were however not considered to be able to replace CE except for MFA (14% reported that it could replace CE versus 0% for the others). In countries where CE is not formally used, the proportion of experts considering them as relevant was lower except for the BOM: Rol (46%), MCDA (46%), QoC (18%), BOM (60%) and MEA (33%). Most reported barriers for use of the alternative methods were: no political interest, unfamiliarity with these methods, lack of time, insufficient data to conduct the evaluation. The method selection was most influenced by the appropriateness to the decision-making question, the country, and the vaccine or disease type assessed.

The main economic methods used in national economic evaluations models may support and facilitate the vaccine reimbursement decision-making process in Europe alongside the current CE analysis.

PIN69

ALLOCATING VACCINE FUNDS FOR PNEUMOCOCCAL VACCINATION OF INFANTS AND OLDER ADULTS: A METHOD FOR STRATEGIC EVALUATION IN THE NETHERLANDS

Delgleize E, Standaert B

GlaxoSmithKline Vaccines, Wavre, Belgium

OBJECTIVES: Pneumococcal conjugate vaccines are available in the Netherlands against pneumococcal disease in infants and adults. This analysis aimed to identify an optimal vaccination strategy between infants and adults when the budget is constrained. Extensive sensitivity analysis is performed around herd protection on Invasive Pneumococcal Disease (IPD) and Community Acquired Pneumonia (CAP) resulting from infant vaccination. METHODS: We developed an optimization model linked to a prevalence-based disease management sub-model. This program allows finding an optimal solution given an objective function (minimize costs, minimize quality-adjusted life-years (QALYs) lost, minimize life-years (LYs) lost) under budget constraints. Vaccine efficacy (VE) is based on clinical trial data. The model is run for different scenarios seeking for minimum indirect effect on IPD and on CAP in the whole population in order to keep optimal protection given a constrained budget. RESULTS: With the current disease burden and vaccine coverage rate in the Netherlands and considering an overall VE in adults against CAP of 35% (95% CI: 27-44%) and 78% (95% CI: 69-86%) for IPD and 78% (95% CI: 68-86%) for CAP respectively, the model shows that vaccinating infants is the optimal strategy that minimizes pneumococcal-related events when compared with adult vaccination. If the objective is to minimize QALYs lost, vaccinating infants remains the optimal selection as long as the minimum indirect effect is ≥3% on IPD and ≥2% on CAP. On IFP. Sensitivity analyses show that even if CAP VE in adults is 3 times higher, the estimated minimum indirect effect needed is still below the one obtained with the first pneumococcal conjugate vaccine. CONCLUSIONS: The optimal strategy within a constrained budget is to maintain infant vaccination instead of initiating elderly vaccination, given the reported evidence of indirect protection.

PIN70

COST-EFFECTIVENESS ANALYSIS OF A SHINGLES VACCINATION PROGRAM TO PREVENT HERPES ZOSTER AND POST-HERPETIC NEURALGIA IN THE SPANISH SETTING

Álvarez Pasquini M1, Cisterna R2, Gil de Miguel A1, López-Belmonte H1, Préaud E1, Tjoa A4

1Centro de Salud Santa Hortensia, Madrid, Spain, 2Bassat Hospital, Bilbao, Spain, 3Universidad Rey Juan Carlos, Alcorcon, Spain, 4Sanofi Pasteur MSD Spain, Madrid, Spain, 5Sanofi Pasteur MSD, Lyon, France

OBJECTIVES: A live-attenuated vaccine aimed at preventing herpes zoster (H2) and post-herpetic neuralgia (PHN) is available in Europe for immunocompetent adults aged ≥50 years. The study objective is to assess the incremental cost-effectiveness ratio (ICER) of a vaccination program for HZ and PHN prevention in Spain when compared with standard of care in the Netherlands. METHODS: A state-transition Markov model has been developed to simulate the natural history of HZ and PHN and the lifetime effects of vaccination. Several health states are defined including good health, HZ, PHN and death. HZ and PHN health states are divided to reflect the lifetime duration (waning rate of 8.3%) and a PHN vaccine duration of 10 years. PHN associated with a nerve distribution (N) was modeled with a payer perspective, both at current and parity prices. The model simulated vaccine protection against both pneumococcal diseases (invasive, CAP) and acute otitis media (AOM). In the model, we followed the cohort of 21,938 Slovenian infants over their lifetime and compared two pneumococcal vaccine scenarios (PCV-13 and Haemophilus influenzae (NTHi). We performed one-way sensitivity analyses, including probabilistic Monte Carlo simulations under third-party payer perspective). RESULTS: A676

The result-