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1. Introduction

Boundary value problems for nonlinear fractional differential equations have recently been addressed by several
researchers. The interest in the study of differential equations of fractional order lies in the fact that fractional derivatives
provide an excellent tool for the description of memory and hereditary properties of various materials and processes. With
this advantage, the fractional-order models become more realistic and practical than the classical integer-order models, in
which such effects are not taken into account. As a matter of fact, fractional differential equations arise in many engineering
and scientific disciplines such as physics, chemistry, biology, economics, control theory, signal and image processing,
biophysics, blood flow phenomena, aerodynamics, fitting of experimental data, etc. [1-4]. For some recent development
on the topic, see [5-19] and the references therein.

Impulsive differential equations, which provide a natural description of observed evolution processes, are regarded as
important mathematical tools for the better understanding of several real world problems in applied sciences. The theory
of impulsive differential equations of integer order has found extensive applications in realistic mathematical modelling
of a wide variety of practical situations and has emerged as an important area of investigation in recent years. For the
general theory and applications of impulsive differential equations, we refer the reader to the references [20-23]. On the
other hand, the impulsive boundary value problems for nonlinear fractional differential equations have not been addressed
so extensively and many aspect of these problems are yet to be explored. For some recent work on impulsive differential
equations of fractional order, see [24-31] and the references therein.

In this paper, we investigate the existence and uniqueness of solutions for a mixed boundary value problem of nonlinear
impulsive differential equations of fractional order « € (1, 2] given by

Du(t) = f(t,u(t)), l<a<2te],

Au(tk) = Ik(u(tk))7 Au/(tk) = I;:(u(tk))v k = 17 27 M) p7 (1‘1)

Tu'(0) = —au(0) — bu(T), Tu'(T) = cu(0) + du(T), a,b,c,d e R,
where €D? is the Caputo fractional derivative, f € C(J x R, R), I, I eCR,R), J=[0,TT>0),0=t<t; <-- <
th < <tp<tpyr=T,) =]\ {t1,t2, ..., t}, Au(ty) = u(ty) — u(ty), u(t;) and u(t, ) denote the right and the left
limits of u(t) att = t,(k =1, 2, ..., p), respectively and Au’(t;) have a similar meaning for v/ (t).
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Here we remark that the boundary conditions in (1.1) interpolate between Neumann (a = b = ¢ = d = 0)
and Dirichlet (a,d — oo with finite values of b and c¢) boundary conditions. Notice that Zaremba boundary conditions
(u(0) = 0,u'(T) = 0) can be considered as mixed boundary conditions with a — oo, ¢ = d = 0. For more details on
Zaremba boundary conditions, see [32-34].

2. Preliminaries

LetJo = [0,t1], Ji = (&1, 2], ..., Jp—1 = (-1, ], Jp = (&, T], and we introduce the spaces: PC(J,R) = {u :
J—> R |uecCyy, k=0,1,...,p, and u(tk+) exist, k = 1,2,...,p,} with the norm |lu|| = sup, |u(t)|, and
PC'J,R) = {u: ] > R | u e C'(Jy), k = 0,1,...,p, and u(t;"), ' () exist,k = 1,2,...,p, } with the norm
lullpcr = max{]|u||, |lu’||}. Obviously, PC(J, R) and PC!(J, R) are Banach spaces.

Definition 2.1. A function u € PC!(J, R) with its Caputo derivative of order « existing on J is a solution of (1.1) if it
satisfies (1.1).

We need the following known results to prove the existence of solutions for (1.1).

Theorem 2.1 ([35]). Let E be a Banach space. Assume that §2 is an open bounded subset of E with € 2 andlet T : 2 — E be
a completely continuous operator such that

(Tull < |lull, Yued.
Then T has a fixed point in £2.

Theorem 2.2 ([35]). Let E be a Banach space. Assume that T : E — E is a completely continuous operator and the set
={u€E|u=uTu,0 < u < 1} is bounded. Then T has a fixed point in E.

Lemma 2.1. Foragiveny € C[0, T], a function u is a solution of the impulsive mixed boundary value problem
Duty =y(t), 1<a<2te]f,
Auty) = L(u(ty),  Au'(t) =), k=1,2,...,p, (2.1)
Tu'(0) = —au(0) — bu(T), Tu'(T) = cu(0) + du(T), a,b,c,d e R,

if and only if u is a solution of the impulsive fractional integral equation

E(t—s)*! (b+d)T + (ad — bo)t [T (T —s)*!
/0 Wy(s)ds + =T . @ y(s)ds
a—2
(b+1)T+(a+b)t (;( s) 1)y(s)ds+d, £l
tp -
(R 1 (b+dT + (ad — bo)t [T (T —s)*!
fk @ y(s)ds + AT . @) y(s)ds
u(t) = (b+DT+@+bt (T (T—s5972 it —s)*! (2.2)
_ A T y(s)ds + ; M_l e YO +1,»(u(r,»))}

k—1 ti (ti_s)a_z
R [/ T O% <u<ri>>}

i—1

k t a—2
I (tl _S) * . —
+;(t — t) |:‘/t:1 mﬂs)ds + 1 (u(tl))i| +d, te k=1,2,...,p,

where

B (b+d)T+(ad—bc)ti|:

R
o [ s )

ti—q r (C()

(b T DT + (ad - bo)t = it — 5)2 2 .
AT - (t, — &) |:/[,~_1 my(s)ds + I (u(ti))i|

P T —d)(T+at)+b(c+ Dt  [(b+d)T + (ad — be)t]t, b (t; —s)*2
- Z[ p + AT ] /[ CTa—1)

y(s)ds + If‘(u(ti))}

i=1
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and
=b+1)(c+d —(a+b)d—-1)#0.

Proof. Let u be a solution of (2.1). Then, for t € J,, there exist constants cy, ¢; € R such that
-1 t
ut) = I°y(t) — c; — ot = —— / (t —)* ly(s)ds — ¢c; — cot. (2.3)
I'(@) Jo

/ _ 1 ' a—2
u(f)—mfo (t —9)*“y(s)ds — ca.

For t € J;, then there exist constants d;, d; € R, such that

t
u(t) = % / (£ — 9" 'y(s)ds — dy — d(t — ),

u'(t) = / (t —$)*2y(s)ds — dy.
Then we have

u(ty) = / (6 =9y ds — 1 — oy, u(th) = —d,

@ )
W) = / (t = s — ¢ () = —d

In view of Au(t1) = u(tr) —u(ty) = Li(u(ty)), and Au'(t) = v/ () — u/(¢)) = IF (u(ty)), we have

—d; =

T@ f (t — ) 'y(s)ds — ¢1 — &ty + I (u(ty)),

—dy = m/o (t; — 9)* 2y(s)ds — ¢; + I (u(ty)).

Consequently,
1 t
ut) = —/ (t —s)*! (s)ds+—/ (t1 — $)* 'y(s)ds
r@) J, reo
t—t a a—2 *
+——— [ G =9 yE)ds+ Li{ut) + (¢ —t)lf () —c1 —cot, te].
F(a — 1) 0
By a similar process, we can get

D it — 5!
w0 = | e Y(S)dHZUM e y(s)ds+1,<u<tl)>]

SY 6 [ O s+ 1)
LW Ta—1n? i (i

ti _ o\a—2
+ Z(r — t) U 1 (F(asj])y(s)ds—Hi*(u(t,-))i| —c—ot, tef,k=12,...p. (2.4)
Using the mixed boundary conditions Tu'(0) = —au(0) — bu(T) and Tu'(T) = cu(0) + du(T), we find that
= ! —(b+d ' % (s)ds
'S b+ Dt d) — @+ byd— 1] y @
T (T _ s)(x72 p ti (t, _ ) a—1
+(b+DT : Ta_p O (b+d); /IM ﬁy(s)clerl,(u(t,))

i=1 i—1

p ti a—2
+ D [0 =T + (b + d)t,] [/ (rl( 9 )y(s)ds—i—l{“(u(ti)):“,

p—1 i ( - )Ot -2
—(b+d) Y (1, — ;) / o YOS + I ()
oy T@—1)
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= ! (bc — ad) /T w (s)ds
2T [+ Dc+d —(@+byd— T , @
T (T _ s)(x72 p tj (ti _ S)otfl
+ (a + b)T/[; my(s)ds + (bC — ad) ; [/t;_] Wy(s)ds + I,(u(t,))i|

p—1 ti (ti _ s)a—Z .
+ (bc — ad) ;(tp —t) /t | my(s)ds + I (u(t))

3 Mlbe + 1) + a1 — 1T — (be — adty) / =9 s 417 ()
2 c a ¢ —ad)t, - T PEETEACRRACC :

Substituting the values of ¢; and ¢, in (2.3) and (2.4), we get (2.2). The converse of the lemma follows by a direct
computation. This completes the proof. O

3. Main results

For the sake of convenience, we set

b+ d)T + (ad — bc)t b+ 1T + (a+ b)t
M(t)z( T+ ( ) 7 Kz(f)z( T+ ( ) 7
AT A
(1= d)(T +at) + b(c + Dt lad| + |bc| la+ bl
)‘3(t)= s Ay = —r 5 = s
A T|A] [A]

where A = (b+ 1)(c+d) — (@a+b)(d—1) #0.
Define the operator T : PC(J, R) — PC(J, R) as
t (l’ _ S)afl (T _ )a 1

. T f(s, u(s))ds + 14 (t) . T@ ———f (s, us))ds

Tu(t) =

e [T u(s))ds+i f O s ds + ()
U, Te@-1 o, T@ 77 o

S LG5
+Y G-t / S s s + I ute)
i=1 t

i—1

: (G-
# 3w [ ST s+ 1 )
i=1 ti1

+ (t)Xp: /fi Mf(s u(s))ds + I;(u(t;))
1 L - F(O[) ) i i

0 36— 1) [ | %f(s u(s)ds + I (u(n))}
i=1 i1

b ti (f, _ )oz -2
— D a0 + 2 (0)8] [ f F(if(s u(s))ds + I (u(n))} (3.1)
i=1 i1

Lemma 3.1. The operator T : PC(J, R) — PC(J, R) is completely continuous.

Proof. Observe that T is continuous in view of the continuity of f, Iy and I}’. Let 2 C PC(J, R) be bounded. Then, there exist
positive constants L; > 0 (i = 1, 2, 3) such that |[f(t, u)| < Ly, [Ik(w)| < L, and |} (u)| < L3, VYu € £2. Thus, Vu € 2, we
have

t (t _S)a—l T (T _S)a—l
ol = [ S ueas ol [ e i
0 (=9
T 320 / Lf(s u(s)>|ds+2 | s uoes + i)
tp ti—1 F(Ot)

i—1

- [ / ' (F’( i )lf(s u@)lds + 1! (”“l))'}
i=1 ti
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+;( W / e =1y [ uODIds + 11} (ut)]

+ 1A (t)IXP: /q le(s u(s))|ds + [Li(u(t;))|
el T T o

p—1 ti a2
1016 ) [ | S e+ (u(a))@
i=1 i1

)4 i _ a2
+ ) [0+ 2 ©)]5) [f (Fl(i)v(s u(s))|ds + I (u(n>)|]
i=1 ti1

<1 /t = oL fT(T_S)a]ds—l-lk (t)|Lf T =9
“ e @ S, T ), re-1

)4 ti (ti _ S)a—l p—1 ti (ti _ S)a—Z
+ Z|:L1/; T ds—i—L{| +Y°T Ll/t, Te D ds+ Ly

1 i=1 i—1

" -9 " — 9!
Z |:L1 /t,-l )ds+L3i| + IM(E)|Z |:L1/[: 1“(oz)ds+L2:|

- i1

At ZT Ll (ti_s)a_zd L > [as(®)] + TIa(ONT | L ! (t"_s)a_zd L
+ A1 ()] 1/q]1W—US+3+ [IAs(t)] + T|A1(D)]] 1/; ————ds+ L3

i=1 pr) o, Ta—1)
_ U4pa+aODT*L [Cp— DA+ TIAOD + plas©O] + |2 (OIT* Ly
- 'a+1) I'(a)
+ (14 [2MODpLy + [2p — DA+ TIA1(O]) + plAs(©)[1Ls. (3.2)

Since t € [0, T], therefore there exists a positive constant L, such that || Tu|| < L, which implies that the operator T is
uniformly bounded.

On the other hand, for any t € J;, 0 < k < p, we have

t (t — S)a72 T (T — S)afl
g T@—1) [f (s, u(s))|ds + Aq . WU(S, u(s))|ds

T (T _ s)a72 p ti (ti _ S)a72 .
+2As /rp m[f(s’ u(s))|ds + ; |:/t1—1 m”(sa u(s))|ds + [I; (U(ti))|j|

e[ -9
tha) / Ty s uOIds @)

i—1

p—1 t (ti _ S)afz .
+ Ay ;(fp —t) /[: mV(S, u(s))|ds + |1 (u(t))|

y @ (=5 e
" ; /fm Ta—1) If (s, u(s))ds + |I;" (u(t;))|

t(t— a—2 T T — a—1 T T — a—2
<L ( S) ds + Aglq / ﬁds + Aslq ﬁds
o I(@—1) t I' () t INCERY

p bt —S)‘)‘*2 p (g —S)"‘*l
+ > [u /t” F(a_l)ds—l—b:| +A4Z {h/ﬂ F(Q{)ds—l—L{|

|(Tw)' ()] =<

(a+Db)T + (bc — ad)(T — tp)
TA

i=1 —1

P~ tj _ ti L ya—2
+ Ag Z |:L1 / (575))& + u} + Z(/\5 + Thy) {h / %ds + L3:|
ti t -

i—1 i—1
(14 p)AaT%L, T 1L,
=< W +[(1T+p)(A+ As) + (1 4+ pT)As] @)

+phgly +[p+ (1 +pDrs+ (1 +p)islls :=L.
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Hence, for tq, t; € Ji, t; < t;, 0 <k < p, we have
ty _
[(Tu)(t2) — (Tu)(t)| < / |(Tu)' (s)|ds < L(t; — t1),
t

which implies that T is equicontinuous on all J,, k = 0,1, 2, ..., p. Thus, by the Arzela-Ascoli Theorem, the operator
T :PC(,R) — PC(J, R) is completely continuous. O

Il*(

Theorem 3.1. Let lim,_o {42 = 0, lim,_o X% =

= 0, then the problem (1.1) has at least one solution.

I
Proof. Since lim,_, ftw) (‘ W =, limy_o @ 0 and lim,_,o £ W _ = 0, therefore there exists a constant r > 0 such that

If(t, w)| < 81lul, |Ik(u)| < 8|ul and [I} (u)| < 8s|u| for 0 < |u| < r, where §; > 0 (i = 1, 2, 3) satisfy the inequality

sup { A+p A+ [MONTS | [(2p — DA+ TIA(O)]) + plrs®)] + A2 (O[T '8,
tef I'oe+1) I'(a)

+ (1 + M (ODpd2 + [2p — DA+ T[A1 (D)) +P|?»3(t)|]33} =1 (33)

Letusset 2 = {u € PC(J,R) | |lu|| < r}and take u € PC(J, R) such that ||u|| = r, thatis, u € d§2. Then, by the process
used to obtain (3.2), we have
(14+p)(1+ [MODT*S; | [2p — DA+ TIA(O)]) + plrs(O)] + 22 (OT* '8
T@+1) ()

[Tu(t)| < sup {
tef

+ (14 [A(©ODps2 +[2p — DA + T2 (O +p|?»3(t)|]53} l[ull. (34)

Thus, it follows that || Tul| < |lull, u € 2. Therefore, by Theorem 2.1, the operator T has at least one fixed point, which in
turn implies that the problem (1.1) has at least one solutionu € £2. O

Theorem 3.2. Assume that there exist positive constants L; (i = 1, 2, 3) such that
If (e, w < Ly, )| < Ly, iw| <L, forte],ueRandk=1,2,...,p. (35)
Then the problem (1.1) has at least one solution.

Proof. LetusshowthatthesetV = {u e PC(J,R) | u = uTu, 0 < u < 1}isbounded.Letu € V,thenu = uTu, 0 < u < 1.
Foranyt € J, we have

t _ -1 T T — a—1
u(t) = / %ﬂs,u(s))dsﬂl(t) / %f(s,u(s»ds

_ -2 ti L oya—1
—Az(t)/ M( ) (s, u(S))derZ {f &f(s, u(S))dS+I,'(u(ti))}
tp ti—1 F(Ol)

3 b — G g i il ds + IF (u(t;
+ ;M( K — ) /t, mf(s, u(s))ds + I (u(t;))

i—1

: “G =5
IS / S U+ 1 ()

ti _ -1
() Z u [ / s uonds + Ii(u(ra)}

- ti L o\a—2
05wy — 1) [ [ s s+ I,-*(u(ti))}
i=1 i1

C Y wh® + Mot f G =9 u(eds I ) 36)
;u[3 10t ] T s, u(s))ds + I (u(t)) | . (3.
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Combining (3.5) and (3.6) and employing the procedure used to obtain (3. 2) we obtain

(t—s)*! (T
[u(t)| = w|Tu(t)] _/ If (s, u(s))|ds + |~ (t)I/ If(s, u(s))|ds
w @ R r( )

(T =95 . Pt =)
+ [22(0)] . ﬁlf(s u(S))ldSJrZ /t” WU’(S, u(s))|ds + [ (u(t;))|

5 )
+ Z(tk —t) / 7If(s u(s))|ds + [I (u(t))
i=1 ti—q

4 (e
k i (tl _ )Dl -2
+ Z(t—tk) / Filf(s u(s))lds + |17 (u(t))|
i=1 g I(

+ 12 (t)li /ti le(s u(s)lds + [li(u(6))]
1 /)iy T@ ’ o

p—1 ti (ti_s)a—Z
+ a1 ) (6 — 1) / o I, u(s)lds + 11 (u(®))]
i=1 i

i—1 F(O‘_ )
Y Ol o] | [ ETY T, s+ 1Pt
;U 3O + (A1 (D]t ] /;_] F(a—l)' (s, u(s))|ds + |I* (u(t))|
max { A4+p)A+ M ODTL; [2p — DA +TIA(0)]) + plas®)] + A2 (OIT 'L,
- [+ 1) )

+ (1 + MDDl +[Cp — DA+ TA (O +PIK3(t)I]L3} =M,

which implies that ||u|| < M for any t € J. So, the set V is bounded. Thus, by Theorem 2.2, the operator T has at least one
fixed point. Hence the problem (1.1) has at least one solution. O

Theorem 3.3. Assume that there exist positive constants K; (i = 1, 2, 3) such that
Ife,u) —fE v <Kilu—vl, L@ =L@ <Klu—v], @ -] <KGlu-uv|,

forte], u,veRandk=1,2,...,p.
Then the problem (1.1) has a unique solution if

% — max { (1+p) A+ A ONDT*K N [2p — 1)1+ TIA1(D)]) 4 plAs(t)] + [22(DT* 'K,
Tty 'a+1) I'(a)
+ (1 + A ODpK: + [2p — DA+ TIA(0)]) +P|K3(t)|]l<3} <1 (3.7)

Proof. For u, v € PC(J, R), we have
I(TU)(t) — (Tv)(0)]

T s ue) = 6, vs)lds + O [ =2 s, () — £, vE)lds
o T = ’ R S N ’
+ 122 (0)] / lf(s u(s)) — F(s. v(s))|ds

k ti L ya—1
+ ; |:/[i_1 %V(S, u(s)) — f(s, v(s))lds + [Li(u(t;) — Ii(v(fi))|:|

k=1 t :
+ ) (- 1t) [/ %V(S u(s)) = f(s, v(s)lds + |17 (u(®) — I (v(tz))l}
i=1 ti—1

+’Z<(f—t) /fi ﬂv( () — f(s, v(s))|ds + [I* () — I* ()|
i=1 ! b, Ta—1) 5, UL S, v(s))1ds i (Ut Fu(t
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(-9

p
+121(0)] Z [/ Wlf(s, u(s)) — f(s, v(s)lds + [li(u(t:)) — Ii(v(ti))|i|
i=1 ti—1

p—1 ti (ti _ S)ot72 . .
+ 1210 Z(tp — 1) / mlf(s, u(s)) — f(s, v())lds + [I7 (u(ty) — I (v(t)|

i=1

)4 ti t — a—2
+ Z [1A3(D)] + [A1(0)]6] / ﬁlf(& u(s)) = f(s, v(s))lds + |IF (u(ty) — I (v ()|
i=1 g Dle=1)
- { (14+p)(A+ MODTK; | [(2p — DA+ TIA(O]) 4 plas()] + A2 (O[T 'Ky
- T'a+1) I'(a)

+ 1+ [MODpK; +[2p — DA+ TIA (D)) +p|>»3(f)|]1<3} llu—vll.

Thus, we obtain ||Tu — Tv|| < #|lu — v||, where # is given by (3.7). As # < 1, therefore, T is a contraction. Thus, the
conclusion of the theorem follows by the contraction mapping principle. This completes the proof. O

4. Examples

Example 4.1. For 1 < a < 2, consider the following fractional order impulsive mixed boundary value problem

pu(t) = 2In(1 4+ u2(t)) —cosu(t) +1, O<t<T, t#t;, 0<t; <T,

Aut) =@ — 1, AU(t) = (1+12(6))3 — 1,
Tu'(0) = —2u(0) — 3u(T),  Tu/(T) = 4u(0) + 5u(T).

(4.1)

Herep=1,a=2,b=3,c=4,d=>5, f(t,u) = 2In(1+u?) —cosu-+1, L(u(t;)) = e* —1, IF(u(ty)) = (1—|—u2)% —1.
Clearly

o ft,w) . 2In(1+u?) —cosu+1 o 2In1+u?)) . 1—cosu
lim = lim = lim + lim ——— =0,
u—0 u u—0 u u—0 u u—0 u
Ii(u e’ —1
tim 2 _ jim = limu? = 0,
u—0 U u—0 u u—0
I (u 1+u?)s —1 u
tim T g AEZT B,
u—0 U u—0 u u—0 3

Furthermore, in this case, §; (i = 1, 2, 3) given by (3.3) satisfy the inequality:

T8
T@+1)
Thus all the assumptions of Theorem 3.1 hold. Hence, the conclusion of Theorem 3.1 applies and the impulsive fractional
mixed boundary value problem (4.1) has at least one solution.

o 3 3
3T+ (16 21T) 2+ (1427 )85 < 1.
(37 + (16 + )+22+(+4>3_

Example 4.2. Consider the impulsive fractional mixed boundary value problem given by

1+ cos t2)e~"*® sin 2t 1
CD"’u(t):(+ ) , O<t<1,t+#—,
34 u?(t) 5
1 ! 1 51 4¢(3)
Au (7) — 4Sin(6+ezu(§)), Au/ <7> =, (42)
5 5 3+sin*u(3)

/0)——1 0—2 1) /(1—1 0 4 1
u(0) = g”() gu(, u )—gu()+§u().

2
t2)e~Y

Herel<a <2, p=1,T=1a=1/3, b=2/3, c=1/5d=4/5and [f (¢, u)| = |F=LE_0A| < 2 ], u)| =

s
|4sin(6 + )| < 4and [I{ ()| = |35, 1 < 3.

In this case, Ly = 2, [, =4, L3 = 3and
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v {(1 +p)(1+ MODTL | [2p— DA+ TIA (O] + plrs®)] + (01T 'L,
tej I'oe+1) I'(a)

_ 2(26+27a) | 191

T 210 (@+1) 14

Thus the hypothesis of Theorem 3.2 is satisfied. Therefore, by Theorem 3.2, the impulsive fractional mixed boundary value
problem (4.2) has at least one solution.

+ (1 + A (O DpLz + [2p — DA + T{A (O] +p|?»3(t)|]L3}
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