{\Delta}{\delta_{1}}}-\sqrt{\frac{\delta_{1}}{\Delta}}
$$

This implies

$$
\begin{aligned}
\left(\sqrt{\frac{d_{i}}{d_{j}}}+\sqrt{\frac{d_{j}}{d_{i}}}\right)^{2} & =\left(\sqrt{\frac{d_{i}}{d_{j}}}-\sqrt{\frac{d_{j}}{d_{i}}}\right)^{2}+4 \\
& \leq\left(\sqrt{\frac{\Delta}{\delta_{1}}}-\sqrt{\frac{\delta_{1}}{\Delta}}\right)^{2}+4=\left(\sqrt{\frac{\Delta}{\delta_{1}}}+\sqrt{\frac{\delta_{1}}{\Delta}}\right)^{2}
\end{aligned}
$$

and finally we get

$$
\begin{equation*}
\frac{2 \sqrt{\Delta \delta_{1}}}{\Delta+\delta_{1}} \leq \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \leq 1 . \tag{10}
\end{equation*}
$$

Now, since

$$
\frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}}=\sqrt{1-\left(\frac{d_{i}-d_{j}}{d_{i}+d_{j}}\right)^{2}}
$$

and $m-p$ is the number of non-pendent edges in G, using (8) and (10) we get

$$
\begin{equation*}
\left(\sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j} \neq 1} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}}\right)^{2} \geq \frac{8(m-p)\left(\Delta+\delta_{1}\right) \sqrt{\Delta \delta_{1}}}{\left(\sqrt{\Delta}+\sqrt{\delta_{1}}\right)^{4}} \sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j} \neq 1}\left[1-\left(\frac{d_{i}-d_{j}}{d_{i}+d_{j}}\right)^{2}\right] . \tag{11}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j} \neq 1}\left(d_{i}-d_{j}\right)^{2} & =\sum_{v_{i} \in \in E(G)}\left(d_{i}-d_{j}\right)^{2}-\sum_{v_{i} v_{j} \in E(G), d_{j}=1}\left(d_{i}-1\right)^{2} \\
& =\sum_{i=1}^{n} d_{i}^{3}-2 \sum_{v_{i} v_{j} \in E(G)} d_{i} d_{j}-\sum_{v_{i} v_{j} \in E(G), d_{j}=1}\left(d_{i}-1\right)^{2} \\
& \leq \sum_{i=1}^{n} d_{i}^{3}-2 M_{2}(G)-p\left(\delta_{1}-1\right)^{2}
\end{aligned}
$$

and therefore,

$$
\begin{align*}
\sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j} \neq 1} & {\left[1-\left(\frac{d_{i}-d_{j}}{d_{i}+d_{j}}\right)^{2}\right] }
\end{align*} \geq m-p-\frac{1}{4 \delta_{1}^{2}} \sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j} \neq 1}\left(d_{i}-d_{j}\right)^{2} .
$$

Combining (12) with (11), we get

$$
\begin{equation*}
\sum_{v_{i} \nu_{j} \in E(G), d_{i}, d_{j} \neq 1} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \geq \frac{\sqrt{8\left(\Delta+\delta_{1}\right) \sqrt{\Delta \delta_{1}}}}{\left(\sqrt{\Delta}+\sqrt{\delta_{1}}\right)^{2}} \sqrt{(m-p)^{2}-\frac{m-p}{4 \delta_{1}^{2}}\left[\sum_{i=1}^{n} d_{i}^{3}-2 M_{2}-p\left(\delta_{1}-1\right)^{2}\right]} \tag{13}
\end{equation*}
$$

which implies

$$
\begin{equation*}
G A_{1}(G)=\sum_{v_{i}, v_{j} \in(G),} \frac{2 \sqrt{d_{j}}}{d_{i}=1} d_{j}+1 \quad \sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j} \neq 1} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} . \tag{14}
\end{equation*}
$$

For $2 \leq d_{j} \leq \Delta$, we have

$$
\frac{\sqrt{d_{j}}}{d_{j}+1} \geq \frac{\sqrt{\Delta}}{\Delta+1} .
$$

By (13) and using (14), we get the required result (9).
Suppose now that equality holds in (9). Then all inequalities in the above argument must be equalities. In particular, from (12),

$$
d_{i}=d_{j}=\delta_{1} \quad \text { for any } v_{i} v_{j} \in E(G), d_{i}, d_{j} \neq 1, m-p>0 .
$$

Also, we have

$$
d_{j}=\Delta \text { for } v_{i} v_{j} \in E(G), d_{i}=1
$$

If $m=p$, then $n-1 \leq m=p \leq n-1$, as G is connected. Hence G is isomorphic to the star $K_{1, n-1}$. Otherwise, $m>p$. When $p=0$, then G is isomorphic to a regular graph. When $p \neq 0$, then G is isomorphic to a $(\Delta, 1)$-semiregular graph, as G is connected.

Conversely, one can easily see that the equality holds in (9) for the star $K_{1, n-1}$ or a ($\Delta, 1$)-semiregular graph or a regular graph.

Corollary 5. Let G be same as in Theorem 4, except that it has no pendent vertices. Then,

$$
\begin{equation*}
G A_{1}(G) \geq \frac{\sqrt{8 m(\Delta+\delta) \sqrt{\Delta \delta}}}{(\sqrt{\Delta}+\sqrt{\delta})^{2}} \sqrt{m-\frac{1}{4 \delta^{2}}\left(\sum_{i=1}^{n} d_{i}^{3}-2 M_{2}\right)} . \tag{15}
\end{equation*}
$$

Moreover, the equality holds in (15) if and only if G is isomorphic to a regular graph.
Proof. The proof follows directly from Theorem 4.
Note that if we permit pendent vertices, then in the case of the two-vertex graph K_{2}, formula (15) holds as equality.
Theorem 6. Let G be a simple connected graph of order n with m edges. Then

$$
\begin{equation*}
G A_{1}(G) \geq \frac{2 m \sqrt{2(n-1)}}{n+1}-2 p\left(\frac{\sqrt{2(n-1)}}{n+1}-\frac{\sqrt{n-1}}{n}\right) . \tag{16}
\end{equation*}
$$

The equality holds in (16) if and only if $G \cong K_{1, n-1}$ or $G \cong K_{3}$.
Proof. For each pendent edge $v_{i} v_{j} \in E(G)$, we have either $d_{i}=1$ or $d_{j}=1$. Thus,

$$
\frac{1}{n-1} \leq \frac{d_{i}}{d_{j}} \leq n-1
$$

which implies

$$
\begin{align*}
& \sqrt{\frac{d_{i}}{d_{j}}}-\sqrt{\frac{d_{j}}{d_{i}}} \leq \sqrt{n-1}-\sqrt{\frac{1}{n-1}} \\
& \text { i.e., } \sqrt{\frac{d_{i}}{d_{j}}}+\sqrt{\frac{d_{j}}{d_{i}}}=\sqrt{\left(\sqrt{\frac{d_{i}}{d_{j}}}-\sqrt{\frac{d_{j}}{d_{i}}}\right)^{2}+4} \leq \sqrt{n-1}+\sqrt{\frac{1}{n-1}} \\
& \text { i.e., } \frac{\sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \geq \frac{\sqrt{n-1}}{n} . \tag{17}
\end{align*}
$$

Moreover, the equality holds in (17) if and only if $d_{i}=n-1$ and $d_{j}=1$ for $d_{i} \geq d_{j}$.
For each non-pendent edge $v_{i} v_{j} \in E(G)$, we have

$$
2 \leq d_{i}, d_{j} \leq n-1 \quad \text { i.e., } \quad \frac{2}{n-1} \leq \frac{d_{i}}{d_{j}} \leq \frac{n-1}{2}
$$

Similarly as before we get

$$
\begin{equation*}
\frac{\sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \geq \frac{\sqrt{2(n-1)}}{n+1} \tag{18}
\end{equation*}
$$

Moreover, the equality holds in (18) if and only if $d_{i}=n-1$ and $d_{j}=2$ for $d_{i} \geq d_{j}$.
Since G has p pendent vertices, by (17) and (18), we obtain

$$
\begin{align*}
G A_{1}(G) & =\sum_{v_{i} v_{j} \in E(G), d_{j}=1} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}}+\sum_{v_{i} v_{j} \in E(G), d_{i}, d_{j} \neq 1} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \\
& \geq \frac{2 \sqrt{n-1}}{n} p+\frac{2 \sqrt{2(n-1)}}{n+1}(m-p) . \tag{19}
\end{align*}
$$

From (19) we arrive at (16).
Suppose now that equality holds in (16). Then equality holds in (19). If $p=0$, then all the edges are non-pendent. From equality in (18), we have $d_{i}=n-1$ and $d_{j}=2$ for each edge $v_{i} v_{j} \in E(G)$ and $d_{i} \geq d_{j}$, that is, there is a common neighbor between the vertices v_{i} and v_{j}, for any edge $v_{i} v_{j} \in E(G)$. Thus G is isomorphic to the complete graph K_{3} as G is connected.

Otherwise, $p>0$. First we assume that $m=p$. Thus all the edges are pendent, and hence G is isomorphic to the star $K_{1, n-1}$ as G is connected. Next, assume that $m>p>0$. In this case, the maximum degree vertex, say v_{i}, by equality in (17) has degree $n-1$. Thus G is a supergraph of the star $K_{1, n-1}$. Since $m>p$, there exists at least one non-pendent edge in G, and hence two vertices, say, v_{j} and v_{k} adjacent to vertex v_{i}, are adjacent. By equality in (18), for the non-pendent edge $v_{j} v_{k} \in E(G)$, either $d_{j}=n-1$ or $d_{k}=n-1$. Thus we do not have any pendent vertex in G as $d_{i}=n-1$, a contradiction.

Conversely, one can see easily that the equality holds in (16) for the star $K_{1, n-1}$ or the complete graph K_{3}.

Fig. 1. By joining the vertices v_{i} and v_{j} by a new edge, in the case of H_{1} the $G A_{1}$ index increases (from 6.919 to 7.919), whereas in the case of H_{2} it decreases (from 92.38 to 92.34).

Theorem 7. Let G be a simple connected graph. Then

$$
\begin{equation*}
\frac{1}{\Delta} \sqrt{M_{2}+m(m-1) \delta^{2}} \leq G A_{1}(G) \leq \frac{1}{\delta} \sqrt{M_{2}+m(m-1) \Delta^{2}} \tag{20}
\end{equation*}
$$

Moreover, the equality holds on both sides if and only if G is a regular graph.
Proof. We have

$$
\begin{equation*}
\left[G A_{1}(G)\right]^{2}=\sum_{v_{i} v_{j} \in E(G)} \frac{4 d_{i} d_{j}}{\left(d_{i}+d_{j}\right)^{2}}+2 \sum_{v_{i} v_{j} \neq v_{k} v_{\ell}} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \cdot \frac{2 \sqrt{d_{k} d_{\ell}}}{d_{k}+d_{\ell}} \tag{21}
\end{equation*}
$$

Since $2 \delta \leq d_{i}+d_{j} \leq 2 \Delta$ for each edge $v_{i} v_{j} \in E(G)$, and $\delta \leq d_{i} \leq \Delta$ for each vertex $v_{i} \in V(G)$, (20) follows from (21).
Moreover, equality on the both sides of (20) holds if and only if G is isomorphic to a regular graph.
We now give an upper bound on the $G A_{1}$ index.
Theorem 8. Let G be a simple connected graph with m edges and with minimum degree δ. Then

$$
\begin{equation*}
G A_{1}(G) \leq \frac{\sqrt{m M_{2}}}{\delta} \tag{22}
\end{equation*}
$$

The equality holds in (22) if and only if G is isomorphic to a regular graph.
Proof. By the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\sum_{v_{i} v_{j} \in E(G)} \frac{2 \sqrt{d_{i} d_{j}}}{d_{i}+d_{j}} \leq \sqrt{\sum_{v_{i} v_{j} \in E(G)} 4 d_{i} d_{j} \sum_{v_{i} v_{j} \in E(G)} \frac{1}{\left(d_{i}+d_{j}\right)^{2}}} \leq \sqrt{\frac{m M_{2}}{\delta^{2}}} \tag{23}
\end{equation*}
$$

Moreover, equality holds in (23) if and only if $d_{i}=\delta$ for all $v_{i} \in V(G)$. Hence equality holds in (22) if and only if G is isomorphic to a regular graph.

4. Effect on $G A_{1}$ index of inserting an edge into the graph G

In this section we consider the change of the $G A_{1}$ index when a new edge is inserted into the underlying graph. Suppose that the vertices v_{i} and v_{j} of the graph G are not adjacent, and insert a new edge $v_{i} v_{j}$ into G to obtain the graph $G+\left\{v_{i} v_{j}\right\}$. In the general case, the transformation $G \rightarrow G+\left\{v_{i} v_{j}\right\}$ may either increase or decrease the $G A_{1}$-value.

In Fig. 1 are given two examples: in one the $G A_{1}$ index increases, whereas in the other it decreases when two nonadjacent vertices are joined by a new edge.

Theorem 10 provides a partial characterization of the graphs for which $G A_{1}\left(G+\left\{v_{i} v_{j}\right\}\right)>G A_{1}(G)$. The general solution of this problem remains open.

We first state the following elementary lemma.
Lemma 9. Let

$$
f(x)=\frac{\sqrt{x}}{\sqrt{k+6 x}}, \quad k>0
$$

Then $f(x)$ is an increasing function for $x>0$.
Now we are ready to prove the theorem.
Theorem 10. Let G be a simple graph with nonadjacent vertices v_{i} and v_{j}. Let $d_{r}=\max \left\{d_{k} \mid v_{i} v_{k} \in E(G)\right\}$ and $d_{s}=\max \left\{d_{k} \mid\right.$ $\left.v_{j} v_{k} \in E(G)\right\}$. If

$$
\frac{d_{i}}{d_{j}} \leq \min \left\{\frac{d_{i}}{d_{r}}, \frac{d_{j}}{d_{s}}\right\}
$$

then $G A_{1}\left(G+\left\{v_{i} v_{j}\right\}\right)>G A_{1}(G)$.

Proof. We start by observing that

$$
\begin{align*}
G A_{1}\left(G+\left\{v_{i} v_{j}\right\}\right)-G A_{1}(G)= & 2 \sum_{v_{k} \in N_{i}}\left[\frac{\sqrt{\left(d_{i}+1\right) d_{k}}}{d_{i}+d_{k}+1}-\frac{\sqrt{d_{i} d_{k}}}{d_{i}+d_{k}}\right]+2 \sum_{v_{k} \in N_{j}}\left[\frac{\sqrt{\left(d_{j}+1\right) d_{k}}}{d_{j}+d_{k}+1}-\frac{\sqrt{d_{j} d_{k}}}{d_{j}+d_{k}}\right] \\
& +\frac{2 \sqrt{\left(d_{i}+1\right)\left(d_{j}+1\right)}}{d_{i}+d_{j}+2} \tag{24}
\end{align*}
$$

where N_{i} denotes the set of first neighbors of the vertex v_{i}.
Since

$$
\sqrt{d_{i}+1}=\sqrt{d_{i}} \sqrt{1+\frac{1}{d_{i}}} \geq \sqrt{d_{i}}\left(1+\frac{1}{2 d_{i}}-\frac{1}{8 d_{i}^{2}}\right)=\sqrt{d_{i}}+\frac{1}{2 \sqrt{d_{i}}}-\frac{1}{8 d_{i}^{3 / 2}}
$$

we have

$$
\begin{align*}
\frac{\sqrt{d_{i} d_{k}}}{d_{i}+d_{k}}-\frac{\sqrt{\left(d_{i}+1\right) d_{k}}}{d_{i}+d_{k}+1} & \leq \frac{\sqrt{d_{i}}\left(d_{i}+d_{k}+1\right)-\left(d_{i}+d_{k}\right)\left(\sqrt{d_{i}}+\frac{1}{2 \sqrt{d_{i}}}-\frac{1}{8 d_{i}^{3 / 2}}\right)}{\left(d_{i}+d_{k}\right)\left(d_{i}+d_{k}+1\right)} \sqrt{d_{k}} \\
& =\frac{\left(d_{i}-d_{k}+\frac{d_{i}+d_{k}}{4 d_{i}}\right) \sqrt{d_{k}}}{2 \sqrt{d_{i}}\left(d_{i}+d_{k}\right)\left(d_{i}+d_{k}+1\right)} \tag{25}
\end{align*}
$$

For $d_{i} \geq d_{k}$, we have to show that

$$
\frac{\left(d_{i}-d_{k}+\frac{d_{i}+d_{k}}{4 d_{i}}\right) \sqrt{d_{k}}}{2 \sqrt{d_{i}}\left(d_{i}+d_{k}\right)\left(d_{i}+d_{k}+1\right)}<\frac{\sqrt{d_{k}}}{2 d_{i} \sqrt{d_{i}+6 d_{k}}}
$$

that is,

$$
\sqrt{\left(d_{i}+3 d_{k}\right)^{2}-9 d_{k}^{2}}\left(d_{i}-d_{k}+\frac{d_{i}+d_{k}}{4 d_{i}}\right)<\left(d_{i}+d_{k}\right)\left(d_{i}+d_{k}+1\right)
$$

that is,

$$
\begin{aligned}
\sqrt{\left(d_{i}+3 d_{k}\right)^{2}-9 d_{k}^{2}}\left(d_{i}-d_{k}+\frac{d_{i}+d_{k}}{4 d_{i}}\right) & <\left(d_{i}+3 d_{k}\right)\left(d_{i}-d_{k}+\frac{d_{i}+d_{k}}{4 d_{i}}\right) \\
& <\left(d_{i}+d_{k}\right)\left(d_{i}+d_{k}+1\right)
\end{aligned}
$$

which, evidently, is always obeyed as $d_{i} \geq d_{k}$. For $d_{i} \geq d_{k}$, by Lemma 9 we have

$$
\frac{\sqrt{d_{i} d_{k}}}{d_{i}+d_{k}}-\frac{\sqrt{\left(d_{i}+1\right) d_{k}}}{d_{i}+d_{k}+1}<\frac{\sqrt{d_{k}}}{2 d_{i} \sqrt{d_{i}+6 d_{k}}} \leq \frac{\sqrt{d_{r}}}{2 d_{i} \sqrt{d_{i}+6 d_{r}}}
$$

as $d_{r} \geq d_{k}$ for all v_{k} such that $v_{i} v_{k} \in E(G)$. Moreover, one can easily see that

$$
\frac{\sqrt{d_{i} d_{k}}}{d_{i}+d_{k}}-\frac{\sqrt{\left(d_{i}+1\right) d_{k}}}{d_{i}+d_{k}+1}<0 \quad \text { for } d_{k}>d_{i}
$$

Thus,

$$
\begin{equation*}
\frac{\sqrt{d_{i} d_{k}}}{d_{i}+d_{k}}-\frac{\sqrt{\left(d_{i}+1\right) d_{k}}}{d_{i}+d_{k}+1}<\frac{\sqrt{d_{r}}}{2 d_{i} \sqrt{d_{i}+6 d_{r}}} \tag{26}
\end{equation*}
$$

Let $t_{1}=d_{i} / d_{j}, t_{2}=d_{i} / d_{r}$, and $t_{3}=d_{j} / d_{s}$. Then from (26) it follows

$$
\begin{equation*}
\sum_{v_{k} \in N_{i}}\left[\frac{\sqrt{d_{j} d_{k}}}{d_{j}+d_{k}}-\frac{\sqrt{\left(d_{j}+1\right) d_{k}}}{d_{j}+d_{k}+1}\right]<\frac{\sqrt{d_{r}}}{2 \sqrt{d_{i}+6 d_{r}}}=\frac{1}{2 \sqrt{t_{2}+6}} \tag{27}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\sum_{v_{k} \in N_{i}}\left[\frac{\sqrt{d_{j} d_{k}}}{d_{j}+d_{k}}-\frac{\sqrt{\left(d_{j}+1\right) d_{k}}}{d_{j}+d_{k}+1}\right] \leq \frac{1}{2 \sqrt{t_{3}+6}} \tag{28}
\end{equation*}
$$

Without loss of generality, we can assume that $t_{2} \leq t_{3}$. Then,

$$
\begin{equation*}
\frac{1}{2 \sqrt{t_{2}+6}}+\frac{1}{2 \sqrt{t_{3}+6}} \leq \frac{1}{\sqrt{t_{2}+6}} \tag{29}
\end{equation*}
$$

By simple calculation, using $t_{2} \geq t_{1}$, we get

$$
\begin{equation*}
\frac{1}{\sqrt{t_{2}+6}}<\frac{\sqrt{\left(t_{1}+\frac{1}{d_{j}}\right)\left(1+\frac{1}{d_{j}}\right)}}{t_{1}+1+2 / d_{j}}=\frac{\sqrt{\left(d_{i}+1\right)\left(d_{j}+1\right)}}{d_{i}+d_{j}+2} \tag{30}
\end{equation*}
$$

Using (27)-(30), we get

$$
\sum_{v_{k} \in N_{i}}\left[\frac{\sqrt{d_{i} d_{k}}}{d_{i}+d_{k}}-\frac{\sqrt{\left(d_{i}+1\right) d_{k}}}{d_{i}+d_{k}+1}\right]+\sum_{v_{k} \in N_{j}}\left[\frac{\sqrt{d_{j} d_{k}}}{d_{j}+d_{k}}-\frac{\sqrt{\left(d_{j}+1\right) d_{k}}}{d_{j}+d_{k}+1}\right]<\frac{\sqrt{\left(d_{i}+1\right)\left(d_{j}+1\right)}}{d_{i}+d_{j}+2} .
$$

Combining the above inequality with Eq. (24) we arrive at Theorem 10.

Acknowledgments

This work was supported by BK21 Math Modeling HRD Div. Sungkyunkwan University, Suwon, Republic of Korea, and by the Ministry of Science of the Republic of Serbia through Grant no. 174033.

References

[1] X. Cai, B. Zhou, Reciprocal complementary Wiener numbers of trees, unicyclic graphs and bicyclic graphs, Discrete Appl. Math. 157 (2009) $3046-3054$.
[2] P. Dankelmann, I. Gutman, S. Mukwembi, H.C. Swart, On the degree distance of a graph, Discrete Appl. Math. 157 (2009) $2773-2777$.
[3] K.C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math. 158 (2010) 1181-1188.
[4] K.C. Das, I. Gutman, Estimating the Wiener index by means of number of vertices, number of edges, and diameter, MATCH Commun. Math. Comput. Chem. 64 (2010) 647-660.
[5] K.C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) $595-644$.
[6] A. Dolati, I. Motevalian, A. Ehyaee, Szeged index, edge Szeged index, and semi-star trees, Discrete Appl. Math. 158 (2010) 876 -881.
[7] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discrete Appl. Math. 157 (2009) 2828-2835.
[8] B. Furtula, I. Gutman, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications, vol. I, Univ. Kragujevac, Kragujevac, 2010, pp. 137-172.
[9] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications vols. I-II, Univ. Kragujevac, Kragujevac, 2010.
[10] B. Horoldagva, S.G. Lee, Comparing Zagreb indices for connected graphs, Discrete Appl. Math. 158 (2010) 1073-1078.
[11] T. Pisanski, M. Randić, Use of the Szeged index and the revised Szeged index for measuring network bipartivity, Discrete Appl. Math. 158 (2010) 1936-1944.
[12] G. Pólya, G. Szegö, Probelms and Theorems in Analysis, in: Series, Integral Calculus, Theory of Functions, vol. I, Springer-Verlag, Berlin, 1972.
[13] L. Sun, T. Chen, Comparing the Zagreb indices for graphs with small difference between the maximum and minimum degrees, Discrete Appl. Math. 157 (2009) 1650-1654.
[14] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
[15] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376.
[16] H. Zhang, Y. Yang, C. Li, Kirchhoff index of composite graphs, Discrete Appl. Math. 157 (2009) 2918-2927.

[^0]: * Corresponding author. Fax: +381 34335040.

 E-mail address: gutman@kg.ac.rs (I. Gutman).

