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0. Introduction

The motivation for this paper is the following numerical experiment. Take a matrix A ∈ C
n×n and

nonzero vectors u, v ∈ C
n and plot the set

{σ(A + τuv�) : τ ∈ R}. (0.1)

It is well known that the above set consists of a finite number of curves, that intersect only in a

finite number of points. However, it appears that for u, v ∈ C
n chosen randomly from a continuous

distribution on C
n there are no intersection points except, possibly, the spectrum of A. Furthermore,

for all τ ∈ R \ {0} all eigenvalues of A + τuv�, that are not eigenvalues of A, are simple. A typical

case for A = J3(0) is shown of Fig. 1, note that the only intersection of the eigenvalue curves is at 0 ∈
σ(A). Since it appears that the intersection points outside σ(A) are multiple eigenvalues of A+ τuv�
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Fig. 1. Eigenvalues of B(τ ) = J3(0) + τuv� for τ > 0 in red, for τ < 0 in blue, see also Remark 4.2. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

(cf. Proposition 2.2(ii)), we will be also interested in a problem of existence of multiple eigenvalues of

A + τuv� for some τ ∈ C.

Some light on the phenomenon of lack of double eigenvalues in the numerical simulations is put

by the following marvelous result of Hörmander and Melin [7]. Let the Jordan canonical form of the

matrix A be

A ∼=
r⊕

j=1

kj⊕
i=1

Jnj,i(λj),

where the Jordan blocks Jnj,i(λj) corresponding to each eigenvalue λj (j = 1, . . . , r) are in decreasing

order, i.e., nj,1 � nj,2 � · · · � nj,kj . Then for generic u and v (i.e., for all u and v except a ‘small’ set;

for a more precise explanation see Section 1) the Jordan form of A + uv� is the following

A + uv� ∼=
r⊕

j=1

kj⊕
i=2

Jnj,i(λj) ⊕
l⊕

h=1

J1(μh),

where μh �= μh′ for h �= h′, and μh �∈ σ(A). In other words, for each eigenvalue λj (j = 1, . . . , r)
only the largest block in the Jordan structure is destroyed and there appears a structure of simple

eigenvalues instead.

Thebehaviorof eigenvaluesofA+τuv� as functionsofτ for small valuesofτ is alsowell known, see,

e.g., [11,23,1,9,16,17,24]. Namely, for small values of |τ | and for generic u and v for each j = 1, . . . , r

there are nj,1 simple eigenvalues μj,k(τ ), k = 1, · · · , nj,1 of A + τuv� in a punctured neighborhood

of λj , and they are given by

μj,k(τ ) = λj + τ 1/nj,1 · (
cj

)1/nj,1 · exp
(−2π ik

nj,1

)
+ O(τ 2/nj,1), (0.2)

where the number cj can be expressed explicitly in terms of A, u and v; see [17], Proposition 1. That is,

the eigenvalues μj,k(τ ) are approximately given by the roots of the polynomial equation

(μ − λj)
nj,1 = τ · cj, j = 1, . . . , r. (0.3)

However, neither the Hörmander–Melin result nor the above small τ asymptotic of eigenvalues does

explain the lack of crossing of eigenvalue curves that appears in numerical simulations. The purpose
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of the present paper is to show that this behavior is indeed ‘generic’ although the notion of genericity

will have some different shades.

For historical reasons let us mention two works prior to the Hörmander–Melin paper, in [22] the

invariant factors of a one-dimensional perturbation are considered and in [10] the perturbation theory

for normal matrices is developed. The result by Hörmander–Melin was not well known in the linear

algebra community for a decade before being reproved independently by Dopico and Moro [5] and

Savchenko [17,19], see also [6,12,18] for related results. Since that time the interest in the topic has

grown, see e.g., [13–15] for an alternative proof using ideas from systems theory and perturbation

theory for structured matrices. Although the results presented below concern a similar matter the

reasonings are independent of the previous work and the content of the paper is self-contained. The

main outcomes are Theorems 3.1, 4.1, 5.1, 6.1 and 6.2. The first four of them allow the parameter τ to

be complex, while in the last one we return to the real parameter τ . This collection gives a complete

description of the generic behavior of the set in (0.1).

1. Preliminaries

In this section, we gather some known results which will be the basis for our further investigation.

An important technique used in this paper is the resultant. Let

q1(λ) = an1λ
n1 + · · · + a0, q2(λ) = bn2λ

n2 + · · · + b0

be two complex polynomials. By S(q1, q2) we denote the Sylvester resultant matrix of q1 and q2:

S(q1, q2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an1 · · · a0 0 · · · · · · 0

0 an1 · · · a0 0 · · · 0

...
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 an1 · · · a0

bn2 · · · b0 0 · · · · · · 0

0 bn2 · · · b0 0 · · · 0

...
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 bn2 · · · b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
(n1+n2)×(n1+n2). (1.1)

It is well known that q1 and q2 have a common root if and only if det S(q1, q2) = 0.

Let A ∈ C
n×n and let u, v ∈ C

n. Occasionally we will use the notation

B(τ ) = A + τuv�, τ ∈ C,

remembering, nevertheless, that we are interested in the (u, v)-dependence of the spectral structure

of B(τ ). Recall that an eigenvalue λ0 of B ∈ C
n×n is called non-derogatory if dim ker(B−λ0) = 1. The

following result may be found in [17], Lemma 5, for completeness sake we include a proof.

Lemma 1.1. Let A ∈ C
n×n and let u, v ∈ C

n. Then for all τ ∈ C \ {0} all eigenvalues of B(τ ) that are

not eigenvalues of A are non-derogatory.

Proof. Let λ0 ∈ σ(B(τ )) \ σ(A) and let τ �= 0. Using the fact that rank (X + Y) � rank X + rank Y

for any compatible matrices X, Y we obtain

n = rank (A − λ0) � rank (A + τuv� − λ0) + rank (τuv�) = rank (B(τ ) − λ0) + 1,
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which shows that rank (B(τ ) − λ0) � n − 1. Hence dim ker(B(τ ) − λ0) = 1 and so λ0 is a non-

derogatory eigenvalue of B(τ ). �

Following [13] we say that a subset� ofCn is generic if� is not empty and the complementC
n \�

is contained in a (complex) algebraic set which is not C
n. In such case C

n \ � is nowhere dense and of

2n-dimensional Lebesgue measure zero. We use the phrase for generic v ∈ C
n as an abbreviation of:

‘there exist a generic � ⊆ C
n such that for all v ∈ �’. Our main results, except Theorem 6.2, have the

following form:

Let A ∈ C
n×n. Then for generic u and v …,

which should be read formally as

For every A ∈ C
n×n there exists a generic subset � of C

2n, possibly dependent on A, such that for

(u, v) ∈ �….

Most of our reasonings are independent of a choice of basis. Let T be an invertible matrix. Then

T(A + τuv�)T−1 = TAT−1 + τ(Tu)(v�T−1).

In consequence, the Jordan structures of the matrices A + τuv� and TAT−1 + τ(Tu)(v�T−1) are

identical. In other words the transformation

(A, u, v�) 	→ (TAT−1, Tu, v�T−1) (1.2)

preserves the spectral structure of B(τ ) for all τ ∈ R. Let S be some matrix that transforms A into its

Jordan canonical form, that is

A′ = SAS−1 =
r⊕

j=1

kj⊕
i=1

Jnj,i(λj), (1.3)

where Jk(λ) denotes the Jordan block of size k with the diagonal entries equal to λ and the entries on

the first upper-diagonal equal to one and

nj,1 � nj,2 � · · · � nj,kj , j = 1, . . . , r. (1.4)

Wewill describe now a special instance of the transformation T that consists of two steps, i.e., T = TvS.

Let S be as above, next we decompose u′ = Su and v′� = v�S� according to the Jordan form of A′ as
follows:

u′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u′
1

u′
2

...

u′
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, u′
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u′
j,1

u′
j,2

...

u′
j,kj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, u′
j,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u′
j,i,1

u′
j,i,2

...

u′
j,i,nj,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
nj,i , (1.5)

and

v′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v′
1

v′
2

...

v′
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, v′
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v′
j,1

v′
j,2

...

v′
j,kj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, v′
j,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v′
j,i,1

v′
j,i,2

...

v′
j,i,nj,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
nj,i . (1.6)

We put

Tv =
r⊕

j=1

kj⊕
i=1

Toep (v′
j,i),
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where by Toep (w) we denote the k × k upper-triangular Toeplitz matrix whose first row is given by

w ∈ C
k . Obviously Tv commutes with A. Now note that for generic v one has

v′
j,i,1 �= 0 i = 1, . . . , kj, j = 1, . . . , r, (1.7)

which implies that Tv is invertible, consequently TvA
′T−1

v = A′. Furthermore, v′′� = v′�T−1
v has the

following form

v′′
j,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

i = 1, . . . , kj, j = 1, . . . , r. (1.8)

The triplet (TAT−1, Tu, v�T−1), where T = TvS, will be called the Brunovsky form of (A, u, v�), cf. [2].
Note the following simple lemma, that will allow us to reduce the problem of genericity in u and v to

a problem of genericity in uwith a fixed v.

Lemma 1.2. If �0 is a generic subset of Cn then the set

{(u, v) ∈ C
2n : Tv is invertible , TvSu ∈ �0}

is a generic subset of C2n.

2. The characteristic polynomial of B(τ)

The present section contains the basic tools used in the paper. Namely,we introduce the polynomial

puv and provide a formula for the characteristic polynomial of B(τ ).
The minimal polynomial of Awill be denoted bym(λ). Everywhere in the paper (1.3) and (1.4) are

silently assumed, consequently one has

m(λ) =
r∏

j=1

(λ − λj)
nj,1 . (2.1)

We also put

puv(λ) = m(λ) · v�(λ − A)−1u. (2.2)

Note that puv is invariant under the transformation (1.2). Transforming A to its Jordan form we easily

see that puv is a polynomial of degree at most degm − 1. The following lemma plays an essential role

in the further reasoning.

Lemma 2.1. For generic u and v the polynomial puv is of degree degm − 1 and has no double roots and

no common roots with m.

Proof. Using Lemma 1.2 and the fact that puv is invariant under the transformation (1.2) we may

assume that A is in the Brunovsky canonical form and treat v as fixed. For simplicity consider the case

when A consists of one Jordan block only, i.e.,

A = Jn(λ1), v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2
...

un

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then m(λ) = (λ − λ1)
n and

(λ − A)−1 = Toep ([(λ − λ1)
−1, (λ − λ1)

−2, . . . , (λ − λ1)
−n]�).

Consequently,

puv(λ) = u1(λ − λ1)
n−1 + · · · + un−1(λ − λ1) + un.

Hence, the generic assumption u1 �= 0 implies that deg puv = degm − 1. Further on, the generic

assumption un �= 0 implies that pu and m do not have common roots. To prove that for generic u the

polynomial puv has simple roots only let us consider the Sylvester resultant matrix S(puv, p
′
uv). Note

that det S(puv, p
′
uv) is a nonzero polynomial in u. Hence, the equation det S(puv, p

′
uv) = 0 defines a

proper algebraic subset of C
n.

The general case follows by similar arguments from the equation

puv(λ) = m(λ) ·
r∑

j=1

kj∑
i=1

v�
j,i(λ − Jnj,i(λj))

−1uj,i. �

We put

q(λ) =
r∏

i=1

ki∏
j=2

(λ − λi)
ni,j = det(λ − A)

m(λ)
,

with the convention
∏1

2 := 1. We also define the family of polynomials puv,τ by

puv,τ (λ) = m(λ) − τpuv(λ), τ ∈ R. (2.3)

Proposition 2.2. Let A ∈ C
n×n, then the following statements hold.

(i) For every u, v ∈ C
n, τ ∈ C the characteristic polynomial of A + τuv� equals q · puv,τ .

(ii) For every u, v ∈ C
n, τ1, τ2 ∈ C with τ1 �= τ2 one has

σ(A + τ1uv
�) ∩ σ(A + τ2uv

�) ⊆ σ(A).

(iii) For generic u and v and all τ ∈ C \ {0} there are exactly degm, counting algebraic multiplicities,

eigenvalues of A + τuv� that are not eigenvalues of A.

Point (iii) shows that the only crossings of the eigenvalue curves in (0.1) are themultiple eigenvalues

of A + τuv� for some τ ∈ R.

Proof. (i) For any u, v ∈ C
n, τ ∈ C and λ ∈ C \ σ(A) we have (cf. [17, Lemma 1])

det(λ − (A + τuv�)) = det
(
(λ − A)(I − (λ − A)−1τuv�)

)
= det(λ − A) det(I − (λ − A)−1τuv�)

= det(λ − A)(1 − τv�(λ − A)−1u)

Dividing both sides by q and employing (2.2) we obtain

det(λ − (A + τuv�))

q(λ)
= m(λ) − τpuv(λ), (2.4)

which finishes the proof of (i).

(ii) Assume that λ0 ∈ σ(A + τ1uv
�) ∩ σ(A + τ2uv

�) with τ1 �= τ2. By (i) λ0 is either a root of q,

or a common root of the polynomials puv,τ1 and puv,τ2 . In the former case λ0 clearly belongs to σ(A),
in the latter case λ0 is a root of (τ1 − τ2)puv and consequently of m. Hence, λ0 ∈ σ(A) as well.
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(iii) By Lemma 2.1, for generic u and v and all τ ∈ C \ {0} the polynomials puv,τ andm do not have

common roots and consequently q is the greatest common divisor of the characteristic polynomials

of A and A + τuv�. Hence, for generic u and v the roots of puv,τ are precisely the eigenvalues of B(τ )
whicharenot eigenvalues ofA. Since thedeg puv,τ = degm, there are exactly degm, counting algebraic

multiplicities, eigenvalues of A + τuv� which are not eigenvalues of A. �

Note that by Lemma 1.1 for each τ �= 0 the eigenvalues in σ(B(τ )) \ σ(A) are non-derogatory.

However, the proposition above does not say, that for each τ �= 0 the eigenvalues in σ(B(τ )) \ σ(A)
are simple. Obviously, for a fixed value of τ and generic u and v the eigenvalues in σ(B(τ )) \ σ(A) are
simple, as follows from the Hörmander–Melin result, but this is a weaker statement.

3. The Jordan structure of A + τuv� at the eigenvalues of A.

The theorem below shows that the Jordan structure of B(τ ) at the eigenvalues of A is constant for

all τ �= 0. The result can be found in [20], we include a simple proof for the sake of completeness of

the presentation. The technique of the proof was used in [13] to reprove the Hörmander–Melin result.

Theorem 3.1. Let A ∈ C
n×n and let (1.3), (1.4) be the Jordan form of A. Then for generic u and v and

all τ ∈ C \ {0} the sizes of the Jordan blocks of A + τuv� corresponding to the eigenvalue λj are

nj,2 � · · · � nj,kj , for j = 1, . . . , r.

Proof. Using the transformation (1.2) we can assume that B(τ ) is in the Brunovsky canonical form.

Denote by ej,l (j = 1, . . . , r, l = 1, . . . , nj,1+nj,2+· · ·+nj,kj ) the vectorwith one on the l-th position

in the j-th block and zeros elsewhere. Then the following sequences are Jordan chains of A + τuv�
corresponding to the eigenvalue λj (j = 1, . . . , r):

ej,1 − ej,nj,1+1, . . . , ej,nj,2 − ej,nj,1+nj,2;
ej,1 − ej,nj,1+nj,2+1, . . . , ej,nj,3 − ej,nj,1+nj,2+nj,3;
...

ej,1 − ej,nj,1+···+nj,kj−1+1, . . . , ej,nj,kj − ej,nj,1+···+nkj−1+nj,kj
.

(3.1)

Hence, we see that for generic u and v there are Jordan chains of A+τuv� of lengths nj,2 � · · · � nj,kj

corresponding to the eigenvalue λj . (Obviously, if kj = 1 then λj is not an eigenvalue of A + τuv�).

By Proposition 2.2 the dimension of the algebraic eigenspace corresponding to σ(B(τ )) \ σ(A) is

degm = nj,1 + · · · + nr,1. Hence, none of the Jordan chains in (3.1) can be extended and the proof is

finished. �

4. The large τ asymptotics of eigenvalues of B(τ).

In this section it is shown that the eigenvalues of B(τ ) that are not eigenvalues of A tend with

τ → ∞ to the roots of the polynomial puv, except one eigenvalue that goes to infinity. This behavior

is again generic in u and v.

Theorem 4.1. Let A ∈ C
n×n. Then for generic u, v ∈ C

n there exist differentiable functions

μ1, . . . , μl : {τ ∈ C : |τ | > τ0} → C,

with l = degm and some τ0 > 0, such that

(i) σ(B(τ )) \ σ(A) = {
μj(τ ) : j = 1, . . . , l

}
for |τ | > τ0;

(ii) μj �= μj′ for j, j′ = 1, . . . , l, j �= j′;
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(iii) μ1(τ ), . . . , μl−1(τ ) tend with |τ | → ∞ to the l − 1 roots of the polynomial puv;

(iv) μl(τ )/τ → v�u with τ → ∞.

The theorem says, in other words, that as τ goes to ∞ the eigenvalues of B(τ ) which are not

eigenvalues of A are simple, exactly l−1 of them approximate the roots of puv and one goes to infinity.

If we consider only real τ , then the convergence to infinity is asymptotically along the ray in the

complex plane going from zero through the number v�u.

Proof. By Lemma 2.1 there are l − 1 simple roots of the polynomial puv, let us denote them by

λ1, . . . , λl−1. Let ε > 0 be such that the closed discs

Cj(ε) = {λ ∈ C : |λ − λj| � ε}, j = 1, . . . , l − 1

do not intersect. Consider the polynomials

qτ (λ) = 1

τ
m(λ) − puv(λ), τ > τ0

and observe that 1
τ
m(λ) converges with |τ | → ∞ uniformly to zero on

⋃l−1
j=1 Cj(ε). By the Rouche

theorem there is a τ0 > 0 so that for |τ | > τ0 the polynomial qτ has exactly one simple root μj(τ )

in each of the sets Cj(ε), j = 1, . . . , l − 1. Hence, the root μl(τ ) /∈ ⋃l−1
j=1 Cj(ε) is simple as well.

By simplicity of the roots we get q′
τ (μj(τ )) �= 0 for j = 1, . . . , l, |τ | > τ0. Hence, by the implicit

function theorem the functions μ1(τ ), . . . , μl(τ ) are differentiable. Recalling that by Proposition 2.2

σ(B(τ )) \ σ(A) consists precisely of the roots of qτ (λ) finishes the proof of (i) and (ii). Letting ε → 0

we obtain (iii). To prove (iv) note that

σ

(
1

τ
B(τ )

)
= σ

(
1

τ
A

)
∪

{
μ1(τ )

τ
, . . . ,

μl(τ )

τ

}
, |τ | > τ0.

As τ → ∞ the matrix τ−1B(τ ) converges to the matrix uv�, which for generic u, v ∈ C is rank one.

Thus μl(τ )/τ converges to v�u. �

Remark 4.2. In Fig. 1 the roots of the polynomial puv aremarkedwith black circles, and the asymptotic

ray y = (v�u)x is the dashed line.

5. Triple eigenvalues of B(τ).

In this section we show that for generic u, v there are no triple eigenvalues in σ(B(τ )) \ σ(A) for
all τ ∈ C. In particular there are generically no triple crossings of the eigenvalue curves.

Theorem 5.1. Let A ∈ C
n×n. Then for generic u, v ∈ C

n and for all τ ∈ C the algebraic multiplicity of

the eigenvalues of A + τuv� that are not eigenvalues of A is at most two.

Proof. Suppose thatu and v are such that for some τ ∈ C thematrixB(τ )has an eigenvalueλ0 /∈ σ(A)
of multiplicity at least three. Then by Lemma 1.1 B(τ ) has a Jordan block of size at least three at λ0.

Consequently, by Proposition 2.2, λ0 is a triple root of puv,τ , i.e.,

m(λ0) − τpuv(λ0) = 0,

m′(λ0) − τp′
uv(λ0) = 0,

m′′(λ0) − τp′′
uv(λ0) = 0.

Solving for τ from the first equation and substituting in the second and third we obtain

m′(λ0)puv(λ0) − m(λ0)p
′
uv(λ0) = 0,

m′′(λ0)puv(λ0) − m(λ0)p
′′
uv(λ0) = 0.
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Let s be the greatest common divisor of m and m′. Since λ0 does not belong to σ(A), it is a common

root of the polynomials

fuv =m′

s
puv − m

s
p′
uv, (5.1)

guv =m′′puv − mp′′
uv. (5.2)

Therefore, det S(fuv, guv) = 0. Summarizing,we showed so far that the set of all u and v forwhich there

exists τ ∈ C such that the matrix B(τ ) has an eigenvalue λ0 /∈ σ(A) of multiplicity at least three is

contained in the set of all u, v ∈ C
n such that det S(fuv, guv) = 0. Clearly det S(fuv, guv) is a polynomial

in the coordinates of u and v. We show now that it is a nonzero polynomial in case degm > 1, i.e., that

for some u, v the polynomials fuv, guv do not have a common root, which will finish the proof for the

case degm > 1. The remaining case will be consider at the end of the proof.

Consider the case degm > 1. Observe that in this case A has either a Jordan block of size a least two

or at least two different eigenvalues with corresponding Jordan blocks of size one. Hence, for every

b ∈ C there exist ub, vb such that pubvb(λ) = λ − b, one can see this easily considering both subcases

mentioned above. Consequently

fubvb(λ) = m′

s
(λ)(λ − b) − m

s
(λ),

gubvb(λ) = m′′(λ)(λ − b).

Let μ1, . . . , μl−2 be the roots of m′′. Note that m′
s
(μj) = 0 implies m

s
(μj) �= 0 due to the definition

of s. Therefore, one can find b0 ∈ C \ σ(A) such that

m′

s
(μj) · b0 �= −m

s
(μj) − m′

s
(μj) · μj, j = 1, . . . , l − 2.

Consequently, fub0 vb0
and gub0 vb0

do not have a common root.

Finally, let us consider the case degm = 1. In that case A is a multiple of the identity, say A = λ1I.

Then B(τ ) is a rank one matrix plus a multiple of the identity, and for generic u and v it has a single

simple eigenvalue not equal to λ1. Thus for the case degm = 1 the theorem trivially holds. �

Note that the result holds only generically. Namely, let A0 = Jk(0) with k � 3 and let u, v be

any two vectors for which A = A0 − τ0uv
� has k mutually different, nonzero eigenvalues. Then

A + τ0uv
� = Jk(0), i.e., there is an eigenvalue of multiplicity at least three in σ(B(τ0)) \ σ(A).

6. Double eigenvalues of B(τ)

Theorem 6.1. Let A ∈ C
n×n. Then for generic u, v ∈ C

n there are at most 2 degm − 2 values of the

parameter τ ∈ C for which there exists an eigenvalue of A + τuv� of multiplicity at least two, which is

not an eigenvalue of A.

Proof. Note that for all τ ∈ R \ {0} the matrix B(τ ) has a double eigenvalue if and only if the

polynomials puv,τ and p′
uv,τ have a common zero, see Proposition 2.2. Writem and puv as

m(λ) = λl +
l−1∑
j=0

ajλ
j, puv(λ) =

l−1∑
j=0

pjλ
j.

Then the polynomials puv,τ and p′
uv,τ (λ) are given by

puv,τ (λ) = λl +
l−1∑
j=0

(aj − τpj)λ
j,

p′
uv,τ (λ) = lλl−1 +

l−1∑
j=1

j(aj − τpj)λ
j−1.
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Consider the Sylvester resultant matrix S(puv,τ , p
′
uv,τ ) ∈ C

(2l−1)×(2l−1) and let

G(u, v, τ ) = det S(puv,τ , p
′
uv,τ ).

Then G(u, v, τ ) = 0 if and only if there is an eigenvalue of B(τ ) of multiplicity at least two, which is

not an eigenvalue of A. Computing the determinantG(u, v, τ ) by development of (1.1) according to the

first column (note that an1 = 1, bn2 = l), one sees that it is the sum of constant in τ multiples of two

determinants of size (2l−2)× (2l−2), the entries of which are linear polynomials in τ , or constants.
Using the fact that the determinant of a k × k matrix is a polynomial of degree k in the entries of the

matrix, we see that G(u, v, ·) is a polynomial of degree at most 2l − 2 in the variable τ . This means

that for any A, u and v the polynomial G(u, v, ·) has atmost 2l−2 zeros or is identically zero. However,

by Theorem 4.1 we already know that for generic u, v there exists τ0 � 0 such that for |τ | > τ0 the

spectrum σ(B(τ )) \ σ(A) consists of simple eigenvalues only and consequently G(u, v, τ ) �= 0. Thus

for generic u, v the polynomial G(u, v, ·) has at most 2l − 2 roots and the theorem is proved. �

The last result of this paper considers the real parameter τ . Together with Proposition 2.2(ii) it

shows why the crossing of the eigenvalue curves in (0.1) do not appear in numerical simulations,

except possibly the crossings at σ(A).

Theorem 6.2. Let A ∈ C
n×n and let V be the set of all pairs (u, v) ∈ C

2n for which there exists τ ∈ R

such that A + τuv� has a double eigenvalue, which is not an eigenvalue of A. Then V is closed, with empty

interior and has the 4n-dimensional Lebesgue measure zero.

Proof. As in the proof of Theorem 6.1 we note that

V =
{
(u, v) ∈ C

2n : ∃τ∈R\{0} G(u, v, τ ) = 0
}
.

Since the zeros of a polynomial depend continuously on its coefficients, the set is C \ V is open. To

prove that V is of 4n-dimensional Lebesque measure zero (and consequently has an empty interior)

consider the set

U0 :=
{
(u, v) ∈ C

2n : ∃λ∈C fuv(λ) = f ′uv(λ) = 0
}
,

where fuv is defined as in (5.1). Note that

U0 =
{
(u, v) ∈ C

2n : ∃λ∈C fuv(λ) = guv(λ) = 0
}
,

where guv is defined as in (5.2). Indeed, this follows from

s2f ′uv = sguv − s′fuv
and from the fact that the polynomials s and fuv do not have common roots. Hence, it follows from the

proof of Theorem 6.1 that the set U0 is a proper algebraic subset of C
2n.

Recall that by Lemma 2.1 the set

U1 =
{
(u, v) ∈ C

2n : deg puv < l − 1
}
,

is also a proper algebraic subset of C
n. Observe that for (u, v) /∈ U1 one has deg fuv = k, where

k := max {(r − 1)(l − 1), r(l − 2)}, l = degm and r = deg m
s
is the number of eigenvalues of A. To

see this let (u, v) /∈ U1. In the case (r − 1)(l − 1) �= r(l − 2) it is clear that deg fuv = k. In the case

when (r−1)(l−1) = r(l−2) note that although the degrees of both summands in (5.1) coincide, the

leading coefficient does not cancel. Indeed, the leading coefficients of m′
s
puv and

m
s
p′
uv are respectively

lα and (l − 1)α, where α is the leading coefficient of puv.

Consequently,

V0 := C
2n \ (U0 ∪ U1)

is an open and nonempty set. Note that for each (u, v) ∈ V0 the function fuv has precisely k ze-

ros λ1(u, v), . . . , λk(u, v) and they are all not in σ(A). Since fuv(λj(u, v)) = 0 and (u, v) /∈ U0,
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one has f ′uv(λj(u, v)) �= 0, j = 1, . . . , k. Therefore, by the implicit function theorem, the functions

λ1(u, v), . . . , λk(u, v) can be chosen as holomorphic functions on V0. Note that

V ⊆ U0 ∪ U1 ∪
k⋃

j=1

Vj,

with

Vj =
{
u ∈ V0 : ∃τ∈R\{0} m(λj(u, v)) − τpuv(λj(u, v)) = 0

}

=
{
u ∈ V0 : puv(λj(u, v))

m(λj(u, v))
∈ R

}
, j = 1, . . . , k.

Observe that the functions

V0 � (u, v) 	→ puv(λj(u, v))

m(λj(u, v))
= v�(λj(u, v) − A)−1u ∈ C, j = 1, . . . , j

are holomorphic and nonconstant on every connected component of V0. By the uniqueness principle

each of the sets Vj (j = 1, . . . , k) is of 4n-dimensional Lebesgue measure zero. Hence their union, and

in consequence V as well, is of 4n-dimensional Lebesgue measure zero. �

In the infinite dimensional case the function Q(z) = −
〈
(λ − A)−1u, u

〉
is a very useful tool for

studying spectra of one dimensional perturbations of selfadjoint operators, or even more generally,

spectra of finite dimensional selfadjoint extensions of symmetric operators. The key point is solving

the equation Q(z) = −1/τ and as it can be seen this technique was a motivation for the proof above.

This approach can be found, e.g., in [8] in the Hilbert space context and in [3,4,21] in the Pontryagin

space setting.
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