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A b s t r a c t - - W e  consider the ratio T(x,y)  = r(~)r(y)/r2((~ + y)/2) and its properties related to 
convexity, logarithmic convexity, Schur-convexity, and complete monotonicity. Several new bounds 
and asymptotic expansions for T are derived. Sharp bounds for the function x ~-~ x/(1 - e -~) are 
presented, as well as bounds for the trigamma function. The results axe applied to a problem related 
to the volume of the unit ball in R n and also to the problem of finding the inverse of the function 
x ~-* T(1/x, 3/x), which is of importance in applied statistics. © 2005 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - G a m m a  function, Polygamma functions, Gurland's ratio, Cram~r-Rao inequality, 
Inverse function. 

1. I N T R O D U C T I O N  

The first result about the ratio of Gamma functions 

r(~)r(y)  
T(x, y) = r~ ((x + y)/2) '  ~' y > 0, (1) 

appeared in 1956, in John Gurland's paper [1], where the following inequality was presented: 

~2 
r ( x ) r ( ~  + 2z) > 1 + x > 0, x + 2~ > 0. (2) 

r2(~ +/~) - T '  

Since then, there has appeared a considerable number of papers about Gurland's ratio and its 
properties. Recent papers [2,3] present some results regarding a more general ratio of even deriva- 
tives, r(2~)(x)r (~) (y)/r(2~)((x + y)/2). Ratio (1) is related to also well-investigated Gautschi's 
ratio [4] 

Q(x, ~) = r(x +/~) 
r ( x )  ' x > 0, 
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where usually ~ E [0, 1], see a survey in [5] or the bibliography in [6]. In fact, there is the following 
connection between the two ratios: 

T(x, x + 2Z) - Q(x + 9, fl) (3) 
Q(x,~) 

Gurland's ratio appears in several places in the theory of Gamma function and related topics. 
For instance, 

T ( n, n + l ) = 1_.~_ ( (__2n_) ~ ~ = 1 
n r  \ ( 2 n -  1)!!] Wn'  

where Wn is a form of Wallis product (see [7-9]). In a recent work [10], the Gurland's ratio 
T(1 + (k - 1)/2, 1 + (k + 1)/2) appears in connection with volume of unit ball in ]~k. In probability 
theory and its applications, the Gurland's ratio T ( 1 / %  3/~) appears in the form of ratio of the 
variance and squared absolute expectation of a generalized Gamma random variable with the 
shape parameter % cf. [11]; this ratio is also known as generalized Gaussian ratio [12], and has 
interesting applications in the domain of image recognition [12,13]. 

The original reason for interest in this ratio was its connection with the Cram~r-Rao inequality 
in statistics (see, for example, [14, 32.3]), where it appears in a connection with the Gamma 
distribution. There is a number of articles [15-23] with the idea to use different versions of 
Cram~r-Rao inequality or its generalizations [19,24-26] and to get improvements of (2). A survey 
of this early work can be found in [27]. 

However, Watson [28] for the case ~ = 1/2 and Boyd [29] for the general case noticed that (2) 
is a simple consequence of Gauss' formula for hypergeometric function (see [30, 14.11]) 

OO 

r (x)r(x + 1) 1 + E ((-fl)k)2 
r 2(x + fl) = F ( - f l , - f l ,  x, = k=l k!(x)k ' (4) 

where (Z)k = z ( z  + 1). . .  (z + k - 1 )  and F is the hypergeometric function. The series is convergent 
whenever x + 2/~ > 0. If, in addition, x > 0, then all terms are nonnegative and, by retaining a 
finite number of terms in the series, we get (2) and its improvements. 

The two apparently different techniques were related by Ruben [31], who explained the Cram~r- 
Rao inequality and Bhattacharyya's [24] generalization from a viewpoint of approximations in a 
Hilbert space, and also showed that (4) can be derived from the Parseval identity for a suitably 
chosen orthonormal system. There is also a number of results derived from convexity, which will 
be discussed in Section 3. 

Euler's formula for the Gamma function [32, 6.1.2] yields the following infinite product formula 
for T: 

T ( x , y )  = lim ((x +y) /2)~  (5) 

We will show that this formula and its variations and improvements can be derived from inequal- 
ities, obtaining thus asymptotically infinitely sharp sequence of inequalities. 

Another lower bound for T was found in [8], by means of majorization in expansion (5) 

T(x, y ) > l +  1 
= + k)(y + k)' 

x ,y  > 0 ,  x ¢ y .  (6) 

In this paper, we investigate several properties of Gurland's ratio related to convexity (Sec- 
tion 2), we present some new results and sharp bounds for T via convexity of functions related to 
the Gamma function (Section 3), via convexity of functions related to the ratio Q (Section 4), and 
via bounds for the trigamma function (Section 5). In Section 6, we present a technique of turning 
inequalities into asymptotic expansions. In Section 7, we apply some of the results in preceeding 
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sections to a problem related to the volume of unit ball in higher dimensions. Section 8 deals 
with the function x ~-~ T ( 1 / x ,  3 /x )  and its inverse, which is of importance in applied statistics. 

Throughout the paper, I will denote the interval (0, +oc). 

2. M O N O T O N I C I T Y ,  C O N V E X I T Y ,  A N D  S C H U R - C O N V E X I T Y  

In the next lemma, we give several properties of the ratio T. For a convenience, we state here 
the well-known expansion for polygamma functions (see, for example, [32, 6.4.10]). 

+oo 1 
d "+1 logF(x) = ( _ l ) . + i n  ! ~ (x + ]g)n+l ' n ~-- 1 ,  2 ,  . . . .  (7) 

• (~) ( x )  - dx~+ 1 
k=O 

LEMMA 1. 

(i) For any fl E I, the functions 

x ~ T(x ,  z + 2fl) and x ~ log T ( z ,  x + 2/3) 

are completely monotonic on I. 

(ii) For any fl E I the function x ~-* T(x ,  x + 2/3) is decreasing in x E I from +co to 1. 
(iii) For any x E I, the function/3 ~-* T(x ,  x + 2/3) is increasing in fl E I from 1 to +oo. 

(iv) The function (x, y) ~-~ F(x ,  y) is Schur-convex on I x I ,  that is, for any x, y E I,  such that 
x < y and 0 < ¢ < ( y - x ) ~ 2 ,  

T ( x  + ¢, y - s) < T(x ,  y). 

(v) For any/3 E I, the functions 

x ~ T(x ,  x + 2~), x ~ log T(x ,  x + 2f~), x ~ log log T(x ,  x + 2/3) 

are convex on I. 

PROOF. We will prove a more general statement than (i), about the function 

F(x) = 

For n > 0, we have that 

r(x)r(x + + b) 
r(x + a)r(x + b)' 

a , b > O ,  x e I .  (8) 

(log F(x)) ('~+1) = ~('~)(x) + kO('~)(x + a + b) - ~(n)(x ÷ a) - ~(n)(x + b) 

= a ( ~ ( n ) ( x  + a -F b)a - q!(n)(x q- b) _ ~(n) (x  + a)_a - k~(~) (x))  " 

By (7), y ~ ~(n)(y) is strictly convex in y E I for odd n, and hence, the ratio 

(9) 

• ( - ) ( y  + a)  - 
(10) 

is increasing with y (see, for example, [33, 16B.3.a]). For even n, the function ~(n) is concave, 
and the ratio (10) is decreasing. Thus, by (9) we conclude that the sign of ( logF(x) )  (n+l) is 
(-1) n+l, for n _> 0. The inequality logF(x) > 0 is a consequence of convexity oflogF(x). Hence, 
we proved that logF is a completely monotone function. From [34, p. 83] it follows that f ( g (x ) )  
is completely monotonic on I if f is completely monotonic on • and gl is completely monotonic 
on I. If we let here f ( x )  = e -~ and g(x) = - l o g F ( x ) ,  we see that complete monotonicity of 
logF implies the complete monotonicity of F. Now by letting a = b =/3  E I in (8), we get (i), 
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and, automatically,  the monotonici ty par t  of (ii). S ta tements  in (v) are consequences of (i). 
Indeed, by a result in [35], each completely monotone function is log-convex, so the functions 
x ~-~ log log T(x,  x + 2/3) and x ~ log T(x,  x + 2/3) are convex. Since each log-convex function is 
also convex (see, for example,  [27]), it follows tha t  the function x ~ T(x,  x + 2/3) is convex. 

To prove Off), fix x e I and denote G(/3) = logT(x , x  + 2/3). Then  G'(/3) = 2~ (x  + 2/3) - 
2k~(x +/3) > 0 because k~ is increasing. Now, knowing tha t  [32, 6.1.46], F(x  + a)/r(x + b) ~ x a-b 
as x --, +co ,  it is easy to see tha t  

lim T(x,  x + 2/3) = 1 and lim T(x,  x + 2/3) = +co.  
x-~+c~ fl-,+oo 

Also, for any/3  > 0, we have 

r ( x ) r ( x  + 2/3 
lim T(x,  x + 2/3) = lira - +co.  

~-~0+ ~-~0+ r2(x +/3) 

Schur convexity in (iv) can be shown directly. Under  given assumptions,  the inequality T(x  + 
s, y - e) < T(x,  y) is equivalent to 

r (~  + ~)r(y - ~) < r(~)r(y) ,  

which is the expression of Schur-convexity of the function (x, y) ~ r(x)r(y). This function is 

Schur-convex because F(x)  is log-convex (see [33]). | 

REMARK. There  is a number  of old and recent results about  complete monotonici ty of functions 
related to the G a m m a  function (see [6,36-39]). The  s ta tement  in (i), together  with its proof, 
gives an improvement  of [37, Theorem 6], where it was shown tha t  function (8) is completely 

monotonic.  

The  s ta tement  in (ii) is essentially obtained by Steinig [40], who used convexity of the Beta  
function to show tha t  the function x ~ T ( x , x  + 1) is decreasing in x E I .  

3. B O U N D S  F O R  G U R L A N D ' S  R A T I O  V I A  C O N V E X I T Y  

Bounds for T can be found from convexity or concavity of functions of the form F(x) = 
logF(x)  + logC(x )  on I .  Since x ~ logF(x)  is already convex, logC(x)  should be concave. A 
straightforward application of Jensen's  inequality 

F ( ~ - )  < F(x)  2 F(y)  

yields 
c 2 ((x + y)/2) 

T(x,u) > for x,y c :, (11) 
- c ( x ) c ( y )  ' 

if F is convex, and the opposite inequality if it is concave. If  the convexity or concavity is strict, 
then the equali ty in (11) holds if and only if x = y. This observation yielded another  set of results 

in connection with Gurland 's  ratio [41-44]. For example,  the inequality 

xXYY (12) 
T(x, ~) > ((x + y)/2)~+y 

was obtained in [43], using convexity of the function x ~-* log F(x)  - x log x on (0, +c¢);  the same 

result was earlier obtained in [41] by other means. 
The  following upper  bound was also obtained in [43]: 

( x  - 1 ) x - l ( y  - 1) y - 1  
T ( x , y ) <  ( ( x + y - 2 ) / 2 )  ~+y-2,  x > l ,  y > l ,  (13) 

using the fact tha t  for x > 1 the function x H logF(x)  - (x - 1) log(x - 1) is concave. 
In [5], we found a class of log-convex or log-concave functions related to the G a m m a  function, 

and we applied these functions to finding bounds for Gautschi ' s  ratio. They  can be also applied 
to Gur land ' s  ratio, as in the next theorem. 
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THEOREM 1. For any x, y E I ,  

xX-1/2yy-1/2 
((x .4. y)/2) ~+v-1 <- T(x, y) <_ 

x ~ - l / 2 y y - 1 / 2  (y  - x)2 
((x + y)/2)  x+u-1 exp 12xy(x .4. y)'  (14) 

with equality if and only if x = y. 

PROOF. Let  

F(x) = logF(x) - ( x - 1 )  logx, G(z) = l°gF(z) - ( x  - 1 )  l ° g z -  l~-'12x 

From a result in [5] it follows tha t  F is convex and G is concave on I ,  and then inequalities (14) 
follow from (11). | 

An application of Theorem 1 will be given in Section 8. In Section 6 we will compare (14) 
with (12) and (13). 

4 .  I N E Q U A L I T I E S  V I A  C O N V E X I T Y  

O F  F U N C T I O N S  R E L A T E D  T O  Q 

From (7) for n = 1 it readily follows that  the Gautschi ratio Q(x,/3) is log-concave. In general, 
suppose tha t  the function 

F(x) = log Q(x, /3) .4. log D(x, p) (15) 

is convex with respect to x E I ,  for a fixed/3 E (0, 1). Then from Jensen's inequality 

F(x) </3F(x - 1-4-/3) .4. (1 - / 3 ) F ( x  .4./3), x > 1 -/3,  (16) 

we find, writing for simplicity Q(x,/3) = Q(x) and D(x,/3) = D(x), 

Q(x)D(x) <_ Q~(x - 1.4./3)Ql-Z(x .4./3)D~(x - 1 .4. f l)Dl-Z(x .4./3). (17) 

Now note tha t  

Q(x - 1.4./3) = y (x  - 1.4. 2/3) = x - 1.4./3 F(x  .4. 2/3) 
F(x  - 1 .4./3) x - 1.4. 2/3 F(x .4./3) 

x - 1 + / 3  
= ; -- i%-2-/3 + z)' 

which finally yields, via (17) and relation (3), 

( x :  2/3h 
T(x ,x  ÷ 2/3) > \ z -  1 +/3 ] " D ~ ( x -  1 + /3 , / 3 )Dl -~ (x+ /3 , /3 )  ' (18) 

where x > 1 - /3 .  An upper bound may be found with the same function (15), but  starting with 
Jensen's inequality 

F ( x  +/3) < (1 - / 3 ) F ( x )  + / 3 F ( x  + 1), x > 0, (19) 

instead of (16). In a similar way as above, we find 

T(z, x + 2/3) < D(x +/3,/3) , x E I .  ( 2 0 )  

Obviously, we can apply an analogous procedure for a concave function F ,  which would yield 
the set of inequalities (18)-(20) with < and > interchanged. In both  cases, it makes sense to 
consider only a log-convex function D. The next theorem gives a convenient choice. 
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THEOREM 2. For each/3 > 0 and c ~ min(/3, 1), the function 

x ~ F(x)  = log Q(x, 13) - c logx  = log l"(x -4-/3) - l"(x) - c l o g x  

is concave on (0, +oo). 
/ f c  ~ max(fl, 1), the function F is convex on (0, +co). 

PROOF. Since log Q(x, 13) is already concave, for the first part  it suffices to assume that  0 < c _</3 
and c _< 1. First, we note tha t  for x > 0, 

= log F(x + 13) - log F(x + I )  + (I - c) log x. 

Further, by (7), we have tha t  

+oo 1 1 1 - c 

F " ( x )  = Z (x + k +13)~ (x + k + 1) ~ x~ 
k=O 

+oo 1 c i -- c 

= Z (x + k +13)2 (x + k + I)  :~ (x + k) 2' 
k=O 

(21) 

where we used the telescopic series 

+oo 1 1 _ 1 

k=0 

Now, convexity and monotonici ty of the function x ~-~ x -2  yield, for 0 < c < /3  and 0 < c _< 1, 

1 1 c 1 - c  

( z + k + / 3 ) 2  < ( x + k + c ) 2  < ( x + k + l p  + (~ + k)--------5' 

and therefore, all terms in (21) are nonpositive and so F is concave (strictly concave unless 

~=c=i ) .  
If  c > 1, Jensen's inequality can be applied in the form 

1 1 1 c - 1  1 

( x + k + l ) 2  < - "  e ( x + k + c )  2 + - c ( x  -I- k )  2 '  

and, if also c >/3,  then all terms in (21) are positive and F is strictly convex. | 

Now applying (18)-(20) with the convex function x ~-* log Q(x, 13) - log x or with the concave 
function x ~-* log Q(x, t3) - / 3 togx ,  we get the following two double bounds. 

COROLLARY 1. For any/3 6 [0, 1], 

(~ - i + 2#)~(z  + 13)~-~ (x + 13)~+~ < T(x,  x + 2/3) _< (22) 
x z (x  + 1)~ ' 

(x +/3)2~ T(x, x ~z(x - 1 + 13)~(1-m ' x~(2-Z)(x + 1)Z 2 -< + 213) _< (x - 1 -I- 213)#(x +/3)  zO-#)  (23) 

with equality on both sides ff and only ff/3 = 0 or 13 = 1. The left inequality in (22) and the 
right inequality in (23) hold for x > 1 - 13, and the other two inequalities hold for a11 x e I. | 

Several results about  complete monotonicity of functions of the form Q(x,13) • U(x, 13) are 
obtained in [36-38]. Since, as we already remarked, each completely monotone function is log- 
convex, the above procedure can be applied with those functions, in order to obtain bounds for T. 

For instance, from a result in [37] it follows tha t  function (15), with D(x,/3) = exp(-/3q!(x+/3/2)), 
/3 e (0, 1), is concave on I (see also [45]). 
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5. B O U N D S  VIA T R I G A M M A  F U N C T I O N  

The trigamma function, the second logarithmic derivative of the Gamma function, can be 
expressed as the integral (cf. [32, 6.4.1]) 

~0 +°° t zt " q~'(X) = 1 ---e - i e -  dt, x E I. (24) 

If we find sharp bounds for the integrand in (24), we can find bounds for ~ and then, proceeding 
as in Section 3, we can get bounds for T. We illustrate the method with the following result. 

LEMMA 2. For a n y  t > 0 we have t ha t  

1 - - e  - t  
< t + e - t ( 1  + t) .  (25) 

PROOF. For t > 0, the left inequality is equivalent to f ( t )  = 1 - e  - t  - r e  - t  > 0, which is true since 
f(0) = 0 and f ' ( t )  = te  - t  > 0. The right inequality is equivalent to g(t)  = t + 2 e - t + t e  - t  - 2  > O, 

which is true because g(0) -- 0 and g'( t )  = f ( t )  > O. | 

From (25) and the representation (24), we obtain the following. 

COROLLARY 2. For x E (0, ~-oo), we have  that; 

1 1 1 1 1 1 
x +----~ + ~5 + 2(x + 1) 2 < ~'(x) < ~ - ~  + ~ + (x + 1) - - - - - -~"  (26) | 

This result gives sharp bounds for the trigamma function and can be easily generalized to 
polygamma functions (see [46] for references regarding inequalities for polygamma functions). 
We need (26) as a tool for the next theorem. 

THEOREM 3. For x E I ,  let  

u ( z )  = r(z + 1) r(z + 1) 
(x + 1) z'  V(x) = (x + 1)x+l/2" 

T h e  func t ion  x ~-* log U ( x )  is concave on I and the  func t ion  x H log V ( x )  is convex  on I .  

PROOF. It is straightforward to see that 

1 1 1 
,I ~TTI ,~ ,T, , ~,~X) X2 ( x + l ) 2  X + I '  

which is negative on I by Corollary 2. In the same way we conclude that 

1 1 1 
(log V ( x ) ) "  -- @'(x) x2 2(x + 1) 2 x + 1 > 0. 

From Theorem 3, in the same way as in Section 3, we obtain the following bounds for T. 

COROLLARY 3. For any  x ,  y E I ,  we have 

4(x + 1)X(y + 1) y 
x y ( x  + y)2 ((x + y ) / 2  + 1) z+y -< T ( x ,  y) <_ 

4(x + 1)z+l/2(y + 1) y+1/2 
zy(z + y)~ ((z + y)/2 + 1) =+y" (27) 
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6. T R A N S F O R M A T I O N S ,  A S Y M P T O T I C  

E X P A N S I O N S ,  A N D  C O M P A R I S O N S  

If as and bn are two sequences, let as <_ bn stand for 

as A bn, for all n, and h ~  (a= - b,) = 0 monotonically in n. 

The notation as >_ b, is equivalent to b, < as. 
r ~  

In this section we will use the expression that appears in (5), 

((x +y)/2)2, (x +y)2(x  + y + 2) 2 . . .  (x + y + 2n--  2) 2 

pn(x,y) = (X)n(y), -- 22nx(x + 1 ) " "  (x + n -  1)y(y + 1) . - .  (y + n -  1)" 

In the following theorem we introduce a transformation that sharpens inequalities for T and turns 
them into asymptotic expansions. 

THEOREM 4. Let B be any upper or lower bound for T, such that 

T(x ,  y) <__ (>)B(x ,  y), • > Xo, y > yo. (28) 

Then for every n = 1, 2 , . . .  it holds 

T(x,  y) <_ (>)B(x  + n, y + n)p, (x ,  y). (29) 

Further, if the relative error in (28) decreases as both x and y increase for n, that is, 

[B(x A- n, y + n) 1 B(x,  y) 1 (30) 
i T ( x + n , y + n ) -  < T(x , y )  , n = l , 2 , . . . ,  

then the transformed inequality (29) is sharper than the original inequality (28). Moreover, if 
nl < n2, then inequality (30) with n = n 2 is sharper than the same inequality with n = nl. In 

addition, if 
lira B(x  + n ,y  + n) 1 

~-~+~ T ( x + n , y + n ) -  = 0 ,  (31) 

then we have the asymptotic expansion 

(32) 

PROOF. From the recurrence formula F(z + 1) = zF(z), it follows that 

T(x + n, y + ~) - T(x, y) (33) pn(x,y) '  n-= 1 ,2 , . . . .  

Replacing x and y in (28) with x + n and y + n, respectively, and using (33), we obtain (29). 

Now if (30) holds, then 

L B ( x + n , y + n )  1 
IB(x + n , y  + n ) p n ( ~ , y )  - T ( x , y ) I  = T ( z , y )  . T ( x  + ~ , y  + n) - (34) 

< IB(x,y) - T(x ,y) l  , 

which shows that inequality (29) is sharper than the original inequality (28); the same method 
shows that if nl < n2, then (29) with n --- n2 is sharper than with n = nl.  The statement about 
asymptotic expansion also follows from (34). | 
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The first application of Theorem 4 can be a derivation of a more informative version of (5). 
Indeed, by Lemma l(ii), the relative error in the inequality T(x + n,y + n) _> 1 is decreasing 
with n, and hence, 

T(z, y) > pn(x, y). 
e ~ a  

We will show that all inequalities stated or derived in previous sections can be turned into 
asymptotic expansions of form (32). To start with inequalities of Section 1, let GN(X, x + 2/3) be 
the N th partial sum of the series (4), i.e, 

N 
GN(Z, z + 2/3) = 1 + 2 ((-/3)k)2 

k=l k!(z)k 
(35) 

The corresponding inequality is 

T(x ,x  + 2/3) _> GN(x,x + 2/3) (36) 

and, for a/3 being fixed, the relative error is given by 

RN(X) = 1 -- a N ( ~ , x  + 2/3) 
T ( z ,  x + 2/3) " (37) 

LEMMA 3. For 13 > O, let RN be del]ned by (37). If 0 < x < y, then for each N = 1, 2 , . . . ,  we 
have that RN(X ) > RN(y), with lim~__.+~ RN(X) = O. 

PROOF. By Lemma 1, l imx~+~ T(x, x + 213) = 1 and also it is immediate to see that limx-.+o~ • 
GN(x, x + 2/3) = 1, which proves the statement about the limit of RN. 

The inequality Ry(x)  > RN(y) can be written in the form 

GN (y____~) T(y, y + 2/3) Go~ (y) (38) 
a ~ ( x )  > T (x ,  x + 2/3) - a ~ ( ~ ) '  

where G~  = limN--,+o~ GN is the sum of series (4) and where the second argument of GN is 
omitted for simplicity. So, the lemma will be proved if we prove that for fixed x < y, the ratio 
on the left-hand side of (38) is decreasing with respect to N. Let ak(x), k = 1, 2 , . . . ,  be the k th 

term in (35) and let ao(x) = 1. Then we want to prove that 

a~(y) + ~N+I(y) aN(v) 
GN(X) + aN+l(x) GN(x)'  

which is easily shown to be equivalent with 

N N 

aN+l(x) < " (39) 
k=o = aN+l(y) 

Now, since 

ak(x____~) _ Ck. (x+ k ) . . . ( x + N ) ,  k = 0,1,..  
aN+l(x) "' 

where Ck > 0 do not depend on x, we see that (39) holds termwise, and this ends the proof. | 

From Lemma 3, we conclude that, for instance, Gurland's inequality (2) can be sharpened to 
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Regarding inequality (6), let EN(X, y) denote the N th partial sum of series in (6), so we consider 
the inequality T(x,  y) > 1 + EN(x,  y), i.e., 

1-~ (!/-x) 2 ~  1 T(x,  Y) > 4 ~ =  ( x + k ) ( 1 / + k ) '  x , y > 0 ,  x # y .  (40) 

It is easy to see that the relative error 

RN(X,  1/) : I 
1 + EN 1/) 

T(x ,y )  

has the property that R N ( x ÷ n ,  y+n)  --* 0 as n ~ ÷oc. The monotonicity can be shown directly. 

In fact, it suffices to show that 

R N ( x q - l , y + l ) < R g ( x , y ) ,  x, y e I ,  

which is equivalent to the obviously true inequality 

N+I  (Y - x) 2 v-', 1 xy 
4 ~= ( x + k ) ( y + k )  > - ( x + y + l ) ( y + N + l ) "  

So, this leads to another class of infinite product formulae. For example, for N = 1, we get 

T ( x , y ) ~  l + 4 ( x + n ) ( y + n ) ]  

Let us now discuss inequalities in Sections 3-5, that are derived from convexity. 

LEMMA 4. Let  
R(x, y, )% f )  -~ )~f(x) + (1 - )Of(Y) - f (Ax  q- (1 - )~)y), 

where x, y (x < y) axe real numbers, f is a function defined on the interval [x, y], and A E [0, 1]. 

(i) Let f l  and f2 be twice continuously differentiabIe functions defined on an interval I,  and 
suppose that f~'(x) <_ f~'(x) for all x e I.  Then t:or all x, y C I and ), E (0,1) we have 

that 
R(x, y, A; f~) < R(x, y, A; f2) 

with the strict inequality if f~'(t) < f~'(t) for some t in the interval with endpoints x, y. 
(ii) Let {fn} be a sequence of twice continuously differentiable functions defined on an in- 

terval I, and suppose that lim,~-~+oo f'~'(x) = 0 for aii x ~ I.  Then for all x, y E I and 

A E (0, 1) we have that 
lim R(x, y, A; f~) = 0. 

n--+~-oo 

PROOF. Both statements are proved in [47] as parts of Corollaries 1 and 2, respectively. | 

In Sections 3-5, we derived several inequalities of form (28), starting from a convex or concave 
function F,  and applying Jensen's inequality. It is not difficult to check that in all instances, 
F"(x)  monotonically converges to zero as x --* -boo; by means of Lemma 4, it can be seen that 
both conditions (30) and (31) of Theorem 4 axe satisfied. Therefore, all inequalities presented in 

Sections 3-5 can be turned into asymptotic expansions. 
For example, with the function x ~-~ Q(x, j3), using the method described in Section 3, we get 

the double inequality 

1 +  < T ( x , x + 2 f l ) <  1 +  x > l - j 3 ,  0 < f ~ < l ,  
- - x -  l + f ~  ' - - 
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and the corresponding simple expansions 

p,~(x,x+2/3). 1 +  <T(x,x+2/3)<p,~(x,x+2/3).  14- -- 
~, ~ x + n  1+/3 ' 

w h e r e x > l - / 3 a n d 0 < ~ 3 _ l .  
Moreover, by Lemma 4(i), two inequalities that can be obtained from the same form of Jensen's 

inequality for functions F and G, can be easily compared if F"(x) and G"(x) are in the same 
relation of order for all x • I. 

In this way, we can easily see that, for example, the left inequality in (14) is sharper (in the 
sense that it has smaller relative and absolute error) than inequality (12) for all x, y • I. The 
right inequality in (14) is sharper than (13), for all x,y > 1. Comparing (14) with (27), we can 
see that the left inequality in (27) is sharper than the corresponding inequality in (14) for all 
x, y C I. Right inequality in (27) is sharper than the right inequality in (14) on any interval in I 
where 

1 1 1 1 1 1 
g2'(x) x2 ( x + l )  2 x÷---1 > ~'(x) x 2z 2 6x 3 

This condition reduces to - 3 x 3 +  x 2 -  x 4-1 > 0 and x > 0, which is satisfied for x • (0, e), where 
c ~ 0.635. So, for x, y • (0, c), the right inequality in (27) is sharper than the right inequality 
in (14), and (14) is sharper if x, y > c. If x < c and y > e, the comparison is not possible in 
general. 

Finally, we will show that the inequalities (23) are sharper than inequalities (22). Indeed, it 
suffices to show that IG"(x)[ < F"(x) for x > 2 and/3 • (0, 1), where 

F(x) -- log Q(x, ~) - logx, G(x) = log Q(x,/~) -/3log x. 

To this end, it suffices to show that 

+oo 2 1+/3 1 - / 3  
> 0, A., (x + k +/3)2 (x + k + 1) 2 (x + k) 2 

k=0 

which will be done if we show that 

2 1+/3 1 - / 3  
h(/3) . -  (v (y + 1)2 > 0, 

for/3 • [0, 1] and y > 2. It is easy to see that h is convex, h(0) > 0, h(1) = 0, and that the 
point of minimum of h is greater than 1 for y > (3 + v ~ ) / 2  ~ 1.78. Hence, for y >_ 1.78, h is 
decreasing in [0, 1], and therefore, it is positive (0, 1). 

7. A N  I N E Q U A L I T Y  F O R  T H E  V O L U M E  O F  T H E  U N I T  B A L L  

Several sequences related to the volume of the unit ball in ]~k, 

7rk/2 
f~k -- F(1 + k/2)' k = 0 ,1 ,2 , . . . ,  (41) 

have been a subject of research regarding their monotonicity and inequalities (see the bibliography 
in [10]). As a completion of earlier results, in [10] it was proved that 

( 1 )  ° ~ ( ~)~/2 
1 + ~  < < 1+  k = 1,2 , . . .  (42) 

- -  ~ k - l ~ k + l  - -  ' ' 

where a = 2 - logTr/log2.  From (41) it follows that 

f12 = T ( l + k _ l  k ~ l )  
~'~k--l~'~k+l T '  1 4- - -  , 

and results of previous sections can be applied to this particular case. The next theorem gives 
an improvement of (42). 
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THEOREM 5. For any k = 1, 2 , . . . ,  it holds 

1 ~ 1/5 ~ l 1 ~ 1/5 (~ _[,_ 2)V/~ 
1+ ~---'~] < < \ 1 +  • (43) 

- ~ k - l f l k + l  -- k - + - l ]  (k + 3)x/k + 1 

The left inequality of (43) is sharper than the left inequality in (42) for k >_ 2; the right 
inequality is sharper than the corresponding one in (42) for k >_ 1. 

PROOF. Inequalities (43) follow from inequalities (22) of Corollary 1, with x = 1 + (k - 1)/2 and 
fl = 1/2. After some algebraic t ransformations,  it can be seen t ha t  the  left-hand side of (43) is 
greater than  the left-hand side in (42) for k _> 2 if and only if 

k 5-2a -t- 2k 4-2~' - (k -F 1) 5-2°~ > O, log 7r 
c~ = 1-0"~g2' k > 2, 

which, after division by k 5-2~ and subst i tut ion t = 1/k, becomes 

f ( t )  := 1 + 2t - (1 + t) ~ - ~  > 0, for t e (0,1/2].  

Now, since f (0 )  = 0, f ( 1 /2 )  ~ 0.01 > 0, and f is concave, the assertion follows. The  other par t  
is equivalent to the s ta tement  tha t  

k 5 + 7k 4 + 18k 3 + 22k 2 + 17k + 9 > 0, 

which is t rue  for any k > 0. 

8. T H E  F U N C T I O N  x ~ T ( 1 / x , 3 / x )  A N D  I T S  I N V E R S E  

In this section we will investigate the function 

F(x)=T(~ 3) r2 (2/x) x :> O. (44) 

This  function plays a role in a statistical problem of es t imat ion of the shape parameter  of 
generalized G a m m a  random variable, where it is an impor tan t  task to find the inverse of F 
(see [11-13]). Since this is analytically intractable,  t abula ted  values of F have been used to find 
an approximat ion of x, with y = F(x)  given. This  method,  due to the shape of F (as described 
in Theorem 6), yields an error of a considerable magnitude.  On the other hand,  a straightforward 
use of numerical  methods  is not desirable in applications, because it has to be repeatedly  done 
for each new value of y. In this section, we present a procedure for approximat ive  accurate 
determinat ion of x given y = F(x) ,  tha t  can be executed by a formula tha t  involves only simple 
calculations. 

Let  us define a function related to F as follows: 

L ( x ) = l o g r ( x ) + l o g r ( 3 x ) - 2 1 o g r ( 2 x ) - l o g ( 4 ) ,  x > 0 ,  (45) 

n(0) = 0. 

Clearly, for x > 0 we have 

L(~)---log F ( ~ ) -  log (3) . (46) 
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THEOREM 6. The function x ~-* F(x), defined by (44) is convex and monotonically decreasing 
in x, with 

4 
lira F(x) = +co, ~hv~o ° F(x) = -~. 

x-*O+ 

The function x H L(x) is continuously differentiable of any order, convex and monotonically 
increasing on [0, +oc), with L'(O) = O. 
PROOF. Using the recurrence relation for the Gamma function, we find that 

r(x)r(3x) = 4.  r(x + 1)r(3  + 1) 
r2(2x) 3 r 2 ( 2 x + l )  ' 

which shows continuity of L at zero. Further, we can express r(2z) and r(3x) by means of 
multiplication formulae [32] for the Gamma function, to get 

Then 

and 

L(x) = ( 3 x -  ~) log3- (4x-1)log2 

+ log r (x + l ) + log r (x + ~ ) - 21og F (x + ~ ) - log ( 4 ) . 
(47) 

L'(x)=31og3-41og2 + q~ (x + l )  + ~ (x +2)  - 2q~ (x + l )  , (48) 

It is well known (see, for example, [32, 6.3.3]) that @(1/2) = - 7  - 21og2. Further, by means 
of the formula in [48, 1.7.3], it can be evaluated that @(1/3) - - 7  - (3/2) log 3 - ~r/(2v/-3) and 
@(2/3) = - 7  - (3/2)log3 + ~r/(2v~), which, upon substitution in (49), gives L'(0) = 0. The 
existence and continuity of higher derivatives follows from (47) in the same manner. From (48), 
we find that 

by convexity of the function x ~ @'(x). Therefore, L is convex, and so L'(x) > L'(0) = 0 for 
x > 0, hence L is increasing. This implies that F is decreasing. To show convexity of F, we note 
that logF(x)  = L(1/x) -log(4/3), and, by (47) we find that 

(l°gF(x))"=t3 (61og3--81og2 + qd' (t + l ) + qd' (t + 2) -- 2qd' (t + I )  ) >0 ,  

where t = 1Ix. So, F is log-convex, and, consequently, convex. Finally, by means of Stirling's 
formula, it is easy to see that 

lim L(x) = l i m  F(x) = +c~. | 
x--~+~ x---*O+ 

Due to the shape of F, as found in Theorem 6, we will apply two different techniques to find 
the unique solution x = x(y) of the equation 

y=F(x),  x E (0, +co), y E ( 4 , + c ~ )  . (50) 

The first method is based on the work in previous sections, and gives a satisfactory solution for y 
away of 4/3. The second method is based on Lagrange's expansion (Taylor's expansion of the 
inverse) and works well for y close to 4/3. 
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THEOREM 7. The solution of (50) is given by 

x = y l ( y )  + E~(y) ,  

where 
2a 

vl(y) = 
b + ~ '  

a = 31og3 - 4log 2, 

1 
b = log y - log 2 + ~ log 3, 

1 

and where E1 (y) < 0 for all y > 4/3 and, monotonically, 

(51) 

(52) 

lim El(y) = O. 
y-*+oo 

PROOF. We will use the approximat ion of the r ight-hand side of (14), which, applied to x = t 
and y = 3t yields 

33t-1/2 
T ( t ,  3t) < 7 e  1/36t (53) 

Denoting the expression on the r ight-hand side of (53) by G(t), we have tha t  

G ( 1 )  = F(x) + Eo(x), 

where Eo(x) > 0 for x > 0. From Section 6, we know tha t  Eo(x) is increasing with x and 
lim~--.0+ Eo(x) = 0. Let x = x(y) be the solution of equation (50) and let xa = xa(y) be the 
solution of equat ion y = G(1/x). From the continuity and monotonici ty  of F it follows tha t  

x(y) = Xa(y) + El (y ) ,  

where E l (y )  < 0 for all y > 4/3, and monotonical ly converges to zero as y --* +cx~. Further,  it is 
easy to check tha t  x~(y) = VI(y), where V1 is given by (52). | 

THEOREM 8. The solution of (50) is given by 

where 

1 
v ~ ( t )  = 

Clt + C2 t2 + c3t 3 ' 

cl = L'(O----~ = 0.7796968009, 

1 L '"(0)  
c2 . . . . . .  0.8885012277, 

3 L"2 (0) 

v/2 5L"2(0)  - 3L"(0)L(iv)(0) 
C 3 ~--- - -  . 36 (L"(0))7/2 

and E2(y)  = O(y  - 4 / 3 )  as y -+ 4 /3 .  

PROOF. Let  u ---- u(t) be the solution of equation 

= 0.5819804921, 

(54) 

t =  v / T ( G  (55) 
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Then u can be represented by its Maclaurin's expansion, as 

u(t) = P3 (t) + R(t) = clt + c2t 2 -t- cat 3 + R(t),  (t ~ 0), 

where R(t) = O(t4). Due to relation (46), the solution of equation (50) is given by 

1 
x = x(y) - n , l , ,  

P3(t) + 

where t = v/log y - log(4/3). Further, 

1 1 ( R(t) '~  ~R2(t)  
P3(t) + R(t) - P3(t) 1 P3(t) / + O \ p3(t) ] 

1 ( 4 )  
= Pa(t---~ + 0 (t 2) = Pa(t----~ + 0 y - , 

which is (54), with coefficients c~, i = 1, 2, 3, to be determined. Differentiating (55) with respect 
to t, we get 

~'(t) = 2 v / ~ - ~  
L'(u) 

The value at zero can be found by L'HSpital 's rule 

(u ' (0 ) )2=  lira 4L(u) _ 2 
~-~0 L'2(u) L"(0)  ' 

and so, 

c l  = u ' ( 0 )  = 0 ) '  

Let 
4L(u) 2 

g(u) := na(u) ,  g(O) = L"(O)" 

Then 
g'(u) = 4L'2(u) - 8L'(u)L"(u) 

U3(u) 

and g~(0) can be found with two applications of L'HSpital 's rule 

4 L'"(0) 
g'(0) . . . . .  

3 L"2 (0)" 

Differentiating the relation u'(t)  = V/ -g~  with respect to t, we get 

u"(t) = g'(u) 
2 ' 

(56) 

tha t  is, 
u"(t) 1 L'"(O) 

C 2 - ~  - -  _ ~  - -  - -  

2 3 L '2(0)  " 

Further,  it is not difficult to check that  

g"(u) = 2g(u)L"(u)  + 3L"(u)g'(u) 
L'(u) 
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and at  u = 0 this is also of the form 0/0. After an application of L 'H6pi ta l ' s  rule, we get 

g"(O) = 5g'(O)Q"(O) + 2g(O)L(iv) + 3L"(O)g"(O) 
L"(o) 

which, after subst i tut ion of expressions for g(0) and g'(0) yields 

g"(O) = 5L'"2(0) - 3L"(O)LOv)(o) 

3L"3(0) 

On the other hand, by differentiation of (56) with respect  to t, we get 

g" ( u ) x / ~  
u"'(t)  = 2 ' 

and, finally, 
u '"(0)  v ~  5 L ' " 2 ( 0 ) -  3L"(0)L(iV)(0) 

c 3 -  6 = 3--6" (L"(0))  7/2 

To find numerical  values for coefficients, we need to find 

This  was done using the built-in Psi function in the program Maple. 

n = 2 ,  3, 4. 

Error Analysis  and Numerical  Data  

The absolute error tEt(F(x))]  is increasing function of x, with lim~-~o+ IEI(F(x))I  = 0 and 
lim~-~+o~ [EI(F(x))I  = +co.  For the error E2(F(x) )  it can be found tha t  lim~-~0+ E2(F(x) )  = 0 
and numerical da ta  reveal tha t  it increases to 0.0246 at x ~ 0.187, and then decreases to zero 
at  x ~ 1.8865, wherefrom it remains negative and converges to zero as x --+ +oo.  The  two error 
curves intersect at  xo ~ 1.10445, with IEl(F(xo)) l  = E2(F(xo))  ~ 0.00559. The  value of F at 
tha t  point is yo = F(xo)  ~ 1.908. Therefore, the op t ima /a lgo r i t hm would be to use formula (54) 
for y E (4/3, Y0] and formula (51) for y 6 [yo, +co) .  The  maximal  absolute error in this procedure 
is then  less than  6 . 1 0  -3 . 

Some numer ica /va lues  are presented in Table 1. 

Table 1. Approximative solutions xa of the equation y = F(x), for selected values 
of x. The values for xa are calculated with formula (51) for x _< 1 and with (54) for 

x > i .  

X 

0.001 

0.01 

0.1 

0.3 

0.5 

0.7 

1 

2 

5 

10 

2O 

100 

2.2024244.10227 

6.12305.1022 

216.8266253 

6.661052616 

3.333333 

2.484640412 

2 

1.570796326 

1.389497325 

1.350375904 

1.338122716 

1.333546439 

0.001 

0.01 

0.1000000416 

0.3000099079 

0.5001227336 

0.7006302314 

1.003483771 

2.000398257 

5.002165999 

10.00115967 

20.00042994 

100.0000262 
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