A Nonlinear M ercerian Theorem

K.J. Falconer
Mathematical Institute, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16955 United Kingdom
Submitted by Joseph D. Ward

R eceived July 15, 1998

Abstract

We show that convergence of $x(t)$ as $t \rightarrow \infty$ may be deduced from the limiting behavior of certain functions involving $x(t)$ and its Cesàro averages. Dynamical systems methods are used to derive this "M ercerian-type" result. © 1999 A cademic Press

We consider averages of a continuous function $x:[0, \infty) \rightarrow \mathbb{R}$. Let ϕ : $[0, \infty) \rightarrow[0, \infty)$ be continuous and strictly increasing to infinity. The Cesàro averages of x with respect to ϕ are defined by

$$
\begin{equation*}
y(t)=\frac{1}{\phi(t)} \int_{0}^{t} x(u) d \phi(u) \quad(t>0) \tag{1}
\end{equation*}
$$

so that $y:(0, \infty) \rightarrow \mathbb{R}$ is also continuous. [In the most common case $\phi(t)=t$, so $y(t)=t^{-1} \int_{0}^{t} x(u) d u$.] We are interested in the relationship between the limiting behavior of $x(t)$ and $y(t)$ as $t \rightarrow \infty$. The basic "A belian" result, that if $x(t) \rightarrow c$ for some $c \in \mathbb{R}$ then $y(t) \rightarrow c$, is easy to verify. The direct converse is false, but there is a well-known theorem of "Tauberian" type, see [1], [4], that $y(t) \rightarrow c$ implies $x(t) \rightarrow c$ provided that x satisfies a Tauberian condition:

$$
\begin{equation*}
\lim _{\lambda>1} \liminf _{t \rightarrow \infty} \inf _{t \leq u \leq \phi^{-1}(\lambda \phi(t))}[x(u)-x(t)] \geq 0 . \tag{2}
\end{equation*}
$$

The classical "M ercerian" theorem states that if, for some $0<\lambda<1$, the linear combination $\lambda x(t)+(1-\lambda) y(t) \rightarrow c$, then $x(t) \rightarrow c$ without any additional condition. This theorem has given rise to many other results of similar character, such as in [1], [2], [5], [6]. However, these are linear

M ercerian theorems, which have as hypotheses a linear relationship between x and its image under some linear transformation.

Here we consider nonlinear analogues. We use a dynamical systems method to show that the convergence of almost any function of $x(t)$ and $y(t)$ is enough to imply convergence of $x(t)$. For example, our theorem shows that if $x(t)^{3}-y(t)^{2} \rightarrow 4$ then $x(t) \rightarrow 2$. A specific instance of the theorem has applications to fractal dimensions and M inkowski measurability, see [3].

Comparing (1) at t_{1} and t gives, for $t_{1}>t$,

$$
\begin{align*}
y\left(t_{1}\right)-y(t) & =\frac{1}{\phi\left(t_{1}\right)} \int_{t}^{t_{1}} x(u) d \phi(u)+\frac{1}{\phi\left(t_{1}\right)} \int_{0}^{t} x(u) d \phi(u)-y(t) \\
& =\frac{1}{\phi\left(t_{1}\right)} \int_{t}^{t_{1}} x(u) d \phi(u)+y(t)\left(\frac{\phi(t)-\phi\left(t_{1}\right)}{\phi\left(t_{1}\right)}\right) \\
& =\frac{1}{\phi\left(t_{1}\right)} \int_{t}^{t_{1}}[x(u)-y(t)] d \phi(u) . \tag{3}
\end{align*}
$$

[Note that if ϕ is absolutely continuous then differentiating (1) gives $(\phi y)^{\prime}=\phi^{\prime} x$ so

$$
\begin{equation*}
y^{\prime}(t)=\frac{\phi^{\prime}(t)}{\phi(t)}(x(t)-y(t)) ; \tag{4}
\end{equation*}
$$

however, using (3) avoids the requirement of absolute continuity.] In particular, if $x(t)>y(t)$ then $y(t)$ is increasing at t and if $x(t)<y(t)$ then $y(t)$ is decreasing at t. We think of $\mathbf{x}(t)=(x(t), y(t))$ as the position at time t of a point moving in the $x-y$ plane, so this means that when $\mathbf{x}(t)$ is above the diagonal line $D=\{(x, x): x \in \mathbb{R}\}$ it is moving downwards and when $\mathbf{x}(t)$ is below D it is moving upwards, an observation crucial to our approach.

A further useful consequence of (3) is that, if there exists $t_{0}>0$ and $\epsilon>0$ such that

$$
\begin{equation*}
|x(t)-y(t)| \geq \epsilon \quad \text { for all } t \geq t_{0} \tag{5}
\end{equation*}
$$

then $y(t)$ must be unbounded. To see this assume that $x(t)-y(t) \geq \epsilon$ for $t \geq t_{0}$. Then (3), together with the inequality $1-x \geq-\frac{1}{2} \log x$ for $\frac{1}{2} \leq x$
≤ 1, implies that

$$
\begin{align*}
y\left(t_{1}\right)-y(t) & \geq \frac{\left(\phi\left(t_{1}\right)-\phi(t)\right) \epsilon}{2 \phi\left(t_{1}\right)}=\frac{\epsilon}{2}\left(1-\frac{\phi(t)}{\phi\left(t_{1}\right)}\right) \\
& \geq \frac{\epsilon}{4}\left(\log \phi\left(t_{1}\right)-\log \phi(t)\right) \tag{6}
\end{align*}
$$

for $t_{1} \geq t \geq t_{0}$ with t_{1} sufficiently close to t. Using compactness and summing over sufficiently small intervals gives (6) for all $t_{1} \geq t \geq t_{0}$. A similar argument applies if $x(t)-y(t) \leq-\epsilon$ for $t \geq t_{0}$.

We will assume a limiting relationship as $t \rightarrow \infty$ between $x(t)$ and its average $y(t)$ given in terms of a continuous function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$. We will require that F satisfies a condition at the points of intersection of the diagonal D and a level set $F^{-1}(c)=\{(x, y): F(x, y)=c\}$. We say that F is good at $\mathbf{x}_{0}=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ if, given $F\left(\mathbf{x}_{0}\right)=c$, there is a neighborhood of \mathbf{x}_{0} in which the level set $F^{-1}(c)$ is a continuously differentiable curve with slope $\lambda\left(\mathbf{x}_{0}\right)$ at \mathbf{x}_{0} with $\lambda\left(\mathbf{x}_{0}\right) \neq 0$. [We allow $\lambda\left(\mathbf{x}_{0}\right)=\infty$ corresponding to a vertical tangent.]

By the implicit function theorem, a continuously differentiable function F is good at \mathbf{x}_{0} if $\partial F\left(\mathbf{x}_{0}\right) / \partial x \neq 0$, so "almost all" continuously differentiable functions are good at any given finite set of points. Thus a great many functions F satisfy the requirements of the following theorem.
Theorem. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous, let c be a real number such that $F^{-1}(c) \cap D$ is finite with $F(x, x)$ bounded away from c as $x \rightarrow \pm \infty$, and assume that F is good at all $\mathbf{x}_{0} \in F^{-1}(c) \cap D$. Let $x:[0, \infty) \rightarrow \mathbb{R}$ be continuous and let y be defined by (1). If

$$
\begin{equation*}
F(x(t), y(t)) \rightarrow c \quad \text { as } t \rightarrow \infty \tag{7}
\end{equation*}
$$

then either
(a) for all sufficiently large t we have either $x(t) \geq y(t) \rightarrow \infty$ or $x(t) \leq$ $y(t) \rightarrow-\infty$, or
(b) $\quad x(t) \rightarrow x_{0}$ as $t \rightarrow \infty$ for some $x_{0} \in \mathbb{R}$ satisfying $F\left(x_{0}, x_{0}\right)=c$.

N ote that in many situations, part (a) of the conclusion may be excluded by examining F or $x(t)$.
To prove the theorem we regard $\mathbf{x}(t)=(x(t), y(t))$ as a nonautonomous dynamical system in the plane with t as time. We first prove a lemma which describes the trajectories $\mathbf{x}(t)$ near good points of $F^{-1}(c) \cap D$. There are essentially different cases depending on the local form of $F^{-1}(c)$ near the good point $\mathbf{x}_{0}=\left(x_{0}, x_{0}\right)$; these are illustrated in Fig. 1.

Case (a)

Case (c)
FIG. 1. The neighborhood N of \mathbf{x}_{0} in the three cases. The arrows indicate the vertical component of motion of the trajectory $\mathbf{x}(t)$.

We write $D^{-}=\left\{(x, y) \in \mathbb{R}^{2}: x>y\right\}$ and $D^{+}=\left\{(x, y) \in \mathbb{R}^{2}: x<y\right\}$ for the open half-spaces below and above the diagonal D. Similarly, we write L_{a} for the horizontal line with equation $x=a$ and L_{a}^{-}and L_{a}^{+}for the open half-spaces below and above L_{a}.

Case (a): At \mathbf{x}_{0} the curve $F^{-1}(c)$ crosses D from $D^{-} \cap L_{x_{0}}^{-}$to $D^{+} \cap L_{x_{0}}^{+}$. This always occurs if $1<\lambda\left(\mathbf{x}_{0}\right) \leq \infty$ or $-\infty<\lambda\left(\mathbf{x}_{0}\right)<0$ and may occur if $\lambda\left(\mathbf{x}_{0}\right)=1$. Intuitively, the lemma shows in this case that \mathbf{x}_{0} is "stable" in the sense that if $\mathbf{x}(t)$ is close to \mathbf{x}_{0} at a sufficiently large t then the trajectory remains close to \mathbf{x}_{0} for all subsequent t.

Case (b): At \mathbf{x}_{0} the curve $F^{-1}(c)$ crosses D from $D^{+} \cap L_{x_{0}}^{-}$to $D^{-} \cap L_{x_{0}}^{+}$. This always occurs if $0<\lambda\left(\mathbf{x}_{0}\right)<1$ and may occur if $\lambda\left(\mathbf{x}_{0}\right)=1$. In this case the lemma implies that either $\mathbf{x}(t)$ approaches \mathbf{x}_{0} fairly rapidly or eventually moves away from \mathbf{x}_{0} for good.

Case (c): At \mathbf{x}_{0} the curve $F^{-1}(c)$ touches D but does not cross D. This requires $\lambda\left(\mathbf{x}_{0}\right)=1$. Here the lemma implies that when t is large $\mathbf{x}(t)$ always approaches and departs from near \mathbf{x}_{0} on the same side of D.

Lemma. Suppose (7) holds for some $c \in \mathbb{R}$. Let $\mathbf{x}_{0} \in F^{-1}(c) \cap D$ and suppose that F is good at \mathbf{x}_{0}. Then there is a base of closed neighborhoods \mathscr{N} of \mathbf{x}_{0} as follows:

In Case (a): for all $N \in \mathscr{N}$ there exists $t_{N}>0$ such that if $t_{1} \geq t_{N}$ and $\mathbf{x}\left(t_{1}\right) \in N$ then $\mathbf{x}(t) \in N$ for all $t \geq t_{1}$.
In Case (b): for all $N \in \mathscr{N}$ there exists $t_{N}>0$ such that if $t_{1} \geq t_{N}$ and $\mathbf{x}\left(t_{1}\right) \notin N$ then $\mathbf{x}(t) \notin N$ for all $t \geq t_{1}$.

In Case (c): for all $N \in \mathscr{N}$ there exists $t_{N}>0$ and $\delta_{N}>0$ such that either every entry of the trajectory $\mathbf{x}(t)$ to N after time t_{N} is across $D_{-} \cap L_{x_{0}-\delta_{N}}$ and every exit from N is across $D_{-} \cap L_{x_{0}+\delta_{N}}$, or every entry of the trajectory $\mathbf{x}(t)$ to N after time t_{N} is across $D_{+} \cap L_{x_{0}+\delta_{N}}$ and every exit from N is across $D_{-} \cap L_{x_{0}-\delta_{N}}$.

Proof of Lemma. Write $F^{-1}(c)_{\epsilon}$ for the closed ϵ-neighborhood of $F^{-1}(c)$, that is the union of all closed discs of radius ϵ with centres in $F^{-1}(c)$. Let $S_{x_{0}, \delta}$ denote the closed horizontal strip $\left\{(x, y): x_{0}-\delta \leq y \leq\right.$ $\left.x_{0}+\delta\right\}$. The required neighborhoods of \mathbf{x}_{0} will be the connected components of $F^{-1}(c)_{\epsilon} \cap S_{x_{0}, \delta}$ that contain \mathbf{x}_{0}, where δ is sufficiently small and $\epsilon=\epsilon(\delta)$ is chosen suitably. Thus the neighborhoods will be narrow "bands" around part of $F^{-1}(c)$ through \mathbf{x}_{0}.
Since F is good at $\mathbf{x}_{0}=\left(x_{0}, x_{0}\right)$, the slope of $F^{-1}(c)$ near \mathbf{x}_{0} is nonzero, so by choosing appropriate δ_{0} and η_{0} sufficiently small, there are coordinate rectangles $R=\left[x_{0}-\eta_{0}, x_{0}+\eta_{0}\right] \times\left[x_{0}-\delta_{0}, x_{0}+\delta_{0}\right]$ and $R^{\prime}=$ $\left[x_{0}+\frac{1}{3} \eta_{0}, x_{0}+\frac{1}{3} \eta_{0}\right] \times\left[x_{0}-\delta_{0}, x_{0}+\delta_{0}\right]$ in which $F^{-1}(c)$ is of the following form: the set $F^{-1}(c) \cap R$ has a single connected component which
is a differentiable curve crossing R from bottom to top, with slope bounded away from 0 , with $F^{-1}(c) \cap R \subset R^{\prime}$, and such that $F^{-1}(c) \cap D$ $\cap R$ is the single point \mathbf{x}_{0}.
Thus for all $0<\delta \leq \frac{1}{2} \delta_{0}$ the set $F^{-1}(c) \cap R$ intersects each of the lines $L_{x_{0}-\delta}$ and $L_{x_{0}+\delta}$ at a single point inside R^{\prime} that is not on D. With $F^{-1}(c)_{\epsilon}$ as the ϵ-neighborhood of $F^{-1}(c)$, we choose $\epsilon=\epsilon(\delta)<\min \left\{\frac{1}{2} \delta_{0}, \frac{1}{3} \eta_{0}\right\}$ sufficiently small to ensure that $F^{-1}(c)_{\epsilon} \cap R^{\prime \prime} \cap L_{x_{0}-\delta}$ and $F^{-1}(c)_{\epsilon} \cap R^{\prime \prime}$ $\cap L_{x_{0}+\delta}$ are closed subintervals of $L_{x_{0}-\delta}$ and $L_{x_{0}+\delta}$, respectively, which do not intersect D, where $R^{\prime \prime}=\left[x_{0}-\frac{2}{3} \eta_{0}, x_{0}+\frac{2}{3} \eta_{0}\right] \times\left[x_{0}-\delta_{0}\right.$, $x_{0}+\delta_{0}$].
For each such $\delta \leq \frac{1}{2} \delta_{0}$ we set $N=N(\delta)=F^{-1}(c)_{\epsilon} \cap R^{\prime \prime} \cap S_{x_{0}, \delta}$, where $S_{x_{0}, \delta}$ is the strip $\left\{(x, y): x_{0}-\delta \leq y \leq x_{0}+\delta\right\}$. Thus N has the form of a 'band' about $F^{-1}(c) \cap R \cap S_{x_{0}, \delta}$ stretching from its floor $F^{-1}(c)_{\epsilon} \cap R^{\prime \prime} \cap$ $L_{x_{0}-\delta}$ to its ceiling $F^{-1}(c)_{\epsilon} \cap R^{\prime \prime} \cap L_{x_{0}+\delta}$. In fact N is the connected component of $F^{-1}(c)_{\epsilon} \cap S_{x_{0}, \delta}$ containing \mathbf{x}_{0}.
We take \mathscr{N} to be the collection of all neighborhoods $\{N(\delta)\}$ constructed in this way for $0<\delta \leq \frac{1}{2} \delta_{0}$. For $N \in \mathscr{N}$ we write δ_{N} for the value of δ such that $N=N\left(\delta_{N}\right)$.

U sing (7) and the compactness of R, we may choose t_{N} such that for all $t \geq t_{N}$ for which $\mathbf{x}(t) \in R$ we have $\mathbf{x}(t) \in F^{-1}(c)_{\epsilon}$ [where $\left.\epsilon=\epsilon\left(\delta_{N}\right)\right]$. In particular, if the trajectory $\mathbf{x}(t)$ enters or leaves N at time $t \geq t_{N}$ it must do so by crossing either the floor or ceiling of N.

We use this fact to check that these basic neighborhoods N of \mathbf{x}_{0} satisfy the conclusion of the lemma in each of the three cases.

Case (a): If $N \in \mathscr{N}$ and $\mathbf{x}\left(t_{1}\right) \in N$ for some $t_{1} \geq t_{N}$, the trajectory $\mathbf{x}(t)$ cannot enter N without crossing its floor in an downward direction or its ceiling in a upward direction, which is impossible, since the floor is in D^{-} and the ceiling is in D^{+}, see Fig. 1(a). We conclude that $\mathbf{x}(t)$ remains in N for all $t \geq t_{1}$.

Case (b): If $N \in \mathscr{N}$ and $\mathbf{x}\left(t_{1}\right) \notin N$ where $t_{1} \geq t_{N}$, the trajectory $\mathbf{x}(t)$ cannot enter N without crossing its floor in an upward direction or its ceiling in a downward direction, which is impossible, since the floor is in D^{+}and the ceiling is in D^{-}, see Fig. $1(\mathrm{~b})$. We conclude that $\mathbf{x}(t) \notin N$ for all $t \geq t_{1}$.

Case (c): If the curve $F^{-1}(c)$ lies in D_{-}near \mathbf{x}_{0}, then for all $N \in \mathscr{N}$ the floor of N is a subinterval of $D_{-} \cap L_{x_{0}-\delta}$ and the ceiling of N is a subinterval of $D_{-} \cap L_{x_{0}+\delta_{N}}$ and the conclusion follows. Similarly, if the curve $F^{-1}(c)$ lies in D_{+}near \mathbf{x}_{0}, we reach the alternative conclusion.

Proof of Theorem. We split the proof into two cases: when $y(t)$ is eventually monotonic and when $y(t)$ is oscillatory.

Case (i). There exists t_{1} such that $\mathbf{x}(t)=(x(t), y(t))$ does not strictly cross the diagonal line D for $t \geq t_{1}$. By the remark after (3), $y(t)$ is monotonic for $t \geq t_{1}$. For such t, if $y(t)$ is unbounded and increasing then ($x(t), y(t)$) is below D, so $x(t) \geq y(t) \rightarrow \infty$. Similarly if $y(t)$ is unbounded and eventually decreasing then $x(t) \leq y(t) \rightarrow-\infty$, leading to conclusion (a) of the theorem.

If $y(t)$ is bounded, there exists $x_{0} \in \mathbb{R}$ such that $y(t) \rightarrow x_{0}$ as $t \rightarrow \infty$. We claim that $F\left(x_{0}, x_{0}\right)=c$. A ssume not: by continuity of F there exist $\delta>0$ and a coordinate square S with side length $4 \epsilon>0$ and center (x_{0}, x_{0}), such that $|F(x, y)-c| \geq \delta>0$ for all $(x, y) \in S$, so by (7) there exists $t_{2} \geq t_{1}$ such that $(x(t), y(t)) \notin S$ for all $t \geq t_{2}$. Since $y(t) \rightarrow x_{0}$ this would require that, for all sufficiently large t, we have $\left|x(t)-x_{0}\right| \geq 2 \epsilon$ and thus $|x(t)-y(t)| \geq \epsilon$, which by the remark at (5) would contradict the boundedness of $y(t)$.
Thus for some x_{0} with $F\left(x_{0}, x_{0}\right)=c$, we have $y(t) \rightarrow x_{0}$, so $\operatorname{dist}\left(\mathbf{x}(t), L_{x_{0}}\right)$ $\rightarrow 0$ where $L_{x_{0}}$ is the horizontal line $y=x_{0}$. Since F is good at $\mathbf{x}_{0}=$ $\left(x_{0}, x_{0}\right) \in D$, the point \mathbf{x}_{0} is an isolated point of $L_{x_{0}} \cap F^{-1}(c)$. Since $F(x(t), y(t)) \rightarrow c$, either $x(t) \rightarrow x_{0}$ or $\liminf _{t \rightarrow \infty}\left|x(t)-x_{0}\right|>0$, an alternative which is again disallowed by (5).
Case (ii). The point $\mathbf{x}(t)=(x(t), y(t))$ goes strictly above D and also strictly below D for arbitrarily large t. Write S for the set of limit points of $\mathbf{x}(t)$ on D, that is

$$
S=\left\{\mathbf{x} \in D \text { : there exists } t_{i} \nearrow \infty \text { with } \mathbf{x}\left(t_{i}\right) \rightarrow \mathbf{x}\right\} .
$$

Since $F(\mathbf{x}(t)) \rightarrow c$ and $F(x, x)$ is bounded away from c for large x, we have $S \subset F^{-1}(c) \cap D$, so S is nonempty and (by hypothesis) is finite.

By hypothesis, F is good at all $\mathbf{x}_{0}=\left(x_{0}, x_{0}\right) \in S$. Suppose case (a) pertains at some $\mathbf{x}_{0} \in S$ and let \mathscr{N} be the base of neighborhoods of \mathbf{x}_{0} given by the lemma. For all $N \in \mathscr{N}$ we have $\mathbf{x}(t) \in N$ for arbitrarily large t and so, by case (a) of the lemma, for all sufficiently large t. Thus $\mathbf{x}(t) \rightarrow \mathbf{x}_{0}$, giving $x(t) \rightarrow x_{0}$.

Now suppose case (b) applies at some $\mathbf{x}_{0} \in S$ and let \mathscr{N} be the base of neighborhoods of \mathbf{x}_{0} given by the lemma. If $\mathbf{x}(t) \leftrightarrow \mathbf{x}_{0}$ then there exists $N \in \mathscr{N}$ such that $\mathbf{x}(t) \notin N$ for arbitrarily large t and so, by case (b) of the lemma, for all sufficiently large t, contradicting that \mathbf{x}_{0} is a limit point of $\mathbf{x}(t)$. Thus again $\mathbf{x}(t) \rightarrow \mathbf{x}_{0}$ and $x(t) \rightarrow x_{0}$.
Otherwise, case (c) pertains to all the points S. Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$, and for each $i=1, \ldots, n$ let N_{i} be a basic neighborhood of \mathbf{x}_{i} as given by the lemma, satisfying case (c) of the conclusion. We may choose these neighborhoods small enough to have pairwise disjoint projections onto the y-axis. Using (7) there is a time $t_{0} \geq \max _{i=1, \ldots, n}\left\{t_{N_{i}}\right\}$ such that, if $t \geq t_{0}$,
the trajectory $\mathbf{x}(t)$ cannot cross D outside $\cup_{i=1}^{n} N_{i}$. M oreover, by case (c) of the lemma, $\mathbf{x}(t)$ enters and leaves each N_{i} on the same side of D. Thus $y(t)$ is monotonic for all $t \geq t_{0}$ such that $\mathbf{x}(t) \notin \bigcup_{i=1}^{n} N_{i}$. In particular there exists some integer i and time $t_{1} \geq t_{0}$ such that $\mathbf{x}(t) \in N_{i}$ for all $t \geq t_{1}$, so in fact S consists of a single point, $\mathbf{x}_{0}=\left(x_{0}, x_{0}\right)$ say, at which case (c) holds.

Let N be a member of the base of neighborhoods \mathscr{N} of \mathbf{x}_{0} given by the lemma. A gain by (7) there exists $t_{2} \geq t_{N}$ such that $\mathbf{x}(t)$ does not cross D outside N when $t \geq t_{2}$, and therefore $y(t)$ is monotonic outside N. Thus, by case (c) of the lemma, if $\mathbf{x}(t)$ leaves N after time t_{2} it cannot re-enter N, contradicting that $\mathbf{x}_{0} \in S$. We conclude that for all $N \in \mathscr{N}$ we have $\mathbf{x}(t) \in N$ for all sufficiently large t, so $\mathbf{x}(t) \rightarrow \mathbf{x}_{0}$ and $x(t) \rightarrow x_{0}$.

Note that some condition on F on the diagonal D is necessary for the validity of the theorem. For example, if $F^{-1}(c)$ has horizontal tangents at points on D then $\mathbf{x}(t)$ could be asymptotic to a loop stradling the diagonal D. In particular the result fails if $F(x, y)=y$ when $F^{-1}(c)=L_{c}$; the hypothesis (7) reduces to $y(t) \rightarrow c$ and we are back with the Tauberian situation, requiring a condition such as (2) for the convergence of $x(t)$. Similarly, if $F^{-1}(c) \cap D$ contains an interval then the limit set of $\mathbf{x}(t)$ could be a subinterval of D. (Some results related to the case where $y(t) / x(t) \sim c$ are discussed in [1, Chapt. 5].)

The conditions on F can certainly be weakened or varied. For instance if $F^{-1}(c) \cap D$ contains a single point (x_{0}, x_{0}) and the horizontal line $L_{x_{0}}$ contains no interval of the form [$x_{0}-\delta, x_{0}$] or $\left[x_{0}, x_{0}+\delta\right]$ for all $\delta>0$, then the same conclusion follows. If it is known that $x(t)$ [and thus $y(t)$] is bounded then the requirements that $F^{-1}(c) \cap D$ is finite and that $F(x, x)$ is bounded away from c for large x may be dropped, since we may work in a bounded region of the plane with the local finiteness of $F^{-1}(c) \cap D$ following from the goodness of F at all $\mathbf{x}_{0} \in F^{-1}(c) \cap D$.

The theorem may be used to deduce other asymptotic behavior of functions. For example, taking $\alpha>-1$ and setting $\phi(t)=t^{\alpha+1}$ and $f(t)=x(t) t^{\alpha}$, hypothesis (7) becomes

$$
\begin{equation*}
F\left(f(t) t^{-\alpha},(\alpha+1) t^{-\alpha-1} \int_{0}^{t} f(u) d u\right) \rightarrow c \tag{8}
\end{equation*}
$$

Provided F satisfies the conditions of the theorem, we may conclude that if f is continuous and satisfies (8) then $f(t) t^{-\alpha}$ converges to $-\infty$, to ∞ or to some x_{0} satisfying $F\left(x_{0}, x_{0}\right)=c$.

ACKNOWLEDGMENT

I thank Professor N. H. Bingham for a talk that inspired this investigation and for many helpful comments.

REFERENCES

1. N. H. Bingham, C. M. Goldie, and J. L. Teugels, "Regular Variation," Cambridge U niv. Press, Cambridge, U K, 1987.
2. N. H. Bingham and A. Inoue, The Drasin-Shea-J ordan theorem for Fourier and H ankel transforms, Quart. J. Math. 48 (1997), 279-307.
3. K. J. Falconer, On the M inkowski measurability of fractals, Proc. Amer. Math. Soc. 123 (1995), 1115-1124.
4. J. Karamata, Sur les théorèms inverses des procédé de sommabilité, Act. Sci. Ind. 450 (1937), H ermann, Paris.
5. R.E.A.C. Paley and N. Wiener, "Fourier transforms in the complex domain," Colloq. Publ. 19, A merican M athematical Society, W ashington, DC, 1934.
6. H. R. Pitt, "Tauberian Theorems," Oxford U niv. Press, London, 1958.
