Note

Cubicity of threshold graphs

Abhijin Adiga
Department of Computer Science and Automation, Indian Institute of Science, Bangalore-560012, India

ARTICLE INFO

Article history:
Received 7 July 2007
Received in revised form 2 May 2008
Accepted 12 May 2008
Available online 24 June 2008

Keywords:
Threshold graph
Cubicity
Independence number
Indifference graph

ABSTRACT

We show that the cubicity of a connected threshold graph is equal to \(\lceil \log_2 \alpha \rceil \), where \(\alpha \) is its independence number.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let \(G(V, E) \) be a simple, undirected graph where \(V \) is the set of vertices and \(E \) is the set of edges. A \(b \)-dimensional box is a Cartesian product \(I_1 \times I_2 \times \cdots \times I_b \), where each \(I_i \) is a closed interval on the real line. When each interval has unit length, we will call such a box a \(b \)-dimensional cube. The cubicity (resp. boxicity) of \(G \), denoted by \(\text{cub}(G) \) (\(\text{box}(G) \)), is the minimum positive integer \(b \) such that the vertices in \(G \) can be mapped into axis-parallel \(b \)-dimensional cubes (boxes) in such a way that two vertices are adjacent in \(G \) if and only if their assigned cubes (boxes) intersect. Cubicity and boxicity were introduced by Roberts [11]. Yannakakis [12] proved that it is NP-complete to determine if the cubicity of a graph is at most 3.

Graphs with cubicity 1 are called indifference graphs or unit interval graphs. We can also define an indifference graph in the following way.

Definition 1. A graph \(G(V, E) \) is an indifference graph if and only if there exists a positive real number \(t \) and a function \(\Pi : V \to \mathbb{R} \) such that, for two distinct vertices \(u \) and \(v \), \(uv \in E \) if and only if \(|\Pi(u) - \Pi(v)| \leq t \).

For a graph \(G(V, E) \), if there is a set of \(k \) supergraphs \(G_i(V, E_i), i \in \{1, 2, \ldots, k\} \) such that \(E = E_1 \cap E_2 \cap \cdots \cap E_k \), then we say that \(G \) is the intersection of \(G_i \)'s. Roberts [11] gives a very useful characterization of cubicity in terms of intersection of indifference graphs. We state it below as a lemma.

Lemma 2. Given a graph \(G(V, E) \), \(\text{cub}(G) \) is the minimum positive integer \(b \) such that \(G \) is the intersection of \(b \) indifference graphs.

Cubicity of graphs with special properties has attracted considerable attention. Roberts [11] studied the cubicity of complete \(k \)-partite graph and showed that the cubicity of any graph cannot be greater than \(\left\lfloor \frac{2k-1}{3} \right\rfloor \). As part of this proof, it was shown that the cubicity of a star graph \(K_{1,n} \) is \(\lceil \log_2 n \rceil \). In [2], Chandran and Naveen studied the cubicity of hypercubes.

In this paper, we prove that the cubicity of a connected threshold graph is equal to \(\lceil \log_2 \alpha \rceil \), where \(\alpha \) is its independence number. Threshold graphs were introduced in [4,9] and, since then, have been extensively studied [10,8,17]. A threshold graph may be defined as follows:

E-mail address: abhijin@csa.iisc.ernet.in.

0012-365X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.05.004
Definition 3 ([3]). A graph \(G(V, E) \) is a threshold graph if and only if there is a partition of the vertex set \(V = D_0 \uplus D_1 \uplus \cdots \uplus D_m \), such that vertices \(u \in D_i \) and \(v \in D_j \) are adjacent if and only if \(i + j > m \).

Since the family of star graphs forms a subclass of threshold graphs, our result can be considered as an extension of Robert’s result on the cubicity of star graphs.

2. Cubicity of a connected threshold graph

We observe that it is easy to determine a maximum independent set of a threshold graph and hence, its independence number. Let \(G(V, E) \) be a connected threshold graph with vertex partition as in Definition 3. When the threshold graph is connected, \(D_0 \) is an empty set. Since we will be dealing with only connected threshold graphs, from now on we will ignore \(D_0 \). Let \(v \) be a vertex in \(D_{(m/2)} \). We claim that the set \(I \) as defined below,

\[
I = \begin{cases}
D_1 \cup D_2 \cup \cdots \cup D_{m/2}, & \text{if } m \text{ even}, \\
D_1 \cup D_2 \cup \cdots \cup D_{(m/2)} \cup \{v\}, & \text{if } m \text{ odd},
\end{cases}
\]

is a maximum independent set, that is \(|I| = \alpha \). We first note that \(I \) is a maximal independent set. Let \(u \in D_i \) be any vertex such that \(i > \lfloor m/2 \rfloor \). The maximal independent set containing \(u \) will be of the form \(I' = D_1 \cup D_2 \cup \cdots \cup D_{m-i-1} \cup \{u\} \). Since none of the \(D_i \)'s are empty, it immediately follows that \(|I'| \leq |I| \). Using similar arguments we can show that the set \(C \),

\[
C = \begin{cases}
\{v\} \cup D_{m/2+1} \cup \cdots \cup D_m, & \text{if } m \text{ even}, \\
D_{(m/2)} \cup D_{(m/2)+1} \cup \cdots \cup D_m, & \text{if } m \text{ odd},
\end{cases}
\]

is a maximum clique. Finally, we note that \(C \cup I = V \) and \(C \cap I = \{v\} \). Now we state and prove our main result:

Theorem 4. The cubicity of a connected threshold graph \(G \) is equal to \(\lceil \log_2 \alpha \rceil \), where \(\alpha \) is the independence number of \(G \).

Proof. Let \(G(V, E) \) be a connected threshold graph with a vertex partition as in Definition 3 and independence number \(\alpha \). Since any vertex \(v_m \in D_m \) is a universal node in \(G \), \(\{v_m\} \cup I \) induces a subgraph isomorphic to \(K_{1,\alpha} \). Also, it is easy to see that the cubicity of any graph \(G \) is at least the cubicity of an induced subgraph of \(G \). Hence, it immediately follows that \(\text{cub}(G) \geq \text{cub}(K_{1,\alpha}) = \lceil \log_2 \alpha \rceil \).

We now show that this bound is sharp by constructing \(\lceil \log_2 \alpha \rceil \) indifference graphs whose intersection yields \(G \).

Suppose \(C \) is as defined in (2). Let \(I : V \longrightarrow \{0, \ldots, \alpha - 1\} \) be a labeling of vertices such that \(\forall u \in C, I(u) = 0 \), and for each \(u \in V \setminus C, I(u) \) is a distinct number from the set \(\{1, 2, \ldots, \alpha - 1\} \). Let \(b_i : V \longrightarrow \{0, 1\} \) be such that, for any \(u \in V \), \(b_i(u) = \left\lfloor \frac{I(u)}{2^{i-1}} \right\rfloor \mod 2 \). For each \(v \in V \), let \(g(v) \) be the index \(i \) such that \(v \in D_i \).

We now use Definition 1 to define indifference graphs \(G_i(V, E_i), i \in \{1, 2, \ldots, \lceil \log_2 \alpha \rceil\} \) whose intersection is \(G \). For each \(G_i \) let \(I_i : V \longrightarrow \{0, 1\} \) be defined such that,

\[
I_i(u) = (-1)^{b_i(u)}(m - g(u) + \delta), \quad \forall u \in V,
\]

where \(0 < \delta < \frac{1}{2} \). For two distinct vertices \(u \) and \(v \), \(uv \) is an edge in \(G_i \), i.e. \(uv \in E_i \) if and only if \(|I_i(u) - I_i(v)| \leq m \). We mention two properties of \(G_i \)'s which help us gain more insight into their structure. Given graph \(G_i \) and two distinct vertices \(u \) and \(v \),

Property 1. Supposing \(b_i(u) = b_i(v) \), the distance

\[
|I_i(u) - I_i(v)| = |g(u) - g(v)| < m.
\]

Hence, if \(b_i(u) = b_i(v) \), then \(uv \) is an edge in \(G_i \).

Property 2. Suppose \(b_i(u) \neq b_i(v) \). We recall that \(\delta < \frac{1}{2} \). The distance

\[
|I_i(u) - I_i(v)| = |2(m + \delta) - (g(u) + g(v))| \leq m
\]

is \(\leq m \) if and only if \(g(u) + g(v) \leq m \). Hence, if \(b_i(u) \neq b_i(v) \), then \(uv \) is an edge in \(G_i \) if and only if \(g(u) + g(v) > m \).

Now we prove that \(G \) is the intersection of \(G_i \)'s. Suppose \(uv \) is an edge in \(G \), we note from Definition 3 that \(g(u) + g(v) > m \). Using this fact with Properties 1 and 2 we observe that irrespective of the values of \(b_i(u) \) and \(b_i(v) \), \(uv \) is an edge in every \(G_i \). Hence, we see that every \(G_i \) is a supergraph of \(G \).

Now, consider two vertices \(u \) and \(v \) such that \(uv \) is not an edge in \(G \). Since \(C \) is a clique, at most one of these vertices is in \(C \), which implies that \(I(u) \neq I(v) \) and hence \(b_i(u) \neq b_i(v) \) for some index \(i \). Also, according to Definition 3, we have \(g(u) + g(v) \leq m \). Together with Property 2, we conclude that \(uv \) is not an edge of \(G_i \). Thus we have proved that \(G \) is an intersection of \(\lceil \log_2 \alpha \rceil \) indifference graphs and hence \(\text{cub}(G) \leq \lceil \log_2 \alpha \rceil \).
A threshold cover of a graph $G(V, E)$ is a set of threshold graphs $G_i(V, E_i), i = 1, 2, \ldots, k$ such that $E = E_1 \cup E_2 \cup \ldots \cup E_k$. The threshold dimension $\theta(G)$ is the least integer k such that a threshold cover of size k exists. In [3], Chvátal and Hammer show that $\theta(G) \leq |V| - \alpha(G)$, where $\alpha(G)$ is the independence number of G. Cozzens and Halsey [5] proved that the boxicity of any graph $G(V, E)$ is not more than the threshold dimension of its complement \overline{G}, i.e. $\text{box}(G) \leq \theta(\overline{G})$. We have a similar result for the cubicity of any graph which follows as a corollary of Theorem 4. But first, we need to state two lemmas which will be used for this purpose.

Lemma 5 ([6]). Let G be a graph. $\theta(G)$ is the least integer k such that \overline{G} is the intersection of k threshold graphs.

Lemma 6 ([11]). Suppose G is the intersection of graphs G_1, G_2, \ldots, G_j, then $\text{cub}(G) \leq \sum_{i=1}^{j} \text{cub}(G_i)$. The corollary follows.

Corollary 7. For a connected graph $G(V, E)$ with independence number α, $\text{cub}(G) \leq \theta(\overline{G}) \lceil \log_2 \alpha \rceil$, where, \overline{G} is the complement of G.

Proof. Applying Lemma 5 to \overline{G}, we immediately see that G can be expressed as the intersection of $\theta(\overline{G})$ threshold graphs, say $G_i, i \in \{1, 2, \ldots, \theta(\overline{G})\}$. For each i, let α_i be the independence number of G_i. Since each G_i is a supergraph of G, $\alpha \geq \alpha_i$. We use this fact and Lemma 6 to obtain the result.

$$\text{cub}(G) \leq \sum_{i=1}^{\theta(\overline{G})} \text{cub}(G_i) = \sum_{i=1}^{\theta(\overline{G})} \lceil \log_2 \alpha_i \rceil \leq \theta(\overline{G}) \lceil \log_2 \alpha \rceil. \quad \Box$$

Acknowledgements

I wish to thank Sunil Chandran and the anonymous reviewers for their helpful suggestions. This research was funded by the DST grant SR/S3/EECE/62/2006.

References