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ABSTRACT 

Analogues of characterizations of rank-preserving operators on field-valued matrices 
are determined for matrices with entries in certain structures S contained in the 
nonnegative reals. For example, if S is the set of nonnegative members of a real 
unique factorization domain (e.g. the nonnegative reals or the nonnegative integers), 
M is the set of m X n matrices with entries in S, and min(m, n) > 4, then a “linear” 
operator on M preserves the “rank” of each matrix in M if and only if it preserves the 
ranks of those matrices in M of ranks 1, 2, and 4. Notions of rank and linearity are 
defined analogously to the field-valued concepts. Other characterizations of rank-pre- 
serving operators for matrices over these and other structures S are also given. 

1. INTRODUCTION AND SUMMARY 

If IF is an algebraically closed field, which linear operators T on the space 
of m x n matrices over IF preserve the rank of each matrix? Evidently if U 
and V are invertible, then X -+ UXV is a rank-preserving, linear operator. 
When m = n, X + UX’V is also. Marcus and Moyls [7] found that such 
“(V, V>operators” were the only rank preservers. Later Marcus and Moyls 
[8] found that T preserves all ranks if and only if T “preserves rank 1.” That 
is, the rank of T(X) is 1 whenever the rank of X is 1. For further background, 
see Marcus’s survey paper [6], Lautemann [5], Mint [9], and Westwick [ll]. 
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In this paper we consider operators on the m X n matrices over various 
subsets of the nonnegative reals, IW +. Our main result (Theorem 4.2) applies 
to subsets 111+ consisting of the nonnegative members of a unique factoriza- 
tion domain 111 -for example, the nonnegative reals themselves, the nonnega- 
tive rationals, the nonnegative integers, Iw + n Z[&], etc. Let M denote the 
m X n matrices with entries in 111+. Theorem 4.2 asserts that whenever 
min( m, n) > 4, a “linear” operator T on M preserves the “rank” of each 
member of M if and only if T is a “(U, V>operator” on M if and only if T 

preserves “ranks” 1, 2, and 4. The concepts of “rank,” “linearity,” and 
“(U, V )-operator” are defined analogously to their field counterparts. 

A weaker form of this theorem is obtained (Theorem 4.1) characterizing 
“linear” operators on M that preserve “ranks” 1 and 2. 

Previously, similar results were obtained in [l] characterizing the rank-pre- 
serving operators on the m x n matrices over the Boolean algebra of two 
elements. 

2. DEFINITIONS AND OTHER PRELIMINARIES 

2.1. Nonnegative SemiaYomuins 
Let S be any subset of W + (the nonnegative reals). We’ll call it a 

nonnegative semidomain if it contains 0,l and is closed under multiplication 
and addition (the usual real operations). If D is a subring of Iw containing 1 
(so D is an integral domain), let 119 + denote the set of its nonnegative 
elements. Then D + is a nonnegative semidomain. Examples are Iw +, Q +, Z +, 

(wa>,~ etc., where Q denotes the rationals and Z the integers. Note that 
(Z[&])+ contains Z + [a] properly, since e.g. & - 1 is in the left member 
but not the right. There are other nonnegative semidomains: e.g. I-I = 
{0,I,2,3}U{qE~:q~4}isnotoftheform~+,foranyintegr~domain[ID 
in Iw. 

Hereafter we will use the following notation unless otherwise specified: 

S is an arbitrary nonnegative semidomain, 
D is an arbitrary integral domain in R, 
I1J is an arbitrary unique factorization domain in R, and 
F is an arbitrary subfield of 08. 

2.2. Rank 

Let S be a subring of R containing 1, or a nonnegative semidomain of R. 
Suppose X is an m x n matrix with all entries in S, i.e., X is in M,,,(S). If 
X # 0, we define its S-rank, r&X), as the least integer k such that there exist 
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m x k and k x n matrices Y and Z with entries in S such that X = YZ. The 
zero matrix is assigned the Srank 0. 

(2.2.0) If S, c S,, then rsI(X) 2 rsz(X) for all X with entries in sl. 

Here are some other properties of S-rank that follow directly from the 
definitions. Letting r(X) = r&X) and A, J3 be matrices over s: 

(2.2.1) r( AB) < min( r( A), r(B)), 
(2.2.2) T( A’) = r(A), 

(2.2.3) r(C) G r(A) for all submatrices C of A, 
(2.2.4) r(A) < min(m, n) if A is m X n, 
(2.2.5) If U, UP’ have all entries in S, then r(UA) = r(A). 

2.3. The Two-Element Boolean Algebra 
LetB={0,1}.DefinexO=Ox=Oandr+1=1+x=1forbothxinB. 

Then I5 is called the 2eZement Boolean algebra. It corresponds to the algebra 
of subsets of a singleton {a } with 0 for 0, 1 for {a }, x + y for x U y, and xy 
for x n y. Note that IB can’t be embedded in a ring under these operations 

because in any ring x + x # x unless x = 0. The m x n matrices over B have 
been studied extensively. (See Kim [4] for a compendium of results.) 

If X is an m X n matrix over the nonnegative semidomain s, define a 
Boolean m X n matrix X* = [x;] by xTj = 0 if xij = 0 and rrj = 1 if xlj > 0. 
Then * maps M,, ,(S) onto M,,,,(B), and preserves matrix addition, multi- 
plication, and multiplication by scalars. That is, * is a homomorphism. 

It’s well known (see e.g. Kim 141) that the only invertible matrices in 
M, ,( B) are permutation matrices (matrices obtained by permuting the rows 
of i,, the n X n identity matrix). Therefore if U is invertible over S (i.e. 
U, U-i are n X n matrices over s), then U* is invertible over B and hence 
PU is a diagonal matrix over S for some permutation matrix P. [In fact, 
P = (U*)‘, abusing the notation a bit.] Therefore a square matrix C’ over s is 
invertible if and only if some permutation of its rows is a diagonal rnatrix all of 
whose diagonal entries are units in S. 

The rank of matrices over B is defined just as in Section 2.1. We’ll call it 
Boolean rank and denote it by re. (Kim calls it Schein rank, [4].) If rS( X ) = k, 

then X = YZ for some m x k, k x n matrices Y, Z over S. Then X* = Y*Z*, 
so r&X*)< k. In general 

(2.3.1) r&X*)< r,(X) for all X in M,,L,,,(S). 

The following will be used frequently. 
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EXAMPLE 2.3.1. Let 

LEROY B. BEASLEY ET AL. 

1 0 1 0 

*= I 1 

0 110; 
0 1 0 0 1 0 1 1 

then r,(A) = 4 (see e.g. Berman and Plemmons [2, p. 841). Therefore by 
inequalities (2.3.1), (2.2.4) r,(L)= 4 for every L in M4,4(s) for which 
L* = A. On the other hand, m(A) = 3. 

2.4. When r&X) = r&X) 
In this and all subsequent sections, when we refer to the rank of a matrix 

without specifying the kind of rank, we will always mean the S-rank and we’ll 
write r(X) instead of r&X). The real rank of X will be denoted p(X). 

We remind the reader that UJ denotes an arbitrary unique factorization 
domain in R, and S denotes an arbitrary nonnegative semidomain unless 
otherwise specified. 

Let P be a nonempty subset of Sk. We’ll say that g is a common factor of 

I? if l?C {ag:oES}. 

LEMMA 2.4.1. Let I’ be any rwnempty subset of U”,. Each pair of 
rwnzero vectors in r has a comwn nonzero scalar multiple in LJ “, if and only 
if r has a common factor in 111:. 

Proof. We may suppose I # (0). Let a be a nonzero member of I, and 
(Y be a greatest common divisor (gcd) of the entries of a. Then a = af for an f 
in U”, which has 1 for a gcd of its entries. Let x be an arbitrary nonzero 
member of I. Then by our hypothesis, a and x, and hence f and x, have a 
nonzero common scalar multiple c. Next, we show that the set {f,x} has a 
common factor g in LJk,. Suppose 6f = c = EX. Let y = gcd(6, E), B = 6/y, 
and r = E/Y. Then T and p are in 111 +, and rf = bx. Therefore for every 
index i, 7 divides j?xi. But r is relatively prime to /?, so r divides every entry 
in x, because 111 is a unique factorization domain. Therefore for some g in 111 “,, 
x = rg. By cancellation, f = pg. Then p is a unit in U +, because p divides 
every entry in f. Therefore x = p-%f. But x was arbitrary, so f is a common 
factor of r. The converse is immediate. n 

LEMMA 2.4.2. Zf U is an m x n matrix over S and p(U) = 1, then 
r(dJ)= 1 for some a in S. 
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Proof. We may assume that 2 < m < n. There exist vectors b and c in 
R y and W : such that U = bc’, because p(U) = 1. We may assume without 
loss of generality that for some 1~ m and k Q n, bi z 0 and cj z 0 if and only 
ifl~i~Zandl~j~k.Wemayalsoassumethatb,=l.Leta=c,;thena 
is in S, because c is in S”. For each i < m, bi = ~,~/a; then auij = uilcj for 
all i, j. Therefore r(aU) = 1. n 

The following example demonstrates the existence of a nonnegative 
semidomain S, a matrix U over S, and a in S such that p(U) = T( au) = 1 
but r(U) = 2. 

ExAMPLE~.~.~. Let S={a+b~20:a,b~Z}=K!+~Z[~], a=3 
+&, p=l+fi,and 

P a u= 2 P’ [ 1 
Then 

au= “LB [2,P]. 
[ 1 

Therefore r(aU) = 1 and hence p(U) = 1. Clearly r(U) = 1 or 2. If r(U) = 1, 
then 

u= [ 1 ; [u,vl, 

so xv = a. But a is irreducible over E[&] (see, e.g. [3, Chapter IV, Exercise 
14f]). Therefore x or v is a unit. If v is a unit, then v-‘up = 2, since yu = 2 
and yv=p. Multiplying by &--lwe have 4~‘u=(2&)-2,sov-‘u= 
(-i)+f&, h’ h w ic is not in S, a contradiction. If r is a unit we arrive at the 
same contradiction. Therefore r(U) = 2 even though p(U) = 1. 

LEMMA 2.4.3. Zf W is any m X m matrix over U +, then p(W) = 1 if and 

only if r(W) - 1. 

Proof. According to inequality (2.2.0), p(W) = 1 if r(W) = 1, because 
UJ + C R. Conversely, if p(W) = 1 then r(aW) = 1 for some nonzero a in UJ + 
by Lemma 2.4.2. Let I be the set of columns of aW. The members of I are 
all multiples of some nonzero vector w, because r( aW) = 1. Therefore, by 
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Lemma 2.4.1, each pair (owi, awj) of nonzero members of I have a common 
nonzero scalar multiple. Therefore each pair (wj,wj) of nonzero columns of 
W have a nonzero scalar multiple. So by Lemma 2.4.1, the columns of W 
have a common factor in 111 y. Therefore r(W) = 1. n 

COROLLARY. Zf X is any m x m matrix over U + and the 111 +-rank of X is 
n 2, then the real rank of X is 2. 

EXAMPLE 2.4.2. If k > 1, let 

A(k)= [i d k$]. 
If 0 < k < 1, let p = [l/k], 9 = p - 1, and 

LEMMA 2.4.4. Zf k is a rwnzzro nonunit in D +, then r( A( k)) = 3. 

Proof. Let A = A(k). Each entry in A is in D +. Also, r(A) = 2 or 3, 
because p(A) = 2. Sppose r(A) = 2. Then 

where both factors have all entries in D +. Either yr or ys is not zero. Without 
loss of generality, assume yi # 0. NOW 0 = az2 = ylu, + y2v3, SO ~2~3 = 0 = u3. 

Also, 1 = a31 = zlu3 + z2v3, so z2v3 = 1. Therefore v3 # 0, so y2 = 0. But 
k = a= = ylu2 + yzv2, so ylu2 = k. We have 1 = a2i = xlu2 + x2v2. But v2 = 
0 (because z2 # 0 and 0 = a= = xlu2 + z2v2). Therefore xlu2 = 1, so u2 is a 
unit. If k>l, then l=a,,= y,u, + y,u, but y2 = 0, so yi is a unit. Thus 
k = ylu2 as a product of two units, must be a unit, contrary to hypothesis. If 
O<k<l, then 1-kq=a,,= ylu, + y,v,, but we’ve seen that y, = 0, yiu, 
= k, and xlu2 = 1. Therefore k(u, + qu,)x, = 1, so k is a unit, contrary to 
hypothesis. n 

The converse of the Corollary to Lemma 2.4.3 is false, because the 
H +-rank of A(2) is 3, while its real rank is 2. 
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Just as multiplication by a scalar can lower the rank of a rank-2 matrix 
over S (unless S = 111 + ), so multiplication by a scalar can lower the rank of a 
rank-3 matrix over UJ +. For example, the Z +-rank of 2A(2) is 2. 

LEMMA 2.4.5. IfXisanymXmmutrixover IF,, thenforeachkg2 we 
have r(X)= k if and only if p(X)= k. 

Proof. By Lemma 2.4.3 and its corollary, we need only show that 
r(X)=2whenp(X)=2.Wemayalsoassumethat2<m<n.Ifp(X)=2, 
then some m x 2 submatrix of X has real rank 2. We may assume, without 
loss of generality, that no column of X is 0 and that X = [a, b,. . .], where 
p([a, b]) = 2. We proceed by induction on n. If n = 2, the result is obvious. 
Suppose the result is true for all m x n’ matrices with 2 < m < n’ < n. We 
have X = [a,b,ca,ca ,..., c,_r,c,]. Let Y= [a,b,ca ,..., c,_r]; then p([a,b]) 
<p(Y)<p(X)=2, so p(Y)=2 and hence r(Y)=2 by the induction hy- 
pothesis. Let S = IF +. Therefore for some u,v in S”, each column of Y is an 
S-linear combination of u and v. Let c = c,. There exist real scalars x, y, z 
such that xu + yv + zc = 0. We may assume that exactly one of r, y, z is 
negative. If z < 0, then c = (YU + fiv, where a = - x/z >, 0 and /3 = - y/z 
> 0. Some 2 x 2 submatrix of [u, v] has real rank 2; call that matrix W. Then 

[;]=w-$;I 
and hence a,P are in lFnR+ = S. So every column of X is a linear 
combination of u and v. If x < 0, then u = (YV+ PC, where LY = - y/x >, 0 
and p = - z/x >, 0. By an argument similar to the case z < 0, we can show 
that (Y, p are in S. Therefore every column of X is an S-linear combination of 
y and c. If y < 0, every column of X is an S&near combination of u and c 
similarly. Since u, v and c are in S m, in each of the cases above, it follows that 
T(X) = 2. n 

Example 2.3.1 shows that Lemma 2.4.5 cannot be extended for k > 2. 

LEMMA 2.4.6. Suppose k is a rwnmo nonunit in D + and p = min(m, n) 
> 3. Then for each 3 Q T Q p, there exists an m X n matrix X over D + of 
ID +-rank r, such that the matrix obtained by multiplying the j th column of X 
by k has rank T - 1. 

Proof. Let A be A(k) as in Example 2.4.2. Then multiplying the first 
column of A by k reduces its rank to 2. Obtain P from I, by interchanging 
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Z,‘s first and j th columns, and let B be any (m - 3) X( n - 3) matrix over 
D + of rank r - 3. Then X = (A@ B)P is the required matrix. n 

3. FACTOR SPACES AND RANK-l SPACES 

If X is a matrix over S and X = ax’, then the vectors a,x are called Zefi 
and right factors of X respectively. Both a and x are referred to as factors of 
X. 

LEMMA 3.1. Suppose A, B are m x n rank-l matrices over S and 
min(m, fl) > 2. Then 

(a) r(A + B) = 1 only if arA, (YB have a common factor for some rumzero 
a in S. 

(b) If S = RJ +r then r(A + B)= 1 if and only if A, B have a common 
factor. 

Proof. Suppose A = axt and B = by ‘. Let U = [a, b] and V = [x, y]. Then 
A+B=Wt. If r(A+B)=l then p(W’)=l. But U is mX2 and V is 
n x 2. Therefore p(U) = 1 or p(V) = 1. If p(U) = 1, then r(aU) = 1 for some 
(Y in S by Lemma 2.4.2. Therefore au= f[a, r] for some u, 7 in S and f in 
S”. Hence aA and aB have a common left factor, f. If p(V)= 1, we can 
show that they have a common right factor similarly. 

If S = UJ +, then by Lemma 2.4.3, we can take a! to be 1 in the previous 
paragraph. Then A, B have a common factor when r(A + B) = 1. The 
converse is immediate. n 

Any subset V of Sk closed under addition and under multiplication by 
scalars in S is called a (vector) space over S. Identifying S*” with 
M,,,(S), we transfer the definition to M,,,(S). If V # (0) is a space in 
M,,,(S) whose members have rank at most 1, then V is a rank-l space. If V 
is a space all of whose members have the same left factor a, then V is called a 
2eft factor space. Notice that in that case W = {x E S ” : ax’ E V} is a space in 
S”. Conversely, if W is a space in S” then {axf : x E W} is a left factor space. 
Right factor spaces are defined symmetrically. We call V a factor space if it 
is either a left or a right factor space. 

Evidently factor spaces are rank-l spaces. If S = U +, then the converse is 
true, as we will see in Theorem 3.1 below. 

Define a relation X on the m X n rank-l matrices over S by: A X B if 
A, B have a common left factor. 
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LEMMA 3.2. 

(a) A is an equivalence relation on the m x n rank-l matrices over U +. 

@) For any rwnempty set E of m X n rank-l matrices over IL] +, the 
members of E have a common lef factor if and only if X X Y for all X, Y in E. 

Proof. Part (a): Evidently X is a reflexive and symmetric. Suppose 
A, B, C are rank-l m X n matrices over UJ +, A X B, and B X C. Then A, B, 
and C can be factored as A = axt, ay ’ = B = bz’, and C = bw ‘. Now a, b have 
a common nonzero scalar multiple because the factors of B are nonzero. 
Therefore a,b have a common factor by Lemma 2.4.1, and hence A XC. 
Consequently h is also transitive. 

Part (b): For each X in E select a left factor gx and put I? = {gx : X E E }. 
By the proof of part (a), if A, C are in I’, then g, and g, have a common 
nonzero scalar multiple. Therefore P has a common factor f, by Lemma 2.4.1. 
Thus f is a common left factor of all X in E. The converse is immediate. n 

Thus the X-equivalence classes are the maximal left factor spaces in 
M,, ,(U + ). These in turn are of the form V(a) = {ax’: x E Iu: }, where the 
gcd of the entries of a is a unit. 

THEOREM 3.1. Suppose mint m, n ) > 2 and V is a subspace of 
M,, ,,(LJ + ). Then V is a rank-l space if and only V is a factor space. 

Proof. Suppose V is a rank-l space. 

Case 1. Suppose there exist A, B in V having no common nonzero 
multiple. Since V is a rank-l space, Lemma 3.1 implies that A, B have a 
common (say left) factor. Then A, B have no common right factor (in this 
case). Let X be any nonzero member of V. Again by Lemma 3.1, X, A have 
a common factor and so do X, B. If X, A had no common left factor, then 
neither would X, B. (If X A B, then B h A implies X A A.) But then X’h B’, 
X’ X A’, and so A’A B”, a contradiction. Hence XX A for all 0 f X in V. 
Therefore V is a left factor space by Lemma 3.2. If A, B had a common right 
factor, then (symmetrically) V would be a right factor space. 

Case 2. For every A and B in V there exist (r, /? in UJ +, not both 0, such 
that aA = /3B. Therefore by Lemma 2.4.1, for some D in M,,,(U + ), not 
necessarily in V, V c { aD : u E UJ + }. Thus V is simultaneously a left factor 
space and a right factor space. 

The converse is immediate. n 
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4. RANK PRESERVING LINEAR OPERATORS 

Suppose S is a nonnegative semidomain and M(S) = M,,,(S). If 
T:M(S)+M(S)andT(aX+PY)=aT(X)+PT(Y)foralla,PinSandaIl 
X, Y in M(S), then T is a linear operator on M. For X in M(S) we write 
r(X) for r&X) and p(X) for r&X), as in previous sections. We also write x j 
for the jth column of X, and xi for its ith row. 

LEMMA 4.1. lf T preserves S-rank 1, then 

QYx)) d 4x1 for all X in M(S). 

Proof. We may assume X # 0. If r(X) = k then X = AB, where A is 
m x k, and k is the least such index. Now AB = Ci=,ajhj, but T preserves 
S-rank1,sothereexistujandvjsuchthatT(ajbj)=ujvif.LetU=[u,,...,uk] 
and V’= [vr,..., ~~];thenT(X)=Wandhence r(T(X))<k. n 

Since p( Y ) 6 r(Y) for ail Y, we have the inequality 

p(T(X)) Q r(T(X)) G r(X) (4.1) 

for all X in M when T preserves S-rank 1. 

LEMMA 4.2. 

(a) T preserves real rank 1 over M(U + ) if and only if T preserves 
111 +-rank 1. 

(b) Zf T preserves real rank 2 over M(U + ), then T preserves UJ +-rank 2. 

Proof. (a): This follows from Lemma 2.4.3. 
(b): Suppose r(X) = 2; then p(X) = 2 by Lemma 2.4.3’s corollary. There- 

fore p( T( X)) = 2 and hence r(T( X)) = 2 by the inequality (4.1). n 

LEMMA 4.3. If T preserves real ranks 1, 2, and 3 fm all X in M(F + ), 

then T preserves IF +-ranks 1, 2, and 3. 

Proof. Suppose r(X) = 3. Then p(X) < 3 but p(X) 6 2 by Lemma 2.4.4, 
so p(X) = 3. Therefore p(T(X)) = 3, and hence the inequality (4.1) implies 
r(T( X)) = 3. The rest follows from Lemma 4.2. n 
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In the following lemma “rank” can be interpreted as either real rank or 
S-rank by letting p play the role of r in the proof. 

LEMMA 4.4. Suppose S is a nonnegative semidomain, U is in M,,,.(S), 
and T(X) = UX for all X in M,,,(S). 

(a) Zf T prese-rves rank 1, then T(X) = 0 only if X = 0. 
(b) Zf k > 2 and T preserves rank 1 and 2, then T is injective on M,, k(S). 

Proof. If UX = 0 and X f 0, then U would have a zero column and so T 
would reduce the rank of some rank-l matrix. That proves part (a). We now 
turn to (b). Suppose T(A)= T(B). Then for all j, Uaj = Ubj = zj. If zj = 0, 
then aj=O=bj by part (a). If zj#O, let Y=[aj,bj,O,...,O]. Then r(T(Y)) 
= 1, but T preserves rank 2, so r(Y) = 1. Therefore a j = (YC and bj = j3c for 
some cr, p,c. Hence I = zj = &UC) but zj # 0. Therefore (Y = j3 and 
ai = bj. n 

We use the notation Eij for the m X n matrix whose ijth entry is 1 and 
whose other entries are all 0. We’ll let e, denote the ith column of I,, the 
m X m identity matrix, and fj the jth column of I,. Then Eij = e,fj. 

THEOREM 4.1. Suppose S consists of the nonnegative elements of a 
unique factorization domain in R, T is a linear operator on M,,,.(S), and 
min( m, n) 2 2. Then the following are equivalent: 

(a) T preserves ranks 1 and 2. 

(b) T is injective, and there exists matrices U, V over S such that either 

(1) T(X) = UXV for all X in M,,.(S), or 
(2) T(X)= UX’V for all X in M,,,(S), possibly m # n. 

[Here, T need not be a (U, V )-operator because U or V need not be 
invertible.] 

Proof. Suppose that (a) holds. Then Vi = { T(e,y’): y E S”} and Vi = 
{ T(xfj) : x E S”‘} are rank-l spaces. Therefore each Vi and Vi is a factor 
space by Theorem 3.1. 

Case 1: V, is a left factor space. If some vi were a left factor space, 
choose k # j and i f 1. Then { T(Elj), T(Elk), T(Eij)} would have a com- 
mon left factor by Lemma 3.2. But then r(E,, + Eij) = 2 and r(T(Elk + Eij)) 
= 1, a contradiction. Hence all Vi are right factor spaces. Similarly, all Vi are 
left factor spaces. Therefore there exist nonzero vectors x i, z j, pi j, and qi j 
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such that for all 1~ i < m and 1 < j < fl 

XiPij = T( Eij) = qijz;* 

Fix i. Since T( Ei j) # 0, xi and qi j have a common nonzero scalar multiple for 
all j 2 1. Therefore (Lemma 2.4.1) they have a common vector factor fij. Let 
ri = {f i j : 16 j < n }. Then xi is a common nonzero scalar multiple of fir and 
fi, for all 1~ r, s < n. Consequently by Lemma 2.4.1, ri has a common 
vector factor; call it wi. Since wi is a factor of f i j and f i j is a factor of qi j, it 
follows that q ij = aijwi for some nonzero scalar aij. Therefore there exist 
scalars a i j and vectors wi, z j such that for all 1~ i < m and all 16 j < n, 

T( Eij) = aijwiz;. (4.2) 

Let A = [a i j]. We are going to show that r(A) = 1. No a i j = 0, because T 
preserves rank 1. Therefore p(A)>,l. Let W= [wr,ws,...,w,] and Z’= 

[ zr,zs>.**> z,J. Let C be any 2 ~2 submatti of A. We wilI show that 
det C = 0, and hence that p(A) = 1. We have 

Let E = E,, + E,, + E,, + Et”, G = (l/a,,)E,, +(l/a,,)E,, +(l/atJEt, 
+ (l/%“)E,“, and (Y= u,,u,,u,,u,,. Then cuG is in M,,.(S) and 1~ r(aG) 
< 2. Also, r( W( c&)2) < 1 because aE = a(e, + e,)(f II + f .)‘. But T( aG) = 
W(aE)Z, and T preserves S-ranks 0, 1, and 2. Therefore r(oG) = 1; hence 
p(G) = 1. But 

det 
l/usu l/US” 
l/a,, l/ut, = (Y 1 - ldetC, 

so det C = 0. Therefore p(A) = 1. Hence r(A) = 1 by Lemma 2.4.3. So 
uij=uibj for some ui,bj in S. Let U=[u,w,,a,w,,...,u,,,w,,,] and V’= 

[b,q, b,z,, . . . , b,z,l; thus 

T(X)=UXV for all X in M,.,(S). (4.3) 

Then T is injective by Lemma 4.4. 
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Case 2: V, is a right factor space. Arguments paraRe to those for case 1 

show that 

T(X)=UXV for ah X in M,,,(S) (4.4) 

and that T is injective. 
Suppose (b) holds. Forms (1) and (2), the inequality (2.2.1), and the 

equation (2.2.2) imply that for aU X in M,_(S) 

r(T(X)) < r(X). (4.5) 

But T is also injective, so T preserves rank 1. Suppose Y is any rank-2 
member of M m ,(S). If (1) holds, let X = Y; otherwise let X = Y ‘. Then 
X = [c,d][x,ylt, where r([c,d])= 2 and r([x,y])= 2. In either case (1) or (2), 

T(Y)=UXV= [UcJd] “’ [ 1 Y’V 
. 

NOW r(T( Y )) = 1 or 2 by (4.5) and the fact that T preserves rank 1. If 
r(T(Y))=l,thenbyLemma3.1, r([Uc,Ud])=lor~([V~x,V~y])=l.Without 
loss of generality, suppose the former holds. Then for some z # 0 and 
(Y + p # 0, [UC, Ud] = z[(Y, /?I. Consequently U( PC) = U(ad). But U is injec- 
tive because T is. Therefore PC = ad. Since r(X) = 2, neither c nor d can be 
0, so (Y + 0 and p # 0. Therefore (Lemma 2.4.1) c,d have a common factor 
and hence r([c, d]) = 1, contrary to assumption. Therefore r( T( Y )) = 2 and T 
preserves rank 2. H 

EUMPLE 4.1. Suppose S is an arbitrary nonnegative semidomain. Let 
Tk(X)=(Zj jxij)A for all X in M, R (S), where r(A) = k. Then Tk preserves 
rank k, but’ T isn’t injective. Thus ‘(a) of Theorem 4.1 cannot be relaxed by 
requiring that T preserve rank 1 or that T preserve rank 2. 

EXAMPLE 4.2. Suppose S is an arbitrary nonnegative semidomain. Let 

T(E,,) = E,, T(E,,) = E,,, and T(Eij) = E,, for ah other i, j. Extend T to 
M,,,(S) by linearity. Let A = E,, + E,, and B = E,, + E,,; then r(A) = 1 
but r( T( A)) = 2. Also r(B) = 2 but r( T( I?)) = 1. Nevertheless, T is injective. 
In fact, T is bijective. Thus injectivity alone does not ensure that ranks 1,2 
will be preserved by a linear operator. 
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EXAMPLE 4.3. Suppose S is an arbitrary semidomain in R. Let 

1 

W=O [ 

1 0 
10, 

0 0 1 1 
and define a linear operator T on M = M&S') by T(X) = WX for all X in 
M. Then T preserves all ranks by Lemma 4.2 and the inequality (4.1). 
Nevertheless T is not a (U, V)operator on M, because T is not smjective, 
since 

T(X) + [ 0 0 0 0 0 1 0 0 0 1 for all X in M. 

Curiously enough, this example doesn’t generalize. We shall see (Theorem 
4.2) that when S = UJ + and min(m, n) 2 4, then T's preserving ranks 1,2,4 
is equivalent to its being a (U, V>operator and to its preserving all ranks. 

EXAMPLE 4.4. Let A be the matrix of Example 2.4.2 and B = 2 @ Zm_ r; 
thenlet T(X)=X(B@O m,n--m )forahmXnmatricesXoverH+withn>3. 
The operator T preserves H +-ranks 1 and 2 by Lemma 4.2. But if X = A@ 
0 ,,_a, “_a then r(T(X)) = 2 while r(X) = 3. Therefore, preserving ranks 1,2 
isn’t always sufficient to preserve rank 3. 

EXAMPLE 4.5. Let 

1 1 1 1 

M= [ o 1 1 1 
0 0 1 1 
0 0 0 1 1 

and A be as in Example 2.3.1. The linear operator T on M,,,(R + ) defined by 
T : X + MX preserves R +-ranks 1,2,3 by Lemma 4.3. But as we observed in 
Example 2.3.1, the W +-rank of A is 4. Nevertheless the R +-rank of T(A) is 
not 4, because 

Therefore a linear operator on the 4 X4 matrices over IF, can preserve 
IF +-ranks 1, 2, 3, but not 4. 
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The next sequence of lemmas is needed to prove the main theorem. 

LEMMA 4.5. Suppose A is in M,,,(S), 4 < k < m, and ai is the jth 

column of A. Zf aai 2 ai (entrywise) for some a in S and some i z j, then 

thereexistsakxnmatrixXsuchthutr(AX)<3andr(X)=4. 

Proof. Suppose without loss of generality that a # 0 and that A = 

[ u,v,w,x ,... 1, where (YW>,U. Let 

Then let X = WCBO be a k x n matrix. Now r(W) = 4 by Example 2.3.1. 
Therefore r(X) = 4, but 

AX=A([;][CO])=[ u+v,aw - u,u+x][c,o] 

and CYW - u is in S”. Therefore r( AX) < r(X). n 

Recall the homomorphism M + M* sending M,,,(S) onto M,,,JB), 

where B is the 2-clement Boolean algebra as in Section 2.3. 

LEMMA 4.6. Suppose A is in M,,,(S), m > 4, and T(X) = AX for all X 

in M,,,(S). Then T preserves rank 4 only if A* is a permutation matrix. 

Proof. Since A is a square nonnegative matrix, there exists a permutation 
matrix P such that PAP’ = W. where 

w= 0 0 z& ... I& ) 

b b b . . . B,, 

Bi j = 0 if i > j, and each Bii is square and is either a 1 X 1 zero matrix or such 
that B$ is the direct sum of d i square matrices, each having only positive 
entries in all sufficiently high powers. This is the Frobenius normal form of a 
nonnegative matrix (see e.g. Seneta [lo, pp. 14-16, 21-221, or Berman and 
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Plemmons [2, pp. 32, 35, 391). Therefore, for some positive integer k 

Cl1 
0 

Wk= . I. b 

c 12 

c 22 

0 

. . . 

. . . 

. . . 

c 
1P 

C 
2P 

*I 

. 7 

a, 

where each C, j = 0 if i > j, and each Cii is either a 1 X 1 zero matrix or a 
square matrix all of whose entries are positive. If i < j, then Cij = 0 or each 
entry in C.. is positive. Now T preserves rank 4, so each of its powers 
including i3, must do so. Therefore if ci and c j are columns of Wk (i # j), 
then (YC( $ c j for all (Y > 0, by Lemma 4.5. Therefore c: 6 CT for all i # j, so 
( Wk)* is the m X m identity matrix. Therefore A* is a permutation matrix. n 

Any operator defined on M,,+(S) can be extended to M,,JR) by 
linearity. The extension is unique because the Ejj are in M,,,. ,(S). 

LEMMA 4.7. Suppose S = UJ I) T is a linear operator on M,, JS), and 
min(m, n) > 4. Zf T preserves S-ranks 1, 2, and 4, then the extension of T is 
a (U, V>operator on M,,,(R). 

Proof. The operator T is injective and has the form (1) or (2) given in 
Theorem4.1.1f(2)holds,thenT2(X)=WXZ whereW=UV’and Z=U’V. 
The operator T2 preserves S-rank 4 because T does so. Therefore W* and Z* 
are permutation matrices by Lemma 4.5. If m > n then p(W) < m. But 
W= Pdiag(a,,a,,..., a,) for some permutation matrix P and nonzero aj, a 
contradiction. If m < n, we obtain a contradiction to Z* being a permutation 
matrix, similarly. Hence m = n, so we may assume (1) holds. Then, as above, 
U* is a permutation matrix, so p(U) = m. Hence U is invertible over R. 
Similarly V is invertible over R. n 

Example 4.5 shows that the converse of Lemma 4.7 is false. 

THEOREM 4.2. Suppose S consists of the nonnegative elements of a 
unique factorization domain in R, and T is a linear operator on M,,,,(S). Zf 
min(m, n) > 4, then the following are equivalent: 

(a) T preserves S-ranks 1, 2, and 4. 
(b) T is a (U, V>operator on M,,“(S). 
(c) T preserves all S-ranks. 
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Proof. Suppose (a) holds. Then by Lemma 4.7 and Lemma 4.6, T is a 

(U, V >operator on M,, JR) with U, V over S, and U*, V* are permutation 
matrices. If some nonzero entry in V, say k, weren’t a unit in 55, then for 
some permutation matrix P and diagonal matrix M, VP = (Zj_ 1~ k@Z,_ j)M. 
Hence, by Lemma 2.4.6 there is an m X n matrix X with rank 4 such that 
r(XVP) < 3. Therefore r(UXV) < 3. Thus T reduces the rank of X [of X’ if 

T(X) = UX’V]. This contradiction proves that every nonzero entry in V is a 
unit in S. But V* is a permutation matrix, so V is invertible over S. Similarly 

U is invertible over S, and hence (b) holds. The definitions imply that (b) 

implies (c) directly. That (c) implies (a) is immediate. W 

This work was supported in part by the Natural Sciences and Engineering 

Research Council of Canada under grants A4041 and A5134. 

REFERENCES 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

L. B. Beasley and N. J. Pullman, Boolean rank preserving operators and Boolean 
rank-1 spaces, Linear Algebra A&. 59:55 (1983). 
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical 
Sciences, Academic, New York, 1979. 
G. Birkhoff and S. MacLane, A Suruey of Moo!ern Algebra, MacmilIan, New 
York, 1941. 
K. H. Kim, Boolean Matrix Theory and Applications, Pure and Applied Mathe- 
matics, Vol. 70, Marcel Dekker, New York, 1982. 
C. Lautemann, Linear transformations on matrices: Rank preservers and determi- 
nant preservers (Note), Linear and Multilinear Algebra 10:343-345 (1981). 
M. Marcus, Linear transformations on matrices, J. Res. Nat. Bur. Standards Ser. 
B 75B:107-112 (1971). 
M. Marcus and B. Moyls, Linear transformations on algebras of matrices, Canad. 
J. Math 11:61-66 (1959). 
M. Marcus and B. Moyls, Transformations on tensor product spaces, Pacific J. 
Math. 9: 1215- 1221 (1959). 
H. X4inc, Linear transformations on matrices: Rank preservers and determinant 
preservers, Linear and Multilinear Algebra 4:265-272 (1977). 
E. Seneta, Non-negative Matrices and Markov Chains, 2nd ed., Springer, New 
York, 1981. 
R. Westwick, Transformations on tensor spaces, PacijIc j. Math. 23:613-620 
(1967). 

Received 7 November 1983; revised 22 February 1984 


