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The electronic identification of sheep and goats has been obligatory in the European Union since 2010 by
means of low-frequency radio-frequency identification systems. The identification of pigs and cattle is
currently based on a visual ear tag, but electronic animal identification is gaining in importance. The
European Union already offers the additional use of electronic identification systems for cattle in their
council regulation. Besides the low-frequency radio-frequency identification, an ultra-high-frequency
ear tag is a possibility for electronic animal identification. The benefits of the latter frequency band are
the high range, the possibility of quasi-simultaneous reading and a high data transmission rate. First
systematic laboratory tests were carried out before testing the ear tags in practice. Therefore, a dynamic
test bench was built. The aim of the experiments presented in this study was to compare different ear
tags under standardised conditions and select the most suitable for practical use. The influence of differ-
ent parameters was tested and a standard test procedure to evaluate the quality of the transponder ear
tag was developed.

The experiments showed that neither the transponder holder material (polyvinyl chloride vs.
extruded polystyrene) nor the reader settings examined (triggered read vs. presence sensing) had a
significant influence on the average of readings of the different transponder types. The parameter
‘number of rounds’ (10 vs. 15 vs. 20) did not show a significant effect either. However, significant
differences between speed (1.5 m s�1, 3.0 m s�1), transponder orientation and the fourteen transpon-
der types were found. The two most suitable transponder ear tags for cattle and pigs have been
determined by comparison.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Electronic animal identification in livestock farming has gained
in importance over the last few years. The identification of indi-
vidual animals using radio waves is one possibility of electronic
animal identification and is known as radio-frequency identifica-
tion (RFID). This technology provides great benefits not only
regarding process control on farms, animal or disease monitoring,
prevention of fraud, and registration of movements, but also for
other administrative purposes (Artmann, 1999; Doluschitz et al.,
2006; Geers, 1994). The RFID technology will be explained more
precisely in the following.
1.1. RFID technology

RFID is regarded nowadays as a key technology which covers a
wide spectrum of applications (Klindtworth, 2007). The technology
behind this system is based on the communication between a
transponder (attached to the animal) and a reader (mobile or
static) via radio waves. Both transponder and reader contain an
antenna for transmission and reception, and a chip for processing
the radio signals. The communication between both units occurs
remotely with coded radio waves, which are decoded by the
respective electronic circuit (Finkenzeller, 2012; Kern, 2006).
Distinctions are made between active RFID transponders, which
generate their power from an integrated battery, and passive RFID
transponders, with no battery. The passive transponders receive
their power from the signal transmitted by the reader antenna
(Jansen and Eradus, 1999; Zhu et al., 2012). Passive systems are
predominantly in use in animal production. Three frequency bands
are mainly usable in animal identification: low-frequency
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(120–135 kHz), high-frequency (13.56 MHz) and ultra-high-
frequency (868 MHz, 915 MHz) (Kern, 2006).

1.2. Low-, high- and ultra-high-frequency RFID in animal husbandry

The electronic identification of sheep and goats has been obliga-
tory in the European Union for all such animals born after 31/12/
2009 (EC, 2004). The identification of pigs and cattle is currently
based on a visual ear tag, but replacement of the latter with an
electronic ear tag is already permitted for cattle (EC, 2000). Cur-
rently, systems working with low-frequency (LF) are state-of-the-
art in animal husbandry (Fröhlich et al., 2007). The structure of
the animal number and the functional principle are controlled by
the ISO standards 11784 and 11785 (ISO 11785, 2008; ISO
11784, 2010). The combination of the country code (ISO 3166,
2013) and the national animal number ensures a unique number
for an individual animal (Schwalm et al., 2009). Besides the unique
number, which is obligatory for the legal regulations, free memory
on the ear tag can be used for further management applications,
such as the recording of animal characteristics (sex, size, weight)
or medical treatments.

The farmer has many possibilities to attach the transponder to
the animal. Starting with a rather expensive collar, a transponder
integrated into a bolus or an encapsulation for implantation, and
ending up with a transponder attached to an ear tag. There are
many different agricultural applications on the market using LF
systems. Low-frequency is mainly used in extensive husbandry
conditions with sheep and goats to improve the traceability of indi-
vidual animals and to reduce the risk of spreading diseases (Ribó
et al., 2001). Low-frequency is very useful in sow keeping and dairy
farms when combined with automatic feeding stations. An indi-
vidual feeding schedule for each animal and stage can be imple-
mented and food intake can be measured (Blair et al., 1994;
Chapinal et al., 2008). This technique is offered by many companies
for barn equipment. Junge et al. (2012) showed that the registra-
tion of drinking events and the calculation of a minimal walking
distance for each sow is also feasible with LF technology (Junge
et al., 2013). Using this information, as well as a preparation of
the data by software, the health status of each individual animal
could be monitored. The biggest benefit of this technology is the
low susceptibility against shadowing by metal or liquids. Problems
arise when reading many animals at the same time and over a
greater distance (Caja et al., 2005; Thurner and Wendl, 2007),
whereby some LF transponders with an anti-collision algorithm
have already been tested by Burose et al. (2010). Even if the so-
called anti-collision systems, where quasi-simultaneous reading
of different transponders is possible, can be used with basically
all RFID systems, the reading rate will be reduced (Burose et al.,
2010).

Another possibility for animal identification are high-frequency
(HF) systems. The HF systems offer a higher data transfer rate than
LF systems (Chawla and Ha, 2007). Thus, the identification of mov-
ing transponders is feasible even when using anti-collision algo-
rithms. The HF systems are mainly used in access control
systems, smart cards and different logistic areas (Thurner and
Wendl, 2007). Fröhlich et al. (2007) think that the commitment
of HF transponders in animal identification would have its benefits
in the industry-wide movement of goods from the point of animal
production right through to transportation and slaughter. Hessel
et al. (2008) used a self-made circular HF antenna on top of two
different feeding troughs to read ear tags in piglets. The reading
rate of both feeding troughs was around 97%. The high activity of
the piglets, the water content of their bodies, the material of the
feeding station and the orientation of the transponder to the anten-
na of the reader are seen as reasons for missed reading events
(Hessel et al., 2008; Reiners et al., 2009). Further experiments with
a round feeder were performed by Maselyne et al. (2014). Eight
antennas connected to a single reader using a multiplexer were
installed above the troughs of the feeders. The RFID system was
validated by video observation of 20 focal pigs (two HF ear tags
each). Therefore, several time window sizes were tested and exam-
ined. A sensitivity of 88.58% and a specificity of 98.34% were
achieved (Maselyne et al., 2014).

A third possibility of electronic animal identification are ultra-
high-frequency (UHF) systems. The UHF systems are increasingly
used in other industries, such as the pharmaceutical and retail
industries (Desmons, 2006; Impinj, 2006; Umstatter et al., 2012),
as well as for the identification of goods containing liquids or metal
(Catarinucci et al., 2013). The clear benefits of this frequency band
are the high range, the possibility of quasi-simultaneous reading
(anti-collision system) and a high data transmission rate
(Baadsgaard, 2012; Clasen, 2007; Finkenzeller, 2012; Umstatter
et al., 2012). Such systems were considered as unsuitable for ani-
mal identification because of the high absorption potential of
water in the UHF band; however, over time, there have been fur-
ther developments in terms of performance and robustness
(Catarinucci et al., 2012; Finkenzeller, 2012; Stekeler et al.,
2011). There have only been a few projects testing UHF for animal
identification in pigs, sheep, cattle and deer (Baadsgaard, 2012;
Cooke et al., 2010; Hartley, 2013; Hogewerf et al., 2013;
Swedberg, 2012; Taylor, 2013). In these projects, the UHF
transponder was tagged to the animal in the form of a rigid or flex-
ible ear tag. The material of the item to which the tag was attached
or embedded, the size and stability, the orientation of the tag to the
reader, and the environment in which the system operated were
named as reasons for performance degradation and reliability
problems (Baadsgaard, 2012; Chawla and Ha, 2007).

1.3. Test benches for RFID transponders

Test benches are well-suited to test transponders under con-
trollable and comparable conditions. Burose et al. (2010), for
instance, built a test bench to analyse LF transponders with an
ISO standard and with an anti-collision algorithm. This test bench
consisted of a plastic slide which was drawn by a wire rope hoist
on two wooden tracks. Using this test bench, the following para-
meters could be varied: the distance to the ground, the velocity,
the number of transponders and the orientation of the transponder
to the reader (Burose et al., 2010). Barge et al. (2013) also used a
test bench to move LF transponders (HDX, FDX) through a reader
field under standardised conditions. This test bench consisted of
a wooden trolley pulled by a rubber belt and driven by an electric
motor, simulating a group of animals passing a reader gate. Differ-
ent combinations of transponders and velocity could be varied
(Barge et al., 2013). Thurner and Wendl (2007) designed a test
bench for testing HF transponders and readers. In this case, up to
four parallel running V-belts clamped to two bicycle rims and pow-
ered by an electric motor carried the transponders through the
reading field. Six holders carrying up to five transponders each
were attached to one V-belt. The height of the reader, orientation
of the transponder, velocity and direction could be varied on this
test bench (Fröhlich et al., 2007; Thurner and Wendl, 2007).
Wehking et al. (2007) built a test bench to test UHF transponders
for application in logistics. Their test bench consisted of a nine-me-
tre haulage road with a conveyor speed of 0.5 ms�1. Loading units
up to a weight of 300 kg could be examined. There were two UHF
antennae centred on top of both sides of the conveyor. Additional-
ly, one LF antenna was centred on each long side of the conveyor.
On this test bench, mainly the transponder orientations (two- and
three-dimensional) and the content of small load carriers could be
varied. Ten thousand cycles were performed for each test series
(Wehking et al., 2007). McCarthy et al. (2009) developed a test
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bench in the agricultural sector similar to Wehking et al. (2007).
The movement of different packaging boxes, to which the
transponders had been attached, was facilitated with a variable-
speed conveyor belt system. The boxes were filled with
atmosphere-packaged meat. One empty box was used for reference
purposes. The arrangement of the transponders on the boxes, the
direction of motion, the velocity and the antenna-transponder dis-
tance could be varied (McCarthy et al., 2009). Kern (2006)
described simple methods of testing for LF, HF and UHF transpon-
der-reader applications for the RFID user. Reading ranges, reading
rates and coupling curves could be determined with these different
test benches. However, Kern (2006) emphasised that all of these
test benches were especially made for practical applications, by
which limitations concerning accuracy and repeatability may
occur. An anechoic chamber should be used to test UHF transpon-
ders under real standardised conditions in an environment free of
reflection and RF disturbances. The European EPC Competence
Centre (EECC, 2011) tests transponders in an anechoic chamber
which ‘‘consists of a mechanical test bed and a RF test apparatus’’.
Both are operated by a controlling unit. This ‘‘setup allows test
sequences without interaction of test personnel’’ (EECC, 2011).
Derbek et al. (2007) also carried out their experiments on this
breadboard construction. They collected sensitivity threshold, read
range and backscatter range of various transponders in a band
from 800 MHz to 1 GHz. Directional characteristics of the
transponder were analysed by a controllable turntable (Derbek
et al., 2007).
1.4. Objectives

This study is part of a research project which is concerned with
the production and testing of in-house designed flexible UHF ear
tags for animal identification. First systematic laboratory tests
were carried out before testing these UHF ear tags in practice.
One central part of the laboratory tests was conducted with a
dynamic test bench. The aim of this test bench was to produce
an environment within which the quality of an UHF transponder
can be reproducibly tested. A proper methodology and test bench
settings had to be determined for testing different UHF ear tags
under standardised conditions. The hypothesis of this study was
that the number of readings achieved on the test bench differs in
terms of transponder type and test bench settings. The results
should give a reliable assessment of the quality of a transponder
under laboratory conditions.

With the aid of the dynamic test bench, the impact of the
parameters

� speed (1.5 m s�1 vs. 3.0 m s�1),
� number of rounds (10 vs. 15 vs. 20),
� material of the ear tag holder (PVC vs. XPS),
� reader setting (TR vs. PS),
� transponder orientation (six orientations 1–6), and
� transponder type (fourteen types)

on the number of readings per round were analysed.
2. Materials and methods

2.1. Construction of the test bench

Traunecker et al. (2012) described a dynamic test bench which
constituted the basis of this breadboard construction. The dynamic
test bench consisted of a rectangular timber frame secured by met-
al elbow brackets at the corners (Fig. 1). These elbow brackets were
used to secure the axes and V-belt pulleys. One of the four V-belt
pulleys was driven by a direct current transmission motor (24 V,
RE40/GP42C, Maxon Motor). Thus, a variable stepless adjustment
of the V-belt speed was possible.The transponder ear tags could
be fixed into a holder which could be easily attached to or removed
from the V-belt.

One type of holder was made of polyvinyl chloride (PVC) and
the other was made of extruded polystyrene (XPS, Styrodur�)
(Fig. 2). The XPS was chosen because of its low influence on elec-
tromagnetic radiation (Webster and Eren, 2014). Three transpon-
der ear tags could be attached to the PVC holder. Only one
transponder ear tag per holder was used in the following experi-
ments to eliminate a possible interaction between transponders
during the reading process. Six different transponder orientations
were feasible with the holders currently used (Fig. 3). All of the
main orientations between transponder and reader were tested.

The transponders were tested during several rounds. The
rounds were counted by a lap counter using a light barrier. The
reflector of the light barrier was also attached to the V-belt right
in front of the transponder holder. The number of readings was
recorded each circuit the transponder passed the reading area of
the reader.

The reader was located at ground level at a fixed point on one of
the long sides of the test bench and radiated upwards. Any kind of
UHF reader could be used here. A reader with an internal antenna
emitting circular polarised radiation with an opening angle of 90�
was used for the experiments presented. A robust IP67 housing
protected the integrated antenna and the electronics of that reader.
The reader adjusted itself to its environment with an auto-tune
function. It worked with an effective radiated power (ERP) of one
watt where the antenna gain is already included and a frequency
between 865 and 868 MHz (EU). Different reader settings were
chosen by changing the software settings. The reader setting ‘‘trig-
gered read’’ (TR) was mostly used. At that setting, the antenna field
was switched on and off manually. The transponder reset time
(reset of the inventoried flag in the anti-collision procedure) was
set at 100 m s. A second setting was selected to examine if another
reader setting could be used for our purposes. At that setting,
called ‘‘presence sensing’’ (PS), the antenna field switched on after
a predetermined time (100 m s) and looked for a transponder
answer. If no answer was detected, the antenna field turned off
immediately. If a transponder answered, the antenna field
remained active and the reader started the reading process. When
the transponder left the antenna field, the field stayed on for
another 500 m s and then turned back to the 100 m s sensing
interval.

The distance between reader and transponder was fixed at
1050 mm in the experiments presented. All of the test settings
were managed by software developed in-house and were stored
in a database.

2.2. Transponder types and characteristics

Several transponders were used to test the effects of various
test bench settings sufficiently. Not only the test bench settings,
but also the quality of the transponders were analysed. The sub-
jects of the investigation were passive transponder patterns devel-
oped in the project (A1, B1, B2, B3, B3-4, B4, B4-4, B5, C0, C1, C1-4,
C2) and a commercially available passive UHF transponder cattle
ear tag (ZT). One commercially available passive transponder was
part of each experiment for reference purposes (A) (Table 1).

These transponders mainly differed in their antenna construc-
tion (antenna length, antenna arrangement and mass) and, there-
fore, in their directional radio pattern.

Transponder types B1, B2, B3 and B4 showed the structure of a
PIF antenna. These antennas belonged to the group of dipole anten-
nas, where the length of the antenna can be shortened if the mass



Fig. 1. Construction of the test bench (dimension in mm).

Fig. 2. Transponder holder. PVC holder (left), two attachments for six orientations.
XPS holder (right), one holder for six orientations.

Fig. 3. The six possible transponder orientations. Reader radiates at the left narrow
side (1), bottom side (2), right narrow side (3), top side (4), front side (5) and back
side (6) of the ear tag.
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area is big enough (Schoblick and Schoblick, 2005). The four
transponder types named differed in the length of the last part of
their antenna. The shorter the antenna of a transponder, the higher
the transponder’s resonance frequency. The aim of the different
antenna constructions was the adjustment to the influence of ear
tag material and ear tissue. These materials reduce the resonance
frequency through their permittivity.

Transponder type B3-4 and B4-4 represented a second gen-
eration of B3 and B4 because the high potential of these types
was observed in pretests. Transponder type B5 was a further devel-
opment of B4-4. Here, the antenna length was shortened again to
increase the resonance frequency. Furthermore, the label material
was changed to polyimide foil for the second generation and
transponder type B5.

Transponder type A was a transponder with a folded dipole
antenna, which was originally made for use and application in a
metal-rich environment. The suitability for use in a metal-rich
environment is based on the pre-detuning of the antenna. The
resonance frequency desired could be achieved by interaction with
metallic substances underground. Transponder type A was glued
onto a normal plastic cattle ear tag by the authors. Transponder
type ZT had the same structure as type A, but it was included in
a plastic ear tag by the manufacturer.

Types A, ZT, and B1 to B5 (including B3-4 and B4-4) had an
appropriate size for cattle ear tags. The antenna structure of
transponder type A1 was inspired by transponder type A, but
was just minimised in size.

Types C0 and C1 showed the structure of a Pif antenna, too.
They were also built in a smaller size for application in ear tags



Table 1
Overview of the passive transponder patterns and their characteristics used for the experiments. Figures show the dimensions of the ear tags used with the transponders.

Transponder type Characteristics

A – Commercially available
– UPM Web, now SMARTRAC�

– Folded dipole antenna
– Reference transponder
– Part of every experiment
– Glued onto a cattle ear tag

A1 Ear tag design is equal to transponder type A – Developed in-house
– Sized for pig ear tags
– Antenna design inspired by type A
– Label material: layers of adhesive aluminium foil
– Grouted into a cattle ear tag

B1, B2, B3, B4 – Developed in-house
– Sized for cattle ear tags
– Antenna design: Pif antenna
– Variation of antenna length (shorter from B1 to B4)
– Label material: layers of adhesive aluminium foil
– Grouted into a cattle ear tag

B3-4, B4-4 Ear tag design is equal to transponder types B1, B2, B3 and B4 – Second generation of B3 and B4
– Different label material: polyimide foil

B5 Ear tag design is equal to transponder types B1, B2, B3 and B4 – Further development of transponder type B4-4
– Variation of antenna length
– Label material: polyimide foil

C0, C1 Ear tag design is equal to transponder types B1, B2, B3 and B4 – Developed in-house
– Sized for pig ear tags
– Antenna design: Pif antenna
– Variation of antenna length (shorter from C0 to C1) and design
– Label material: layers of adhesive aluminium foil
– Grouted into a cattle ear tag

C1-4 Ear tag design is equal to transponder types B1, B2, B3 and B4 – Second generation of C1
– Different label material: polyimide foil

C2 Ear tag design is equal to transponder types B1, B2, B3 and B4 – Further development of C1-4
– Variation of antenna length and design
– Label material: polyimide foil

ZT – Commercially available
– Sized for cattle ear tags
– UPM Web, now SMARTRAC�

– Folded dipole antenna
– Transponder embedded in an air-filled pocket between two plastic tabs
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for smaller animals, such as pigs. Type C1-4 and C2 also represent-
ed a further development of type C1 with a higher resonance fre-
quency and a polyimide foil as the label material.
2.3. Statistical evaluation and experiments

An analysis of variance (ANOVA) was used to test whether the
speed, transponder orientation, number of rounds, holder materi-
als and reader settings have an influence on the number of read-
ings per round. The average of readings per round (ARR) was
used as a dependent variable in all studies (Eq. (1)).

Average of readings per round

¼
P

Number of readings
P

Number of rounds
ðfor all exemplars of one typeÞ ð1Þ

The parameters investigated were set as fixed effects. The num-
ber of rounds one transponder ear tag was driven on the dynamic
test bench represented measurement repetitions. Repetitions for
the factor transponder type were caused by the exemplars of the
transponder types. A mixed model was calculated to compare the
quality of the different transponder types. Again, the parameters
investigated were set as fixed effects, while the interaction
between transponder type and transponder exemplar was set as
a random effect. Statistical significance was considered at
P < 0.05. All calculations were carried out with IBM� SPSS� Statis-
tics 22.

2.4. Experiments

A more detailed description of the six experiments implement-
ed is given below.

2.4.1. Influence of speed
Three experiments were carried out to verify whether the speed

has an influence on the ARR or not. Experiment one included
transponder types A, B1, B2 and B3. Experiment two included the
types A, A1 and B4. The holder material PVC was used in both



Fig. 4. Differences between the average of readings per round (ARR) in terms of
speed (1.5 m s�1, 3.0 m s�1) analysed in three experiments. Experiment 1:
transponder types A, B1, B2, B3, holder material PVC; Experiment 2: transponder
types A, A1, B4, holder material PVC; Experiment 3: transponder types A, C0, C1,
holder material XPS. Reader setting ‘triggered read’ was used in every experiment.
n: repetitions, a, b: different letters within an experiment indicate that values
diverge significantly (P < 0.05).
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experiments. The third experiment included the transponder types
A, C0 and C1 and the holder material XPS was used. Six exemplars
of each type in six orientations (Fig. 3) were tested in each experi-
ment. The reader setting TR was used in all experiments. Two
speeds (1.5 m s�1; 3.0 m s�1) were compared.

2.4.2. Influence of the number of rounds
Three different numbers of rounds were compared (10, 15 and

20) in order to test whether the number of rounds a single
transponder ear tag was driven on the test bench had an influence
on the ARR. The reason why this experiment was conducted is the
time-saving for further experiments. Here, three types (A, B3-4, B4-
4) with six exemplars each were tested in six orientations (Fig. 3)
at one speed (3.0 m s�1). The holder material XPS and the reader
setting TR were used.

2.4.3. Influence of the holder material
Whether the holder material, PVC or XPS (Fig. 2), of the test

bench had an influence on the electromagnetic radiation and, thus,
on the ARR was analysed by an experiment with three transponder
types (A, C0, C1) and six exemplars of each. The reader setting TR
was also used in this experiment. Six orientations (Fig. 3) and
two speeds (1.5 m s�1; 3.0 m s�1) were used.

2.4.4. Influence of the reader settings
The setting options of UHF readers are diverse. Two reader set-

tings, TR and PS, were compared and analysed in this experiment
regarding their influence on the ARR. The number of transponder
types, exemplar orientations and speeds did not differ from the
experiment testing the holder material. Only XPS was used as a
holder material for this experiment.

2.4.5. Influence of transponder orientation
Five transponder types (A, B3-4, B4-4, B5, C2) were tested due

to the difference in their directional radio patterns. Five exemplars
of each type were included in this experiment. All the exemplars
were tested at a speed of 3.0 m s�1. The performance of the reader
was reduced to an ERP of 0.5 Watt for this experiment to see the
differences in transponder orientation more clearly. Six orienta-
tions which covered the main sides of the transponder ear tags
were compared (Fig. 3). Again, the reader setting TR was used.

2.4.6. Test of the transponder types
The main task of this test bench was to test the quality of differ-

ent transponder types. An evaluation of the suitability of the
transponder ear tags for practical use will be deduced from the
results of these experiments. Fourteen types of transponder ear
tags were tested at different test bench settings mentioned above.
A joint evaluation of many experiments was performed to compare
the different transponder types. Transponder type A was used in all
experiments as a reference transponder and represented a connec-
tion between the experiments. Depending on the experiment, PVC
or XPS as a transponder holder (Fig. 2) and TR or PS as a reader set-
ting was used. All the experiments were performed at 3.0 m s�1.
3. Results and discussion

3.1. Influence of speed

On the basis of Fig. 4, it can be seen that the speed of the
transponder had a significant influence on the ARR. Experiments
one to three showed that the ARR was significantly higher at a
speed of 1.5 m s�1 than at 3.0 m s�1. Obviously, the speed had an
influence on the reading success. This result was independent of
the transponder type. The interaction of transponder type and
speed always showed a significant difference.

The reason for the reduced number of readings per round could
be the shorter stay of the transponder in the reading field of the
reader. The maximum number of readings a transponder-reader
system can achieve depends on several factors, such as transmitted
data volume per transponder, data transmission rate and transpon-
der distance (Kern, 2006; Wehking et al., 2007). That result has
already been shown in other experiments with UHF transponders.
McCarthy et al. (2009) also concluded that the readability of a
transponder at a higher speed is more difficult. In their experi-
ments, they attached the transponders to containers and placed
them onto a conveyor belt travelling at 0.5 m s�1 and 1.0 m s�1.
Consequently, an increased speed from 0.5 m s�1 to 1.0 m s�1

showed a decreased mean detection rate from 62% to 57%.
Penttila et al. (2004) described similar results that an increase in
speed will result in a decreasing coupling capability of the system.

3.2. Influence of the number of rounds

The influence of the number of rounds in the sense of the
repeated measurements on the ARR was tested. Statistically, the
number of rounds are measurement repetitions, but a higher num-
ber of rounds resulted in a lower variance of the ARR of one
transponder type exemplar. The first completed experiments in
the project were performed with 20 rounds per passage. Whether
there is a difference in the ARR between 10, 15 and 20 rounds was
tested with this experiment.

The results of these experiment (Fig. 5) show that there was no
significant difference between the number of rounds. The lower
ARR compared to other experiments could be explained by the
use of the fast speed (3.0 m s�1). Ten rounds were used for the fol-
lowing experiments.

3.3. Influence of the transponder holder

Kern (2006) and Chawla and Ha (2007) described the influence
of different materials as a reason for reading gaps in UHF systems.



Fig. 5. Differences between the average of readings per round (ARR) in terms of
varying the number of rounds (10 vs. 15 vs. 20) based on three transponder types.
Holder material XPS and reader setting ‘triggered read’ with a speed of 3.0 m s�1

were used. n: repetitions, a, b: different letters within a transponder type indicate
that values diverge significantly (P < 0.05).
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The influence of the readability of the transponder through envi-
ronmental influences should be reduced to a minimum on the
dynamic test bench. An experiment with two different holders
was carried out to test whether the transponder holder had an
influence on the ARR or not. The XPS should carry less weight than
PVC, where an absorption of the electromagnetic radiation and a
reduction of the ARR would be expected. Transponder types C0
and C1 were chosen for this experiment because of their moderate
performance. Fig. 6 shows that no significant difference could be
determined for transponder type A and C0. Whereas transponder
type C1 shows a difference between the two holder types
(P = 0.01).

A different reaction of different transponder types attached to
changing material was not described. There is no explanation for
Fig. 6. Differences between the average of readings per round (ARR) in terms of two
different transponder holders (PVC vs. XPS) based on three transponder types.
Reader setting ‘triggered read’ and two speeds (1.5 m s�1, 3.0 m s�1) were used. n:
repetitions, a, b: different letters within a transponder type indicate that values
diverge significantly (P < 0.05).
the different effects regarding the transponder types. The direc-
tional radio pattern is not expected to be the reason because of
the six transponder orientations tested. Wehking et al. (2007)
glued transponders onto small charge carriers filled with alumini-
um, steel, water, chipboard or fibreboard. Empty charge carriers
were used for reference purposes. Reductions of 20% of the reading
rates for aluminium, steel and water were shown. A reduction of
5% was shown for chipboard and fibreboard. However, the location
of the transponders on the small charge carrier played a decisive
role. Derbek et al. (2007) also attached their UHF transponders to
different mounting materials and analysed the sensitivity and read
range. It was shown that, depending on the frequency (800–
1000 MHz), the read range differed between free air and metal,
and was the lowest with water and metal (Derbek et al., 2007).
The XPS was used for reference purposes in other experiments
because of its minimal influence on electromagnetic radiation
(er = 1.03) (Derbek et al., 2007; EECC, 2011; Webster and Eren,
2014).

Barge et al. (2014) attached HF transponders to cheese and to
polystyrene for reference purposes. The maximum reading dis-
tance was measured with polystyrene and defined as 100%.
Depending on the transponder orientation (frontal, +180�), the
results with cheese varied between 0% and 100%. It was shown that
cheese had an influence on the reading distance of the HF
transponders compared to polystyrene. Because XPS enables all
possible variants of transponder orientations and other authors
also confirmed its low influence on electromagnetic radiation,
XPS will be used for further experiments.

3.4. Influence of the reader setting

Industrial readers for UHF applications have a wide spectrum of
settings. Easy operability and robustness are paramount for the
farmer and use in agriculture. The manual operability has its
advantages for laboratory experiments, but an automatic switch-
on of the antenna field is preferable for daily use on farms. The set-
tings TR and PS were chosen to compare a setting for experimental
purposes and a setting for use on farms. Whether the results of
three transponder types vary significantly in their ARR was exam-
ined with this experiment. No significant differences between the
two reader settings appeared (Fig. 7).
Fig. 7. Differences between the average of readings per round (ARR) in terms of two
different reader settings (‘presence sensing’ (PS) vs. ‘triggered read’ (TR)) based on
three transponder types. Holder material XPS. Two speeds were included (1.5 m s�1,
3.0 m s�1). n: repetitions, a, b: different letters within a transponder type indicate
that values diverge significantly (P < 0.05).
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PS would be more suitable for practical use on farms because of
the mostly switched-off reading field. The reader is able to identify
the passing animals, but does not radiate continuously. The farmer
and the animals are not continuously exposed to the antenna’s
radiation. In addition, there is no need for the farmer to think about
switching the reading field on and off. However, a continuously
switched-on reading field (TR) has its benefits for laboratory work.
Transponders with low performance, which would not be used in
practice, can at least temporarily be identified with TR because
they have more time to harvest energy. In general, the switch-
ing-on threshold for passive transponders is higher than the
switching-off threshold. Because of this, they need more energy
to get activated when coming into a reading field than to keep
on operating when leaving the field (Knop, 2014).
3.5. Influence of transponder orientation

Table 2 shows significant differences in the orientations (Fig. 3)
of the transponders. The differences in the ARR per orientation can
be partly explained by the simulated directivities of the three basic
antenna types (Figs. 8–10).

Transponder type A showed its best orientations upwards and
downwards in the simulation. These two orientations were desig-
nated as 2 and 4 in the experiments. The worst orientations in
terms of performance would be to the sides designated as 1 and
3 in the experiments (Fig. 8). The orientations 5 and 6 (from front
and back side) should be in between. The transponder types with
the PIF antenna showed a different directivity (Fig. 9). In theory,
orientations 5 and 6 should be the best, followed by 1 and 3. Ori-
entations 2 and 4 should be the worst. Transponder type C2
showed a similar directivity to the B transponder types. The only
difference was that the radiation of this type was more asymmetric
and, thus, more directed to one side (orientation 3). In this orienta-
tion, the ARR of that type should be the highest (Fig. 10).

In the following it could be shown that the results of this
experiment only partly met the expectations of the simulation.

A closer look at transponder type A showed that this type had
the highest ARR in orientation 2, followed by orientation 3. This
is analogue to its simulated directivity. The lowest ARRs were
detected for orientation 5 and 6. These results do not match the
simulated directivity. Orientation 4 achieved an ARR in between
orientation 1 and 3 and 5 and 6. With the background of the
simulated directivity, an ARR comparable to orientation 2 was
expected here.

That the transponder types B3-4, B4-4 and B5 might have their
best ARR in orientation 5 and 6 could not be confirmed with these
experiments. Rather, orientation 1 could be described as the best.
B5 showed no significant difference between orientations 2, 4, 5
and 6. Transponder type C2 had its best orientation in 3, followed
by 1 and 6. Orientation 2 and 4 showed significantly lower ARRs.
The measurements of this transponder type matched the simula-
tion best.
Table 2
Differences between the average of readings per round (ARR) in terms of the transponder

Type Orientations

1 2 3
(left side) (bottom side) (right side)

A 26.84b 32.36a 28.38ab

B3-4 31.80a 22.62c 23.06c

B4-4 32.00a 30.29ab 26.24c

B5 31.26a 26.96b 23.02c

C2 3.30ab 1.00b 7.70a

Note: Holder material XPS, reader setting ‘triggered read’ and a speed of 3.0 m s�1 were u
significantly (P < 0.05).
The partial mismatching of test results and simulated direc-
tivity patterns of the transponders can be explained by the subop-
timal test set-up. In this dynamic application, the transponder was
never read only from one side. Capable transponders (A, B3-4, B4-4
and B5) were sometimes even read on the opposite sides of the test
bench. Consequently, readings from other orientations counted
regarding the intended orientation observed. The transmitting
power of the reader should be reduced to minimise the number
of unwanted readings from other orientations. However, in that
case, only transponders with the same read range could be tested,
otherwise the poorer performing transponders could no longer be
read. Alternatively, the test bench would have to be rebuilt in such
way that the transponder could be lead behind the reader and,
therefore, behind the reading field, on three sides of the test bench.
Furthermore, it cannot be ruled out that parts of the test bench,
such as the V-belt and the frame, had an influence on the antenna
field of the ear tags so that the measurements could not fit the
simulation. The suitability of dynamic applications and, thus, the
dynamic test bench to examine differences in transponder orienta-
tions should be rethought.

McCarthy et al. (2009) also determined large differences in the
number of UHF transponders detected by varying the orientation
of the transponders and polarisation of the reader antenna. In this
case, the bottom longitudinal-oriented, bottom transversal-orient-
ed and top transversal-oriented transponders (oriented along the
y-axis) were most frequently detected, regardless of whether the
linear or circular polarisation of the reader antenna was used
(McCarthy et al., 2009). Wehking et al. (2007) also detected differ-
ences in the reading rates while testing various UHF transponder
orientations. They arrived at the result that the transponders
attached to the long side of a box were read to 100%, whereas
the reading rates from the transponders on the front of the box
remained below that percentage. An orientation of 45� between
antenna and transponder (conveyor) was seen as the best because
of the radiation vector of the reader antenna (Wehking et al., 2007).

Both LF and HF systems showed differences in the reading rates
depending on the orientation of the transponder. Barge et al.
(2013) examined the orientations of HDX and FDX LF transponders.
They also ascertained that the parallel, perpendicular and coil
plane orientations towards the centre of the reader antenna had
high differences in the detection zone of the reader. In this experi-
ment, four antenna types and six transponder types were used
(Barge et al., 2013). Some experiments with LF ear tags in seven
orientations were also carried out by Burose et al. (2010). They
compared an LF transponder with ISO standard and a prototype
LF transponder which worked with an anti-collision algorithm.
Orientation 1 (horizontal, with the coil plane oriented towards
the reader) was detected as the worst orientation, while 6 and 7
(holder rotated by 135� and 180�, transponder vertical and longitu-
dinal to the driving direction) were detected as the best orienta-
tions. Here, the transponder type did not matter. Fröhlich et al.
(2007) examined similar tests with HF transponders. They defined
two orientations (0� = transponder antenna and reader antenna are
orientation to the reader.

n

4 5 6
(top side) (front side) (back side)

22.06c 19.06c 18.18c 35
26.28b 25.98b 22.82c 35
28.42bc 26.12c 26.94c 35
26.92b 25.80b 25.30b 35

0.00b 0.10b 3.28ab 35

sed; n: repetitions; a, b,. . .: different letters within a line indicate that values diverge



Fig. 8. Directivity of the folded dipole antenna of transponder type A (figure: deister electronic GmbH, CST Microwave Studio�).

Fig. 9. Directivity of the PIF antenna of transponder types B3-4, B4-4 and B5 (figure: deister electronic GmbH, CST Microwave Studio�).

Fig. 10. Directivity of the PIF antenna of transponder type C2 (figure: deister electronic GmbH, CST Microwave Studio�).
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Fig. 11. Test of statistical significance of the average of readings per round (ARR) in terms of the different transponder types. Depending on the experiment, PVC or XPS as a
transponder holder and ‘triggered read’ or ‘presence sensing’ as reader setting was used. All the experiments were performed at 3.0 m s�1. n: repetitions, a, b: different letters
indicate that values diverge significantly (P < 0.05).
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parallel; 90� = antennas are perpendicular) on a dynamic test
bench. In this experiment, the 0� orientation achieved a greater
reading range. As could be seen here, the orientation of a transpon-
der in a reading field had a big influence on whether the transpon-
der could be read or not, no matter which frequency band was
used. Generally, it can be stated that transponders which show
fewer differences in the ARR between the orientations are more
suitable for practical use on farms than other transponders. The
orientation of the transponder ear tag (attached to an animal) to
the reader cannot normally be influenced. A transponder which
can be read from many sides ensures a good readability in the barn
and will vary due to the movement of the animal shaking its ears.
3.6. Differences between transponder types

The main aim of this test bench was to select the best transpon-
der ear tag for practical use under various conditions. Against this
background, fourteen different transponder types were tested.
Fig. 11 shows the results and significant differences between these
transponder types. The second generation of types B3 and B4 (B3-
3, B4-4) and B5 achieved the best results and highest ARRs. These
three types were grouted into a commercial cattle ear tag and
showed their potential for practical use in cattle production. Type
A was declared as the second best. This type was the commercially
available transponder glued to a plastic ear tag, which was used for
comparative purposes. The third best results and AARs were
achieved by the commercial transponder ear tag ZT.

Surprisingly, ZT did not show equivalent results to type A, even
though it was the same transponder, albeit not glued on but
embedded in an air-filled pocket of a cattle ear tag. The reason
for that was probably the absorption of the electromagnetic radia-
tion and a shift in the resonance frequency of the transponder
through the surrounding plastic of the ear tag. Nevertheless, this
type is the right size for cattle and showed good performance.
However, the practical use might be problematic. The transponder
was embedded in an air-filled pocket between two plastic tabs.
Moisture and gases could penetrate and corrode or even destroy
the transponder within the ear tag. The first generation of the B3
and B4 transponders designed in-house have already shown good
results in some pretests with cattle, which was the reason for
developing a second, improved generation. The higher ARRs of
the second generation (B3-4, B4-4) were the result of a different
label material (Kapton�, Polyimide) being used, which was more
resistant during grouting than the aluminium foil of the first
transponder types. Furthermore, the sprue quality of the transpon-
der was improved. However, due to a non-disclosure agreement,
this procedure cannot be specified here. Type B1 and B2 did not
show satisfactory results for their size. The transponder size of the-
se two types matched the size of the types B3-4, B4-4 and B5.
Higher ARRs are possible for such transponders, as was shown.
These two types will not be considered in further developments.

The pig-sized transponder types A1, C0, C1 and C2 can also be
rejected. These types would not serve their purpose in practical
use either. Transponder type A1 did not perform well despite the
fact that its antenna design was similar to type A. In the group of
the small transponders, C1-4 showed the highest ARRs. This type
also benefited from the better label material. That transponder size
could be used in pig husbandry after further development. Howev-
er, a UHF antenna fitting in a pig ear tag would not reach the read-
ing distance and ARR of a larger transponder. The larger the size of
a transponder, the farther the reading distance is (Catarinucci et al.,
2012).

Derbek et al. (2007) compared a UHF transponder with dipole
antenna and a UHF transponder with an omnidirectional antenna.
They arrived at the result that these transponders differed in their
sensitivity. Lorenzo et al. (2011) analysed the return loss and gain,
radiation pattern, relative permittivity and read range of a UHF
transponder with dipole antenna and slot antenna. The differences
between the performance of the transponders in free air and
attached to wood were also shown. McCarthy et al. (2009) also car-
ried out their experiments with five different UHF transponder
types. They also achieved significant differences between the types
considering distance, speed and reader antenna. Barge et al. (2014)
compared UHF transponders from various manufacturers in terms
of distance between tag and reader antenna with two antenna
polarisations (circular vs. linear). Significant differences between
the UHF transponder types were determined in the experiment.

It can be concluded from all these findings that antenna design
and antenna size are important factors for UHF transponder perfor-
mance. It also can be concluded from the dynamic tests that the
transponder label material and the resulting manufacturing quality
of the ear tag also have a major influence on the transponder
performance.
4. Conclusions

It was demonstrated in the experiments that the methodology
of the dynamic test bench can be used to show differences between
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transponder types. Their behaviour in terms of various speeds,
transponder holder materials, reader settings and number of
rounds could be reliably determined. All of these results were
repeatable. Only the transponder orientations did not always
match the directivity of the different antenna structures. Here,
the test bench needs to be adapted for further experiments. The
comparison of the fourteen different transponder ear tags could
demonstrate the one most suitable for either cattle or pigs. Because
of the good repeatability of the results, it is sufficient for this pur-
pose to use the dynamic test bench, and we did not see the need to
do all the tests in an anechoic chamber.
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