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Ž .We show that convergence of x t as t ª ` may be deduced from the limiting
Ž .behavior of certain functions involving x t and its Cesaro averages. Dynamical`

systems methods are used to derive this ‘‘Mercerian-type’’ result. Q 1999 Academic

Press

w .We consider averages of a continuous function x: 0, ` ª R. Let f :
w . w .0, ` ª 0, ` be continuous and strictly increasing to infinity. The Cesaro`
averages of x with respect to f are defined by

1 t
y t s x u df u t ) 0 1Ž . Ž . Ž . Ž . Ž .H

f tŽ . 0

Ž . wso that y: 0, ` ª R is also continuous. In the most common case
Ž . Ž . y1 t Ž . xf t s t, so y t s t H x u du. We are interested in the relationship0

Ž . Ž .between the limiting behavior of x t and y t as t ª `. The basic
Ž . Ž .‘‘Abelian’’ result, that if x t ª c for some c g R then y t ª c, is easy to

verify. The direct converse is false, but there is a well-known theorem of
w x w x Ž . Ž .‘‘Tauberian’’ type, see 1 , 4 , that y t ª c implies x t ª c provided

that x satisfies a Tauberian condition:

lim lim inf inf x u y x t G 0. 2Ž . Ž . Ž .
y1lo1 tª` Ž Ž ..tFuFf lf t

The classical ‘‘Mercerian’’ theorem states that if, for some 0 - l - 1,
Ž . Ž . Ž . Ž .the linear combination l x t q 1 y l y t ª c, then x t ª c without

any additional condition. This theorem has given rise to many other results
w x w x w x w xof similar character, such as in 1 , 2 , 5 , 6 . However, these are linear
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Mercerian theorems, which have as hypotheses a linear relationship be-
tween x and its image under some linear transformation.

Here we consider nonlinear analogues. We use a dynamical systems
Ž .method to show that the convergence of almost any function of x t and

Ž . Ž .y t is enough to imply convergence of x t . For example, our theorem
Ž .3 Ž .2 Ž .shows that if x t y y t ª 4 then x t ª 2. A specific instance of the

theorem has applications to fractal dimensions and Minkowski measurabil-
w xity, see 3 .

Ž .Comparing 1 at t and t gives, for t ) t,1 1

1 1t t1y t y y t s x u df u q x u df u y y tŽ . Ž . Ž . Ž . Ž . Ž . Ž .H H1 f t f tŽ . Ž .t 01 1

1 f t y f tŽ . Ž .t 11s x u df u q y tŽ . Ž . Ž .H ž /f t f tŽ . Ž .t1 1

1 t1s x u y y t df u . 3Ž . Ž . Ž . Ž .H
f tŽ . t1

w Ž .Note that if f is absolutely continuous then differentiating 1 gives
Ž .X Xf y s f x so

fX tŽ .
Xy t s x t y y t ; 4Ž . Ž . Ž . Ž .Ž .

f tŽ .

Ž . xhowever, using 3 avoids the requirement of absolute continuity. In
Ž . Ž . Ž . Ž . Ž .particular, if x t ) y t then y t is increasing at t and if x t - y t then

Ž . Ž . Ž Ž . Ž ..y t is decreasing at t. We think of x t s x t , y t as the position at
Ž .time t of a point moving in the x]y plane, so this means that when x t is

�Ž . 4above the diagonal line D s x, x : x g R it is moving downwards and
Ž .when x t is below D it is moving upwards, an observation crucial to our

approach.
Ž .A further useful consequence of 3 is that, if there exists t ) 0 and0

e ) 0 such that

x t y y t G e for all t G t , 5Ž . Ž . Ž .0

Ž . Ž . Ž .then y t must be unbounded. To see this assume that x t y y t G e for
1 1Ž .t G t . Then 3 , together with the inequality 1 y x G y log x for F x0 2 2
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F 1, implies that

f t y f t e e f tŽ . Ž . Ž .Ž .1
y t y y t G s 1 yŽ . Ž .1 ž /2f t 2 f tŽ . Ž .1 1

e
G log f t y log f t 6Ž . Ž . Ž .Ž .14

for t G t G t with t sufficiently close to t. Using compactness and1 0 1
Ž .summing over sufficiently small intervals gives 6 for all t G t G t . A1 0

Ž . Ž .similar argument applies if x t y y t F ye for t G t .0
Ž .We will assume a limiting relationship as t ª ` between x t and its

Ž . 2average y t given in terms of a continuous function F: R ª R. We will
require that F satisfies a condition at the points of intersection of the

y1Ž . �Ž . Ž . 4diagonal D and a level set F c s x, y : F x, y s c . We say that F
Ž . 2 Ž .is good at x s x , y g R if, given F x s c, there is a neighborhood0 0 0 0

y1Ž .of x in which the level set F c is a continuously differentiable curve0
Ž . Ž . w Ž .with slope l x at x with l x / 0. We allow l x s ` corresponding0 0 0 0

xto a vertical tangent.
By the implicit function theorem, a continuously differentiable function

Ž .F is good at x if  F x r x / 0, so ‘‘almost all’’ continuously differen-0 0
tiable functions are good at any given finite set of points. Thus a great
many functions F satisfy the requirements of the following theorem.

THEOREM. Let F: R2 ª R be continuous, let c be a real number such
y1Ž . Ž .that F c l D is finite with F x, x bounded away from c as x ª "`, and

y1Ž . w .assume that F is good at all x g F c l D. Let x: 0, ` ª R be0
Ž .continuous and let y be defined by 1 . If

F x t , y t ª c as t ª ` 7Ž . Ž . Ž .Ž .

then either

Ž . Ž . Ž . Ž .a for all sufficiently large t we ha¨e either x t G y t ª ` or x t F
Ž .y t ª y`, or

Ž . Ž . Ž .b x t ª x as t ª ` for some x g R satisfying F x , x s c.0 0 0 0

Ž .Note that in many situations, part a of the conclusion may be excluded
Ž .by examining F or x t .

Ž . Ž Ž . Ž ..To prove the theorem we regard x t s x t , y t as a nonautonomous
dynamical system in the plane with t as time. We first prove a lemma

Ž . y1Ž .which describes the trajectories x t near good points of F c l D.
There are essentially different cases depending on the local form of

y1Ž . Ž .F c near the good point x s x , x ; these are illustrated in Fig. 1.0 0 0
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FIG. 1. The neighborhood N of x in the three cases. The arrows indicate the vertical0
Ž .component of motion of the trajectory x t .



K. J. FALCONER444

y �Ž . 2 4 q �Ž . 2 4We write D s x, y g R : x ) y and D s x, y g R : x - y for
the open half-spaces below and above the diagonal D. Similarly, we write
L for the horizontal line with equation x s a and Ly and Lq for thea a a
open half-spaces below and above L .a

Ž . y1Ž . y y q qCase a : At x the curve F c crosses D from D l L to D l L .0 x x0 0

Ž . Ž .This always occurs if 1 - l x F ` or y` - l x - 0 and may occur if0 0
Ž .l x s 1. Intuitively, the lemma shows in this case that x is ‘‘stable’’ in0 0

Ž .the sense that if x t is close to x at a sufficiently large t then the0
trajectory remains close to x for all subsequent t.0

Ž . y1Ž . q y y qCase b : At x the curve F c crosses D from D l L to D l L .0 x x0 0

Ž . Ž .This always occurs if 0 - l x - 1 and may occur if l x s 1. In this0 0
Ž .case the lemma implies that either x t approaches x fairly rapidly or0

eventually moves away from x for good.0
Ž . y1Ž .Case c : At x the curve F c touches D but does not cross D. This0

Ž . Ž .requires l x s 1. Here the lemma implies that when t is large x t0
always approaches and departs from near x on the same side of D.0

Ž . y1Ž .LEMMA. Suppose 7 holds for some c g R. Let x g F c l D and0
suppose that F is good at x . Then there is a base of closed neighborhoods NN0
of x as follows:0

Ž .In Case a : for all N g NN there exists t ) 0 such that if t G t andN 1 N
Ž . Ž .x t g N then x t g N for all t G t .1 1

Ž .In Case b : for all N g NN there exists t ) 0 such that if t G t andN 1 N
Ž . Ž .x t f N then x t f N for all t G t .1 1

Ž .In Case c : for all N g NN there exists t ) 0 and d ) 0 such that eitherN N
Ž .e¨ery entry of the trajectory x t to N after time t is across D l L andN y x yd0 N

Ž .e¨ery exit from N is across D l L , or e¨ery entry of the trajectory x ty x qd0 N

to N after time t is across D l L and e¨ery exit from N is acrossN q x qd0 N

D l L .y x yd0 N

y1Ž .Proof of Lemma. Write F c for the closed e-neighborhood ofe
y1Ž .F c , that is the union of all closed discs of radius e with centres in
y1Ž . �Ž .F c . Let S denote the closed horizontal strip x, y : x y d F y Fx , d 00

4x q d . The required neighborhoods of x will be the connected compo-0 0
y1Ž .nents of F c l S that contain x , where d is sufficiently small ande x , d 00

Ž .e s e d is chosen suitably. Thus the neighborhoods will be narrow
y1Ž .‘‘bands’’ around part of F c through x .0
Ž . y1Ž .Since F is good at x s x , x , the slope of F c near x is nonzero,0 0 0 0

so by choosing appropriate d and h sufficiently small, there are coordi-0 0
w x w x Xnate rectangles R s x y h , x q h = x y d , x q d and R s0 0 0 0 0 0 0 0

1 1 y1w x w x Ž .x q h , x q h = x y d , x q d in which F c is of the fol-0 0 0 0 0 0 0 03 3
y1Ž .lowing form: the set F c l R has a single connected component which
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is a differentiable curve crossing R from bottom to top, with slope
y1Ž . X y1Ž .bounded away from 0, with F c l R ; R , and such that F c l D

l R is the single point x .0
1 y1Ž .Thus for all 0 - d F d the set F c l R intersects each of the lines02

X y1Ž .L and L at a single point inside R that is not on D. With F cx yd x qd e0 0
1 1y1Ž . Ž . � 4as the e-neighborhood of F c , we choose e s e d - min d , h0 02 3

y1Ž . Y y1Ž . Ysufficiently small to ensure that F c l R l L and F c l Re x yd e0

l L are closed subintervals of L and L , respectively, whichx qd x yd x qd0 0 0
Y 2 2w x wdo not intersect D, where R s x y h , x q h = x y d ,0 0 0 0 0 03 3

xx q d .0 0
1 Yy1Ž . Ž .For each such d F d we set N s N d s F c l R l S , where0 e x , d2 0

�Ž . 4S is the strip x, y : x y d F y F x q d . Thus N has the form of ax , d 0 00 y1Ž . y1Ž . Y‘band’ about F c l R l S stretching from its floor F c l R lx , d e0y1Ž . YL to its ceiling F c l R l L . In fact N is the connectedx yd e x qd0 0y1Ž .component of F c l S containing x .e x , d 00

� Ž .4We take NN to be the collection of all neighborhoods N d constructed
1in this way for 0 - d F d . For N g NN we write d for the value of d0 N2

Ž .such that N s N d .N
Ž .Using 7 and the compactness of R, we may choose t such that for allN

Ž . Ž . y1Ž . w Ž .xt G t for which x t g R we have x t g F c where e s e d . InN e N
Ž .particular, if the trajectory x t enters or leaves N at time t G t it mustN

do so by crossing either the floor or ceiling of N.
We use this fact to check that these basic neighborhoods N of x satisfy0

the conclusion of the lemma in each of the three cases.
Ž . Ž . Ž .Case a : If N g NN and x t g N for some t G t , the trajectory x t1 1 N

cannot enter N without crossing its floor in an downward direction or its
ceiling in a upward direction, which is impossible, since the floor is in Dy

q Ž . Ž .and the ceiling is in D , see Fig. 1 a . We conclude that x t remains in N
for all t G t .1

Ž . Ž . Ž .Case b : If N g NN and x t f N where t G t , the trajectory x t1 1 N

cannot enter N without crossing its floor in an upward direction or its
ceiling in a downward direction, which is impossible, since the floor is in

q y Ž . Ž .D and the ceiling is in D , see Fig. 1 b . We conclude that x t f N for
all t G t .1

Ž . y1Ž .Case c : If the curve F c lies in D near x , then for all N g NN they 0
floor of N is a subinterval of D l L and the ceiling of N is ay x yd0

subinterval of D l L and the conclusion follows. Similarly, if they x qd0 Ny1Ž .curve F c lies in D near x , we reach the alternative conclusion.q 0

Ž .Proof of Theorem. We split the proof into two cases: when y t is
Ž .eventually monotonic and when y t is oscillatory.
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Ž . Ž . Ž Ž . Ž ..Case i . There exists t such that x t s x t , y t does not strictly1
Ž . Ž .cross the diagonal line D for t G t . By the remark after 3 , y t is1

Ž .monotonic for t G t . For such t, if y t is unbounded and increasing then1
Ž Ž . Ž .. Ž . Ž . Ž .x t , y t is below D, so x t G y t ª `. Similarly if y t is unbounded

Ž . Ž .and eventually decreasing then x t F y t ª y`, leading to conclusion
Ž .a of the theorem.

Ž . Ž .If y t is bounded, there exists x g R such that y t ª x as t ª `.0 0
Ž .We claim that F x , x s c. Assume not: by continuity of F there exist0 0

d ) 0 and a coordinate square S with side length 4e ) 0 and center
Ž . < Ž . < Ž . Ž .x , x , such that F x, y y c G d ) 0 for all x, y g S, so by 7 there0 0

Ž Ž . Ž .. Ž .exists t G t such that x t , y t f S for all t G t . Since y t ª x this2 1 2 0
< Ž . <would require that, for all sufficiently large t, we have x t y x G 2e0

< Ž . Ž . < Ž .and thus x t y y t G e , which by the remark at 5 would contradict the
Ž .boundedness of y t .

Ž . Ž . Ž Ž . .Thus for some x with F x , x sc, we have y t ªx , so dist x t , L0 0 0 0 x 0

ª 0 where L is the horizontal line y s x . Since F is good at x sx 0 00
Ž . y1Ž .x , x g D, the point x is an isolated point of L l F c . Since0 0 0 x 0
Ž Ž . Ž .. Ž . < Ž . <F x t , y t ª c, either x t ª x or lim inf x t y x ) 0, an alter-0 t ª` 0

Ž .native which is again disallowed by 5 .
Ž . Ž . Ž Ž . Ž ..Case ii . The point x t s x t , y t goes strictly above D and also

strictly below D for arbitrarily large t. Write S for the set of limit points of
Ž .x t on D, that is

S s x g D : there exists t p ` with x t ª x .� 4Ž .i i

Ž Ž .. Ž .Since F x t ª c and F x, x is bounded away from c for large x, we
y1Ž . Ž .have S ; F c l D, so S is nonempty and by hypothesis is finite.

Ž . Ž .By hypothesis, F is good at all x s x , x g S. Suppose case a0 0 0
pertains at some x g S and let NN be the base of neighborhoods of x0 0

Ž .given by the lemma. For all N g NN we have x t g N for arbitrarily large t
Ž .and so, by case a of the lemma, for all sufficiently large t. Thus

Ž . Ž .x t ª x , giving x t ª x .0 0
Ž .Now suppose case b applies at some x g S and let NN be the base of0

Ž .neighborhoods of x given by the lemma. If x t ¢ x then there exists0 0
Ž . Ž .N g NN such that x t f N for arbitrarily large t and so, by case b of the

lemma, for all sufficiently large t, contradicting that x is a limit point of0
Ž . Ž . Ž .x t . Thus again x t ª x and x t ª x .0 0

Ž . � 4Otherwise, case c pertains to all the points S. Let S s x , . . . , x , and1 n
for each i s 1, . . . , n let N be a basic neighborhood of x as given by thei i

Ž .lemma, satisfying case c of the conclusion. We may choose these neigh-
borhoods small enough to have pairwise disjoint projections onto the

Ž . � 4y-axis. Using 7 there is a time t G max t such that, if t G t ,0 is1, . . . , n N 0i
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Ž . n Ž .the trajectory x t cannot cross D outside D N . Moreover, by case cis1 i
Ž .of the lemma, x t enters and leaves each N on the same side of D. Thusi

Ž . Ž . ny t is monotonic for all t G t such that x t f D N . In particular0 is1 i
Ž .there exists some integer i and time t G t such that x t g N for all1 0 i

Ž .t G t , so in fact S consists of a single point, x s x , x say, at which1 0 0 0
Ž .case c holds.

Let N be a member of the base of neighborhoods NN of x given by the0
Ž . Ž .lemma. Again by 7 there exists t G t such that x t does not cross D2 N

Ž .outside N when t G t , and therefore y t is monotonic outside N. Thus,2
Ž . Ž .by case c of the lemma, if x t leaves N after time t it cannot re-enter2

N, contradicting that x g S. We conclude that for all N g NN we have0
Ž . Ž . Ž .x t g N for all sufficiently large t, so x t ª x and x t ª x .0 0

Note that some condition on F on the diagonal D is necessary for the
y1Ž .validity of the theorem. For example, if F c has horizontal tangents at

Ž .points on D then x t could be asymptotic to a loop stradling the diagonal
Ž . y1Ž .D. In particular the result fails if F x, y s y when F c s L ; thec

Ž . Ž .hypothesis 7 reduces to y t ª c and we are back with the Tauberian
Ž . Ž .situation, requiring a condition such as 2 for the convergence of x t .

y1Ž . Ž .Similarly, if F c l D contains an interval then the limit set of x t
Žcould be a subinterval of D. Some results related to the case where

Ž . Ž . w x .y t rx t ; c are discussed in 1, Chapt. 5 .
The conditions on F can certainly be weakened or varied. For instance

y1Ž . Ž .if F c l D contains a single point x , x and the horizontal line L0 0 x 0

w x w xcontains no interval of the form x y d , x or x , x q d for all d ) 0,0 0 0 0
Ž . w Ž .xthen the same conclusion follows. If it is known that x t and thus y t is

y1Ž . Ž .bounded then the requirements that F c l D is finite and that F x, x
is bounded away from c for large x may be dropped, since we may work in

y1Ž .a bounded region of the plane with the local finiteness of F c l D
y1Ž .following from the goodness of F at all x g F c l D.0

The theorem may be used to deduce other asymptotic behavior of
Ž . aq1functions. For example, taking a ) y1 and setting f t s t and

Ž . Ž . a Ž .f t s x t t , hypothesis 7 becomes

tya yay1F f t t , a q 1 t f u du ª c. 8Ž . Ž . Ž . Ž .Hž /0

Provided F satisfies the conditions of the theorem, we may conclude that
Ž . Ž . yaif f is continuous and satisfies 8 then f t t converges to y`, to ` or

Ž .to some x satisfying F x , x s c.0 0 0
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