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Abstract

We study the multivariate Feynman–Kac path integration problem. This problem was

studied in Plaskota et al. (J. Comp. Phys. 164 (2000) 335) for the univariate case. We describe

an algorithm based on uniform approximation, instead of the L2-approximation used in

Plaskota et al. (2000). Similarly to Plaskota et al. (2000), our algorithm requires extensive

precomputing. We also present bounds on the complexity of our problem. The lower bound is

provided by the complexity of a certain integration problem, and the upper bound by the

complexity of the uniform approximation problem. The algorithm presented in this paper is

almost optimal for the classes of functions for which uniform approximation and integration

have roughly the same complexities.
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1. Introduction

Path integrals are defined as integrals over an infinite dimensional space equipped
with a probability measure. A path integral is called Wiener integral if the respective
measure is the Wiener measure w on the space C of continuous functions from Rþ to

Rd : In case dX2 we add the term ‘‘multivariate’’. The multivariate Feynman–Kac
path integral (3) is the solution of the initial value problem for the multivariate heat
equation (1) and (2).

Various computational methods have been developed for the univariate case
where d ¼ 1 and the Feynman–Kac path integral is the solution of the heat equation
with one space variable. Most of them are stochastic methods. First the path integral
is approximated by a multivariate integral over Rn (with large n), and then this
integral is approximately computed by using randomized methods such as a Monte
Carlo method.

A new approach was proposed in [5] for the univariate case d ¼ 1: A
deterministic algorithm based on L2-approximation was constructed and the
complexity of the Feynman–Kac path integration was estimated. We recall
that the complexity is the minimal information and combinatory cost of
any algorithm that solves the problem with an error at most e: The upper
bound was given by the complexity of the L2-approximation problem. The
lower bound was given by the complexity of a certain weighted integration
problem. We refer to [8] for a thorough discussion of the complexity of continuous
problems.

Our paper is a continuation of [5]. We present an extension of results
from [5] to the multivariate case by providing an algorithm for the multivariate
Feynman–Kac path integration problem. The structure of our algorithm is
similar to the structure of the algorithm from [5]. However, our algorithm is based
on uniform approximation, which allows applications for arbitrary d: Indeed, an
algorithm based on L2-approximation, such as that from [5], can be used for d ¼ 1
only. Both the information and combinatory costs of our algorithm are roughly of

order e�aðFÞ for a certain aðFÞ40 dependent on a given class F of functions. This
upper bound is derived from the complexity of uniform approximation for the class

F : When the class F is a ball of CrðRdÞ; the space of r times continuously
differentiable functions, then we have aðFÞ ¼ d=r: Our algorithm also requires
precomputation of large number of certain coefficients given as multivariate
integrals. This process, similarly as for the algorithm from [5], is computationally
difficult.

We also study the complexity of multivariate Feynman–Kac path integration. The
complexity is bounded, analogously as in [5], from below by the complexity of
multivariate integration, and from above by complexity of the uniform approxima-
tion (in [5] it was the L2-approximation). Moreover, our algorithm is almost optimal
for classes F for which the complexities of the multivariate integration and the

uniform approximation re of the same order. This holds for F being balls of CrðRdÞ;
see Section 4.2.
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2. Motivating example

Although our paper deals with path integrals, we first motivate our approach by

presenting a few facts concerning the heat equation. Denote O ¼ Rd � ½0;NÞ: Let us
consider the initial value problem for the heat equation

@z

@t
ðu; tÞ ¼ 1

2
Dzðu; tÞ þ VðuÞzðu; tÞ for ðu; tÞAintO; ð1Þ

zðu; 0Þ ¼ vðuÞ: ð2Þ

Here v;V :Rd-R are the initial value function and the potential function,

respectively. As usual, D denotes the Laplacian, i.e., D ¼
Pd

i¼1
@2

@u2
i

; where

u ¼ ½u1;y; ud 	T : We assume that v and V belong to a class F that is chosen such
that the solution z of (1) and (2) exists. For simplicity global properties of v and V

are not distinguished.
For a given fixed point ðu�; t�ÞAO and arbitrary functions v;V from the class F ; we

want to compute an e-approximation of the exact solution z� ¼ zv;V ðu�; t�Þ; i.e., to
compute a ¼ av;V ðu�; t�Þ such that jz� � ajpe:
We assume that evaluations of the functions v and V at finitely many points are

allowed. We want to determine the minimal number of such values nðe;FÞ ¼
nðe;F ; u�; t�Þ that is sufficient to compute an e-approximation.
This problem can obviously be solved by using classical algorithms such as finite

element or finite difference methods. For instance, suppose that @
@t

zðu; tÞ is
approximated by the first forward difference ðzðu; t þ tÞ � zðu; tÞÞ=t; and @2

@u2
i

zðu; tÞ
is approximated by the second central difference ðzðuþ hi; tÞ � 2zðu; tÞ þ zðu�
hi; tÞÞ=h2 where ðhiÞj ¼ dijh: For functions v and V that are bounded and four times

continuously differentiable, the solution z is twice continuously differentiable with
respect to t and four times continuously differentiable with respect to u; and we can

compute an e-approximation with cost of order e�ðd=2þ1Þ:
In the next section we see that the solution of the heat equation can be formulated

as a particular path integral.

3. Multivariate Feynman–Kac path integration

It turns out that for a certain class F ; defined in the next paragraph, the solution z

of (1) and (2) is given by the famous Feynman–Kac formula

zðu; tÞ ¼
Z
C

vðxðtÞ þ uÞ exp
Z t

0

VðxðsÞ þ uÞ ds

� �
wðdxÞ: ð3Þ

Here, C is the set of continuous functions x :Rþ-Rd such that xð0Þ ¼ 0: The path
integral (3) is with respect to the d-dimensional Wiener measure w; see [1] or [6]. We
recall that w is a Gaussian measure, whose coordinate process, i.e., stochastic process
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formed by the point functionals Lt; where Ltx ¼ xðtÞ; is a Wiener process. This
means that the mean element m and the covariance function C of w for d ¼ 1 are

mðtÞ ¼
Z
C

xðtÞwðdxÞ ¼ 0 8t; Cðs; tÞ ¼
Z
C

xðsÞxðtÞwðdxÞ ¼ minfs; tg 8s; t:

For dX1; instead of point functionals we consider operators Lt :C-Rd of the form
Ltx ¼ xðtÞ: Such operators form a d-dimensional Wiener process, i.e., a stochastic

process in Rd ; whose coordinates are independent Wiener processes. It means that w

is still a Gaussian measure with zero mean element and the covariance function (the

matrix function in this case) C :Rþ � Rþ-Rd � Rd ;

Cðs; tÞ ¼
Z
C

xðsÞxTðtÞwðdxÞ ¼ minfs; tgIRd :

We now precisely state the conditions for the class F ; which guarantee the
existence of the path integral (3). Let F be a normed linear space of functions

f :Rd-R: We assume that for every uARd ; the functional Lu : F-R defined by
Luf ¼ f ðuÞ is continuous, and for arbitrary a; tARþ we haveZ

C

jjLxðtÞjjF exp a

Z t

0

jjLxðsÞjjF ds

� �
wðdxÞoN: ð4Þ

By the Fernique theorem, see e.g. [2], condition (4) holds if there exists ao2 such that
jjLxjjF ¼ OðjjxjjaÞ for jjxjj approaching infinity, see [5] for details. Here jjxjj2 ¼Pd

i¼1 x2i is the Euclidean norm in Rd :

As in the previous section we want to compute an e-approximation of z given by

(3). Similarly as there, let nFKðe;FÞ denote the minimal n sufficient to compute an

e-approximation of zv;V ðu�; t�Þ given by (3). Obviously nFKðe;FÞ ¼ nðe;FÞ if both the
differential equation problem (1), (2) and the right-hand side of (3) are well defined

for the class F : We will call nFKðe;FÞ the (information) worst case complexity of the

multivariate Feynman–Kac path integral. The quantity nFKðe;FÞ is strongly related
to the complexity of the multivariate Feynman–Kac path integration, and it will be
discussed in Section 4.3.
The main objective of our paper is to check whether the estimate mentioned in the

previous section can be improved and how the exponent of e�1 depends on the class
F : In particular, we want to study its dependence on the smoothness of the functions
from F and the dimension d: The case d ¼ 1 was considered in [5], where it was
shown that Feynman–Kac path integration is related to the integration and
L2-approximation. In this paper we study the case dX1: Our approach will be
slightly different and based on the fact that Feynman–Kac path integration is also
related to uniform approximation. Hence, even for d ¼ 1; our result will be different
than the one in [5].
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4. Algorithm for approximation of multivariate Feynman–Kac path integral

We derive an algorithm that solves the multivariate Feynman–Kac path
integration in a way similar to [5]. Without lost of generality we assume that
u ¼ 0 in (3), since we can shift the initial value and potential functions otherwise.

4.1. First step: towards uniform approximation

First we expand the function expð�Þ into the power series

Sðv;VÞ ¼ zð0; tÞ ¼
Z
C

vðxðtÞÞ exp
Z t

0

VðxðsÞÞ ds

� �
wðdxÞ ¼

XN
k¼0

Skþ1ðv;VÞ;

where

Skþ1ðv;VÞ ¼ 1

k!

Z
C

vðxðtÞÞ
Z t

0

VðxðsÞÞ ds

� �k

wðdxÞ:

For k ¼ 0 the quantity S1ðv;VÞ is the expectation EvðWtÞ; where Wt; for tARþ; is
the d-dimensional Wiener process. Thus we obtain

S1;dðv;VÞ ¼
Z
Rd

vðzÞg1;dðzÞ dz;

where

g1;dðzÞ ¼
1

ð2ptÞd=2
exp �jjzjj2

2t

 !
:

Here, as before, jj � jj denotes the Euclidean norm in Rd :
For k40; we rewrite the kth power of the inner integral of Skþ1ðv;VÞ as a

k-variate integral and, by symmetry, we switch it to the integral over the
k-dimensional simplex

Skþ1ðv;VÞ ¼
Z
C

vðxðtÞÞ
Z
0pt1p?ptkpt

Vðxðt1ÞÞ?VðxðtkÞÞ dt1ydtkwðdxÞ

¼
Z
0pt1p?ptkpt

Z
C

vðxðtÞÞVðxðt1ÞÞ?VðxðtkÞÞwðdxÞ dt1ydtk:

The inner integralZ
C

vðxðtÞÞ
Yk

i¼1
VðxðtiÞÞwðdxÞ

is the expectation E½vðWtÞ
Qk

i¼1 VðWti
Þ	: Since the ti’s are increasingly ordered and

dominated by t; then using the known form of finite dimensional distributions of the

d-dimensional Wiener process, the expectation E½vðWtÞ
Qk

i¼1 VðWti
Þ	 is equal toZ

Rðkþ1Þd
vðzkþ1Þ

Yk

i¼1
VðziÞfkþ1;dðt1;y; tk; t; z1;y; zkþ1Þ dz1ydzkþ1;
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with ziARd and

fkþ1;dðt1;y; tk; t; z1;y; zkþ1Þ

¼ ðð2pÞkþ1
t1ðt2 � t1Þ?ðt � tkÞÞ�d=2

� exp �1
2

jjz1jj2

t1
þ jjz2 � z1jj2

t2 � t1
þ?þ jjzkþ1 � zkjj2

t � tk

 ! !
:

Hence, after changing the order of the integrals, we finally obtain

Skþ1ðv;VÞ ¼
Z
Rðkþ1Þd

vðzkþ1Þ
Yk

i¼1
VðziÞgkþ1;dðz1;y; zkþ1Þ dz1ydzkþ1;

where

gkþ1;dðz1;y; zkþ1Þ ¼
Z
0pt1p?ptkpt

fkþ1;dðt1;y; tk; t; z1;y; zkþ1Þ dt1ydtk: ð5Þ

The following lemma will be useful for further considerations.

Lemma 1.

jjgkþ1;d jjL1ðRðkþ1Þd Þ ¼
tk

k!
for kX0;

here, by convention, 00 ¼ 1:

Proof. Since g1;d is the density of a probability measure on Rd the result for g1;d is

obvious. For kX1; by the non-negativity of the integrand, we can apply the Fubini

theorem. For fixed ti’s, fkþ1;d is the density of a probability measure on Rðkþ1Þd :
Thus the whole integral is equal the volume of the simplex

fðt1;y; tkÞARk: 0pt1p?ptkptg; which is tk=k!: &

Observe that gkþ1;d does not depend on v and V : The only dependence of
Skþ1ðv;VÞ on v and V belonging to the class F is through the product

hkþ1;dðz1;y; zkþ1Þ ¼ vðzkþ1Þ
Yk

i¼1
VðziÞ: ð6Þ

As in [5] we remark that hkþ1;d belongs to the tensor product space F#?#F
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{kþ1

:

Therefore the function hkþ1;d can be approximated by an algorithm for tensor

product spaces.
The Smolyak algorithm, see [9], based on the L2-approximation of v and V in the

univariate case was used in [5]. This algorithm can be also applied based on
the algorithm for the approximation v and V in the d-variate case. However, the
Smolyak algorithm based on L2-approximation, when applied to Skþ1ðv;VÞ;
requires that gkþ1;d belongs to L2ðRðkþ1ÞdÞ: This holds for d ¼ 1; and so
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L2-approximation could have been applied in [5]. For dX2; it can be checked that

gkþ1;d does not belong to L2ðRðkþ1ÞdÞ and thus we have to base our approach on
uniform approximation, which requires that gkþ1;d belongs only to L1ðRðkþ1ÞdÞ: By
Lemma 1 this holds for arbitrary d: Furthermore, the L1 norm of gkþ1;d is super-
exponentially small for large k and for arbitrary d: In the following section we derive
a uniform approximation algorithm for functions of the form (6).

4.2. Second step: uniform approximation

So far we have assumed that the class F is a normed linear space of functions

Rd-R for which (4) holds and function evaluations are continuous linear
functionals. We need to add more constraints on F : First, we assume that F is

continuously embedded into LNðRdÞ: That is, FCLNðRdÞ and there exists a positive
K such that

jj f jjLNðRd ÞpKjj f jjF 8fAF : ð7Þ

Second, we assume that the complexity nAPPðe;FÞ of uniform approximation of
functions from the class F satisfies

nAPPðe;FÞ ¼ Oðe�aðFÞÞ as e-0 ð8Þ
for some positive constant aðFÞ: Moreover, we assume the existence of an almost
optimal algorithm that uses only function values. These conditions hold for many
classes F :
We illustrate these assumptions by two examples.

Example 1. Consider the Sobolev space W r
N
ðRdÞ with r40; equipped with the

following norm:

jj f jj ¼ max
jajpr

jj f ðaÞjj
N
:

Obviously, W r
N
ðRdÞ can be continuously embedded into LNðRdÞ; and function

evaluations are continuous. It is known that aðW r
N
ðRdÞÞ ¼ d=r and, by [4], there

exists an almost optimal algorithm that uses function values only.

Example 2. Following [7], we consider the class F of 2p-periodic functions f :Rd-R

satisfying the condition

8fAF 8j ¼ 1;y; d (jjALNð½�2p; 2p	dÞ

f ðxÞ ¼ 1

2p

Z 2p

0

jjðx1;y; xj � t;y;xdÞPrðtÞ dt; ð9Þ

where r41 and

PrðtÞ ¼ 1þ 2
XN
k¼0

k�r cosðkt � rp=2Þ:
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We define the norm in the class F as

jj f jjF ¼
Xd

j¼1
jjjjjjLNð½�2p;2p	d Þ;

where, for given f ; the jj are the functions from representation (9). It is easy to see

that for fAF and zARd and arbitrary jAf1;y; dg we have
j f ðzÞjpjj f jjLNðRd Þ ¼ jj f j½0;2p	d jjLNð½0;2p	d ÞpCjjjjjjLNð½�2p;2p	d Þ;

with C ¼ 1
2p

R 2p
0 jFrðtÞj dt: Hence

j f ðzÞjpjj f jjLNðRd Þp
C

d
jj f jjF ;

from which our assumptions are satisfied. From [7], we know the existence of the
algorithm that computes uniform approximation of functions from F with the cost

of order e�d=r: Hence, in this case also aðFÞ ¼ d=r:

Now we outline the algorithm for uniform approximation of elements of the
tensor product space. This is well-known Smolyak’s construction whose applicability
to our case follows from [3].

Lemma 2. Assume that hkþ1;d is defined by (6), v;VAF and F satisfies (7) and (8).

Then for e40 and kX0; there exists an algorithm

Ue;kþ1ðhkþ1;dÞ ¼
Xnðe;kþ1Þ

i¼1
hkþ1;dðti;e;1;y; ti;e;kþ1Þzi;e;kþ1; ð10Þ

where nðe; k þ 1ÞANþ; ti;e;jARd ; i ¼ 1;y; nðe; k þ 1Þ; j ¼ 1;y; d; and

zi;e;kþ1ALNðRðkþ1ÞdÞ; such that

jjhkþ1;d � Ue;kþ1ðhkþ1;dÞjjLNðRðkþ1Þd ÞpejjvjjF jjV jjkF ; ð11Þ

and

nðe; k þ 1Þpc0 c1 þ c2
ln 1=e

k

� �ðaðFÞþ1Þk

þ
e�aðFÞ ð12Þ

for some ciAR: Here aþ denotes maxfa; 0g; and when k ¼ 0; the right-hand side of (12)
is defined to be c0e�a:

Proof. We first prove the following fact using [3, Remark 1].

Let Si : F-LNðRdÞ; i ¼ 1;y; n; be continuous linear operators. Let H be a

Banach space containing F#n as dense subspace. Additionally, we assume that jj � jjH
satisfies

jjv1#?#vnjjH ¼
Yn

i¼1
jjvijjF ;
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where, as usual, ðv1#?#vnÞðx1;y; xnÞ ¼
Qn

i¼1 viðxiÞ: Then, the norm of the

operator S1#?#Sn; defined as ðS1#?#SnÞðv1#?#vnÞðx1;yxnÞ ¼Qn
i¼1 SiðviÞðxiÞ; satisfies

jjS1#?#SnjjH-LNðRnd Þp
Yn

i¼1
jjSijj: ð13Þ

Here jj � jj is the ordinary operator norm.
Indeed, by [3, Theorem 1] we see that (13) holds for functionals Si; i.e., when the

range spaces are R instead of LNðRdÞ:Write x ¼ ðx1;y; xdÞ; then by [3, Remark 1]
we have

jjS1#?#SnjjH-LNðRnd Þ

¼ sup
jjxjjHp1

jjS1#?#SnðxÞjjLNðRnd Þ

¼ sup
jjxjjHp1

sup
fjAL1ðRd Þ;jj fj jj1p1

Z
Rnd

ðS1#?#SnðxÞÞðxÞf1ðx1Þ?fnðxnÞ dx

¼ sup
jjxjjHp1

sup
jj fj jj1p1

ðTf1#?#Tfn
ÞðxÞ;

where Tfi
: F-R are linear functionals defined as

Tfi
ðviÞ ¼

Z
Rd

SiðviÞðxiÞfiðxiÞ dxi:

We can now use the result mentioned above for linear functionals to complete the
proof of (13).

jjS1#?#SnjjH-LNðRnd Þ

¼ sup
jj fj jj1p1

sup
jjxjjHp1

ðTf1#?#Tfn
ÞðxÞ

¼ sup
jj fj jj1p1

jjTf1#?#Tfn
jjp sup

jj fj jj1p1

Yn

i¼1
jjTfi

jj

p sup
jj fj jj1p1

Yn

i¼1
jjSijj jj fijj1 ¼

Yn

i¼1
jjSijj:

Now, assume that n ¼ k þ 1 and H is, for instance, the projective tensor product, see
[3], of n copies of F :We can then apply the Smolyak algorithm forH to approximate

the embedding operator into LNðRndÞ; in particular, to approximate the function
hkþ1;dðz1;y; zkþ1Þ: By the fact proven above and [9, Theorem 1] the cost bound (12)
holds for our case. &
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4.3. Final step: algorithm, error and cost analysis

We are now ready to present the final construction step of the algorithm for
approximating Sðv;VÞ:We first consider approximating Skþ1ðv;VÞ by the algorithm

fe;kþ1ðv;VÞ ¼
Z
Rðkþ1Þd

ðUe;kþ1hkþ1;dÞgkþ1;dðz1;y; zkþ1Þ dz1ydzkþ1;

where hkþ1;d is defined by (6) and gkþ1;d by (5). Using (10) we can rewrite fe;kþ1 as

fe;kþ1ðv;VÞ ¼
Xnðe;kþ1Þ

i¼1
hkþ1;dðti;e;1;y; ti;e;kþ1Þfi;e;kþ1; ð14Þ

where

fi;e;kþ1 ¼
Z
Rðkþ1Þd

zi;e;kþ1ðz1;y; zkþ1Þgkþ1;dðz1;y; zkþ1Þ dz1ydzkþ1: ð15Þ

The following lemma gives an estimate of the error of fe;kþ1:

Lemma 3. The error of fe;kþ1 satisfies

jSkþ1ðv;VÞ � fe;kþ1ðv;VÞjpe
jjV jjkF jjvjjF tk

k!
:

Proof.

jSkþ1ðv;VÞ � fe;kþ1ðv;VÞj

p
Z
Rðkþ1Þd

jðhkþ1;d � Ue;kþ1hkþ1;dÞgkþ1;dðz1;y; zkþ1Þj dz1ydzkþ1

pjjhkþ1;d � Ue;kþ1hkþ1;d jjLNðRðkþ1Þd Þjjgkþ1;d jjL1ðRðkþ1Þd Þ

pe
jjV jjkF jjvjjF tk

k!
: &

To define the final algorithm that computes an e-approximation of Sðv;VÞ; we
need to restrict ourselves to the following class of functions. Let b ¼ ðb1; b2ÞAR2 and
bi40: Define

Fb ¼ fð f1; f2ÞAF � F : jj f1jjFpb1; jj f2jjFpb2g; ð16Þ

where, as before, F stands for the normed linear space of functions defined over Rd ;

continuously embedded into LNðRdÞ and satisfying (4). For ðv;VÞAFb; we now

define

Feðv;VÞ ¼
XN
k¼0

fekþ1;kþ1ðv;VÞ; ð17Þ
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where

ekþ1 ¼
ek!

b1b
k
2t

k2kþ1
: ð18Þ

By Lemma 3 we have

jFeðv;VÞ � Sðv;VÞjp
XN
k¼0

ekþ1
jjvjjF jjV jjkF tk

k!
p
XN
k¼0

e
2kþ1 ¼ e; ð19Þ

and hence the absolute error of Fe is at most e: Formally Fe is defined as an infinite
sum. However, observe that ekþ1 grows super-exponentially fast to infinity with k: As
we have already remarked fe;kþ1 � 0 is the zero algorithm for ekþ1XK and we have

only finitely many non-zero terms in (17). Moreover, it is easy to see that the number

of non-zero terms in (17) depends logarithmically on e�1:
The cost of Fe is estimated in the following theorem.

Theorem 1. Let nðFeÞ denote the (information) cost of the algorithm Fe: Then for F

satisfying (4), (7) and (8) we have

nðFeÞpK0CðeÞe�aðFÞ; ð20Þ

where

K0 ¼ 2c0ð2tb1Þ
aðFÞ;

CðeÞp2þ
XN
k¼1

K
kaðFÞ
1

ððk þ 1Þ!ÞaðFÞ

� K2 þ c2
lnðe�1Þ þ lnð2b1Þ � lnððk þ 1Þ!Þ

k

� �ðaðFÞþ1Þk

þ

with

K1 ¼ 2tb2; and K2 ¼ c1 þ c2 lnð2b2Þ:

Moreover

nðFeÞ ¼ Oðe�aðFÞ�dÞ 8d40: ð21Þ

Proof. We only sketch the proof because of its similarity to the proof of Theorem 1
from [5]. First, we have

nðFeÞp
XN
k¼0

nðekþ1; k þ 1Þ:

Using (12) and (18), we obtain the bound in (20). To prove (21), it suffices to show

that CðeÞ ¼ Oðe�dÞ holds for all positive d: Using the Stirling formula

k! ¼
ffiffiffiffiffiffiffiffi
2pk

p k

e

� �k

eyðkÞ=ð12kÞ for some 0oyðkÞo1;
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we see that there exists a constant K340; such that

CðeÞp2þ
XN
k¼1

K
2kðaðFÞþ1Þ
3

kkaðFÞ 1þ lnðe
�1Þ

k

� �2kðaðFÞþ1Þ
;

and the same argumentation as in [5] yields (21). &

Remark 1. In Theorem 1 the information cost of the algorithm Fe was determined.
The combinatorial cost of Fe satisfies

ncombðFeÞp
XN
k¼0

2ðk þ 1Þnðekþ1; k þ 1Þ: ð22Þ

It is easy to see that by using similar technique as in the proof of Theorem 1, we can

obtain the estimate ncombðFeÞ ¼ Oðe�aðFÞ�dÞ for any positive d: Thus the total cost of
our algorithm also satisfies this estimate.

5. Complexity of multivariate Feynman–Kac path integration

The analysis of the complexity of the multivariate Feynman–Kac path integration
is quite similar to the one presented in [5]. We can bound the complexity of the
multivariate Feynman–Kac path integration by complexities of two auxiliary
problems—uniform approximation and weighted integration. Note, that although
the problem that we are dealing with is non-linear, the problems establishing bounds
of its complexity are linear. Let us define these problems precisely.
The uniform approximation problem APP is defined as follows. For an arbitrary

function fAF ; we compute an e-approximation of A : F-LNðRdÞ defined as

Af ¼ f 8fAF :

In this case e-approximation is given as

Cnf ¼
Xn

i¼1
f ðti;nÞgi;n;

where ti;nARd and gi;nAF are fixed, and

eAPPðCn;FÞ ¼ sup
fAF

jjAf � Cnf jjLNðRd Þ
jj f jjF

pe:

The weighted integration problem INT is defined as follows. For an arbitrary
function fAF ; we compute an e-approximation of I : F-R defined as

If ¼ ð2ptÞ�d=2

Z
Rd

f ðuÞ expð�jjujj=ð2tÞÞ du:
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Now, e-approximation is given as

Bnf ¼
Xn

i¼1
f ðsi;nÞai;n;

where si;nARd and ai;nAR and

eINTðBn;FÞ ¼ sup
fAF

jIf � Bnf j
jj f jjF

pe:

Similarly to Section 2, we define nINTðe;FÞ and nAPPðe;FÞ as the minimal n such
that algorithms Bn and Cn of the forms mentioned above give e-approximations of
INT and APP, respectively. Define p�ðFÞ and q�ðFÞ as

p�ðFÞ ¼ supfp: (Bn eINTðBn;FÞ ¼ Oðn�pÞ as n-Ng;

q�ðFÞ ¼ supfq: (Cn eAPPðCn;FÞ ¼ Oðn�qÞ as n-Ng:
Obviously, the quantities p�ðFÞ and q�ðFÞ yield the bounds

Oðe�1=p�ðFÞþdÞ ¼ nINTðe;FÞ ¼ Oðe�1=p�ðFÞ�dÞ; ð23Þ

Oðe�1=q�ðFÞþdÞ ¼ nAPPðe;FÞ ¼ Oðe�1=q�ðFÞ�dÞ ð24Þ
for any positive d:

5.1. Lower bound

It is easy to see that computing of an e-approximation of the multivariate
Feynman–Kac path integral is not easier than solving the problem INT. Indeed, by
setting V � 0 in formula (3) and using the Wiener measure property we obtain

Sðv; 0Þ ¼ Iv:

Since ðv;VÞAFb; we have jjvjjFpb1: Thus, by setting V � 0; the multivariate
Feynman–Kac path integration can be reduced to the rescaled INT problem.
Obviously, this scaling has no influence on the asymptotic dependence of the

complexity of the problem INT on e�1: Then by (23) we obtain

Oðe�1=p�ðFÞþdÞ ¼ nFKðe;FbÞ 8d40:

5.2. Upper bound

Obviously, the cost of every particular algorithm that computes an e-approxima-
tion of multivariate Feynman–Kac path integration is an upper bound of the
complexity of this problem. Thus, we have

nFKðe;FbÞpnðFeÞ: ð25Þ
Observe that each algorithm Cn for the approximation problem APP can be used as
the basic algorithm for Smolyak’s construction Ue;kþ1 from Lemma 2 leading to

fe;kþ1 and Fe; see Sections 4.1 and 4.2 for details. By Theorem 1, we then obtain
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nðFeÞ ¼ Oðe�aðFÞ�dÞ: Thus, by (24) and (25), we finally obtain
nFKðe;FbÞ ¼ Oðe�1=q�ðFÞ�dÞ 8d40:

This proves that the approximation problem APP is essentially no harder than the
multivariate Feynman–Kac path integration.
From Sections 5.1 and 5.2 we finally obtain the lower and upper bounds for the

information complexity of multivariate Feynman–Kac path integration, namely

Oðe�1=p�ðFÞþdÞ ¼ nFKðe;FbÞ ¼ Oðe�1=q�ðFÞ�dÞ 8d40:
By Remark 1 such an estimate holds for the complexity of our problem. Thus our

result is analogous with the result from [5].
We now illustrate the theoretical results of the previous sections by considering the

two examples from Section 4.2.

Example 3. We consider the classes F defined in Examples 1 and 2. It turns out that for

both of them the complexities of the problems INT and APP are of order e�d=r: Thus
the algorithmFe; based on the almost optimal algorithms of the uniform approximation
for these classes, computes an e-approximation of the multivariate Feynman–Kac path
integral with cost of order e�d=r and is almost optimal for these classes.
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