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Abstract

We study the multivariate Feynman—Kac path integration problem. This problem was
studied in Plaskota et al. (J. Comp. Phys. 164 (2000) 335) for the univariate case. We describe
an algorithm based on uniform approximation, instead of the L,-approximation used in
Plaskota et al. (2000). Similarly to Plaskota et al. (2000), our algorithm requires extensive
precomputing. We also present bounds on the complexity of our problem. The lower bound is
provided by the complexity of a certain integration problem, and the upper bound by the
complexity of the uniform approximation problem. The algorithm presented in this paper is
almost optimal for the classes of functions for which uniform approximation and integration
have roughly the same complexities.
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1. Introduction

Path integrals are defined as integrals over an infinite dimensional space equipped
with a probability measure. A path integral is called Wiener integral if the respective
measure is the Wiener measure w on the space % of continuous functions from Ry to
R?. In case d>2 we add the term “multivariate”. The multivariate Feynman—Kac
path integral (3) is the solution of the initial value problem for the multivariate heat
equation (1) and (2).

Various computational methods have been developed for the univariate case
where d = 1 and the Feynman—Kac path integral is the solution of the heat equation
with one space variable. Most of them are stochastic methods. First the path integral
is approximated by a multivariate integral over R" (with large n), and then this
integral is approximately computed by using randomized methods such as a Monte
Carlo method.

A new approach was proposed in [5] for the univariate case d =1. A
deterministic algorithm based on L,-approximation was constructed and the
complexity of the Feynman—Kac path integration was estimated. We recall
that the complexity is the minimal information and combinatory cost of
any algorithm that solves the problem with an error at most & The upper
bound was given by the complexity of the L,-approximation problem. The
lower bound was given by the complexity of a certain weighted integration
problem. We refer to [8] for a thorough discussion of the complexity of continuous
problems.

Our paper is a continuation of [5]. We present an extension of results
from [5] to the multivariate case by providing an algorithm for the multivariate
Feynman—-Kac path integration problem. The structure of our algorithm is
similar to the structure of the algorithm from [5]. However, our algorithm is based
on uniform approximation, which allows applications for arbitrary d. Indeed, an
algorithm based on L,-approximation, such as that from [5], can be used for d = 1
only. Both the information and combinatory costs of our algorithm are roughly of
order ¢ *F) for a certain o(F)>0 dependent on a given class F of functions. This
upper bound is derived from the complexity of uniform approximation for the class
F. When the class F is a ball of C"(R?), the space of r times continuously
differentiable functions, then we have «(F)=d/r. Our algorithm also requires
precomputation of large number of certain coefficients given as multivariate
integrals. This process, similarly as for the algorithm from [5], is computationally
difficult.

We also study the complexity of multivariate Feynman—Kac path integration. The
complexity is bounded, analogously as in [5], from below by the complexity of
multivariate integration, and from above by complexity of the uniform approxima-
tion (in [5] it was the Ly-approximation). Moreover, our algorithm is almost optimal
for classes F for which the complexities of the multivariate integration and the
uniform approximation re of the same order. This holds for F being balls of C"(R?),
see Section 4.2.
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2. Motivating example
Although our paper deals with path integrals, we first motivate our approach by

presenting a few facts concerning the heat equation. Denote Q = R x [0, 00). Let us
consider the initial value problem for the heat equation

0 1 .

8—j(u7 1) = EAz(u, 1)+ V(u)z(u,z) for (u,z)eint Q, (1)

z(u,0) = v(u). (2)
Here v, V:R?Y>R are the initial value function and the potential function,
respectively. As usual, 4 denotes the Laplacian, ie., 4= Z?’:I %, where
u=[u,...,us)". We assume that v and ¥ belong to a class F that is chosen such

that the solution z of (1) and (2) exists. For simplicity global properties of v and V'
are not distinguished.

For a given fixed point (u*, ") e Q and arbitrary functions v, V from the class F, we
want to compute an g-approximation of the exact solution z* = z, ;- (u*, t¥), i.e., to
compute a = a, y(u*, t*) such that |z* — a|<e.

We assume that evaluations of the functions v and ¥V at finitely many points are
allowed. We want to determine the minimal number of such values n(e, F) =
n(e, F,u*, t*) that is sufficient to compute an ¢-approximation.

This problem can obviously be solved by using classical algorithms such as finite
element or finite difference methods. For instance, suppose that 2z(u,7) is
approximated by the first forward difference (z(u,z+ 1) — z(u,?))/7, and %z(m 1)
is approximated by the second central difference (z(u+ h;,¢) —2z(u, ) + z(u —
h;, 7)) /h* where (h;); = d;71. For functions v and ¥ that are bounded and four times
continuously differentiable, the solution z is twice continuously differentiable with
respect to ¢ and four times continuously differentiable with respect to u, and we can
compute an e-approximation with cost of order &~ (@/21),

In the next section we see that the solution of the heat equation can be formulated
as a particular path integral.

3. Multivariate Feynman—Kac path integration

It turns out that for a certain class F, defined in the next paragraph, the solution z
of (1) and (2) is given by the famous Feynman—Kac formula

z(u, 1) = /(gv(x(t) +u) exp (/ot V(x(s) + u) ds> w(dx). (3)

Here, % is the set of continuous functions x : R, —R¢ such that x(0) = 0. The path
integral (3) is with respect to the d-dimensional Wiener measure w, see [1] or [6]. We
recall that w is a Gaussian measure, whose coordinate process, i.e., stochastic process
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formed by the point functionals L,, where L,x = x(t), is a Wiener process. This
means that the mean element m and the covariance function C of w for d = 1 are

m(t) = /6 X(Ow(dx) =0 Vi, Cls,f) = /g x(5)x(t)w(dx) = min{s,} Vs, .

For d>1, instead of point functionals we consider operators L, : € — R’ of the form
L;x = x(z). Such operators form a d-dimensional Wiener process, i.e., a stochastic
process in RY, whose coordinates are independent Wiener processes. It means that w
is still a Gaussian measure with zero mean element and the covariance function (the
matrix function in this case) C: R, x Ry - R x R?,

Cls, 1) = /F x(5)XT (1)w(dx) = mings, 1} .

We now precisely state the conditions for the class F, which guarantee the
existence of the path integral (3). Let F be a normed linear space of functions
f:RY>R. We assume that for every ue R?, the functional L,:F—R defined by
L,f = f(u) is continuous, and for arbitrary a, e R, we have

t
[[|Lx(,)||Fexp(a/0 ||LX<S)|Fds>w(dx)<oo. (4)

By the Fernique theorem, see e.g. [2], condition (4) holds if there exists o <2 such that
||L||z = O(||x]|*) for ||x|| approaching infinity, see [5] for details. Here ||x\|2 =
5% x% is the Euclidean norm in R?.

As in the previous section we want to compute an ¢-approximation of z given by
(3). Similarly as there, let n"% (e, F) denote the minimal n sufficient to compute an
e-approximation of z, y(u*, *) given by (3). Obviously n'% (e, F) = n(e, F) if both the
differential equation problem (1), (2) and the right-hand side of (3) are well defined
for the class F. We will call n*¥ (¢, F) the (information) worst case complexity of the
multivariate Feynman-Kac path integral. The quantity n'® (¢, F) is strongly related
to the complexity of the multivariate Feynman—Kac path integration, and it will be
discussed in Section 4.3.

The main objective of our paper is to check whether the estimate mentioned in the
previous section can be improved and how the exponent of ¢~! depends on the class
F. In particular, we want to study its dependence on the smoothness of the functions
from F and the dimension d. The case d = 1 was considered in [5], where it was
shown that Feynman—Kac path integration is related to the integration and
Ly-approximation. In this paper we study the case d>1. Our approach will be
slightly different and based on the fact that Feynman—Kac path integration is also
related to uniform approximation. Hence, even for d = 1, our result will be different
than the one in [5].
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4. Algorithm for approximation of multivariate Feynman—Kac path integral

We derive an algorithm that solves the multivariate Feynman—Kac path
integration in a way similar to [5]. Without lost of generality we assume that
u = 0 in (3), since we can shift the initial value and potential functions otherwise.

4.1. First step: towards uniform approximation

First we expand the function exp(-) into the power series
t
S(v, V) =1z(0,1) = / v(x(1)) exp(/ V(x(s)) ds) w(dx) Z Sk+1(v, V),
% 0

where
k

Seaalo. V) =gy [ oxt) ( [ vixto) ) )

For k = 0 the quantity Si(v, V) is the expectation Ev(W;), where W, for te R, is
the d-dimensional Wiener process. Thus we obtain

S1a(v, V) = /d v(z)g1 q4(z) dz,

where

g1a(z) = —exp |

Here, as before, || - || denotes the Euclidean norm in R?.

For k>0, we rewrite the kth power of the inner integral of Si.i(v, V) as a
k-variate integral and, by symmetry, we switch it to the integral over the
k-dimensional simplex

Ski1(v, V) = /gv(x(z))/o V(x(t))- V(x(t)) dt, ...dtpw(dx)
:/M ) <t[gv(x(t))V(x(tl))--~V(x(lk))w(dx)dll...dtk.
The inner integral

k
/% o(x(1)) ] Vx(z)w(dx)
i=1

is the expectation E[o(W,) H{C:l V(W,,)]. Since the #;’s are increasingly ordered and
dominated by ¢, then using the known form of finite dimensional distributions of the

d-dimensional Wiener process, the expectation E[v(W;) Hf;l V(W,)] is equal to

k
/ v(zi) [[ V@ fira(t, .ot s o zien) daydag,
R+ o
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with z;e R? and
.fk+1<d(tla ...,tk,t,l], "'7Zk+1)

= ((zn)k+ltl(12 — 1) (t— Zk))—d/z

Lzl | 22 == iz — zl*
X exXp| —= —+ R HLL LI L .
2 h h—1 t— 1ty

Hence, after changing the order of the integrals, we finally obtain

Sk1(v, V) = /

R (k+1)d

k
v(Zk11) H V(zi)gri1a(z1, ... 2k 1) dzy ... d2gyq,
i1

i=

where
gk+l,d(zl7 "'7Zk+l) = / fk+l‘d(zl7 ceey tka taZ17 "‘7Zk+l) dtl ~~dtk- (5)
0<H < <[t
The following lemma will be useful for further considerations.

Lemma 1.
lk
||gk+]1d||Ll(R(k+l)J) = E for‘ k=0,

here, by convention, 0° = 1.

Proof. Since g 4 is the density of a probability measure on R? the result for gid s
obvious. For k=1, by the non-negativity of the integrand, we can apply the Fubini
theorem. For fixed ¢#;’s, fi114 is the density of a probability measure on RK+1,
Thus the whole integral is equal the volume of the simplex

{(t1,...,tx) eR*: 0< < - <t <t}, which is */k!. O

Observe that gy, does not depend on v and V. The only dependence of
Sk+1(v, V) on v and V belonging to the class F is through the product

hirr,a(Zys ooy Ziegr) = 0(Zks) H V(z;). (6)

i=1
k+1

As in [5] we remark that /. belongs to the tensor product space F® - @F .

Therefore the function /44 can be approximated by an algorithm for tensor
product spaces.

The Smolyak algorithm, see [9], based on the L,-approximation of v and V in the
univariate case was used in [5]. This algorithm can be also applied based on
the algorithm for the approximation v and V in the d-variate case. However, the
Smolyak algorithm based on L,-approximation, when applied to Siii(v, V),

requires that gp,.;4 belongs to LZ(RU‘“)‘{). This holds for d =1, and so
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Ly-approximation could have been applied in [5]. For d>2, it can be checked that
gik+1,4 does not belong to L2(R<k+l)d) and thus we have to base our approach on

uniform approximation, which requires that g, belongs only to Ll(R(k“)d). By
Lemma 1 this holds for arbitrary d. Furthermore, the L; norm of g4 is super-
exponentially small for large k& and for arbitrary d. In the following section we derive
a uniform approximation algorithm for functions of the form (6).

4.2. Second step: uniform approximation

So far we have assumed that the class F is a normed linear space of functions

R?Y>R for which (4) holds and function evaluations are continuous linear
functionals. We need to add more constraints on F. First, we assume that F is
continuously embedded into L., (R?). That is, F < L., (R?) and there exists a positive
K such that

1f 1l @y <KIL1lp ¥feF. )

Second, we assume that the complexity n*P?(e, F) of uniform approximation of
functions from the class F satisfies

nAPP (e, F) = 0(e™F)) as e—0 (8)

for some positive constant o(F). Moreover, we assume the existence of an almost
optimal algorithm that uses only function values. These conditions hold for many
classes F.

We illustrate these assumptions by two examples.

Example 1. Consider the Sobolev space W(’E(Rd) with r>0, equipped with the
following norm:

1 /1 = max|| f@|]...
o <r

Obviously, W’ (R?) can be continuously embedded into L, (R?), and function

evaluations are continuous. It is known that a(W’, (R?)) = d/r and, by [4], there
exists an almost optimal algorithm that uses function values only.

Example 2. Following [7], we consider the class F of 2z-periodic functions 1 : R? - R
satisfying the condition

VfeF Yi=1,..,d 3¢;eL.(-2n,2n]")

2n
f(x)= %/0 @;(X15 o0 Xp — 1, .., Xa) Pr(2) dt, 9)

where r>1 and

P(t)=1+2 k™" cos(kt —rn/2).

o0
k=0
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We define the norm in the class F as

A 1lF = ZII%IIL annft)

where, for given f, the ¢; are the functions from representation (9). It is easy to see
that for f € F and ze R? and arbitrary je{l, ...,d} we have

|f(Z)| < ||f||LI(R'I) = ||f|[OA2n]‘j||L1([O,2n]") < CH(/)/" |Lx ([7271,271]")’

with C =L [7*|F,(1)| dr. Hence

IS @<L, @) < ||f||F7

from which our assumptions are satisfied. From [7], we know the existence of the
algorithm that computes uniform approximation of functions from F with the cost
of order ¢~¥/". Hence, in this case also a(F) = d/r.

Now we outline the algorithm for uniform approximation of elements of the
tensor product space. This is well-known Smolyak’s construction whose applicability
to our case follows from [3].

Lemma 2. Assume that hii1 4 is defined by (6), v, VeF and F satisfies (7) and (8).
Then for ¢>0 and k=0, there exists an algorithm

n(ek+1)
Us i1 (Migr1,a) = E Tiei1d(tigts oo tighort) ikt (10)

where  n(e.k+1)eNy, teRY  i=1..n@ek+1), j=1,.,d and
ikt € Lo (REHVD) “such that

ksra = Uspor Unera)ll, gy <elloll VIS, (1)
and
Inl F)+1)k
n(e,k+1)<co (cl +o nk/z?) g (F) (12)
+

for some c;eR. Here a,. denotes max{a, 0}, and when k = 0, the right-hand side of (12)
is defined to be coe™*.

Proof. We first prove the following fact using [3, Remark 1].

Let S;: F—L., (RY), i=1,...,n, be continuous linear operators. Let H be a
Banach space containing F®" as dense subspace. Additionally, we assume that || - ||,
satisfies

n
||Ul®"'®vn||H = H||Ui||Fa

i=1
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where, as usual, (1 ® - ®u,)(X1,...,X,) =[], vi(x;). Then, the norm of the
operator S| ® - ®S,, defined as (SI® - @S)VI® - Quy)(Xy,...X,) =
[T, Si(vi)(x;), satisfies

n
151® - @Sully—., oy < [ [ IS (13)

i=1

Here || - || is the ordinary operator norm.
Indeed, by [3, Theorem 1] we see that (13) holds for functionals S;, i.e., when the

range spaces are R instead of L., (R?). Write x = (xy, ...,X,), then by [3, Remark 1]
we have

1S1® - @Sull - 1, (o)
= sup [|S1® - ®@Su(O)ll,, g

llEll <1
= sup sup /(Sl®"'®Sn(f))(x)f1(x1)~--fn(x,,)dx
el <t frer, (RO, 4], <1 /R™

sup - sup (T ® - ®TF,)(€),
lella<1 1150 <1

where T : F— R are linear functionals defined as
Tyto) = [ Sie)xfix) d.

We can now use the result mentioned above for linear functionals to complete the
proof of (13).

I1S1® - @Sull s r, (o
= sup sup (T, ® - ®@Ty,)(¢)

Al <t 1iélla <1

= s 1T ® - ®Tf||<”sh1p HIIT/,
filly <1 Sl <1 =1

< sup HIISH il = HHSH

1Al <1 321

Now, assume that » = k + 1 and H is, for instance, the projective tensor product, see
[3], of n copies of F. We can then apply the Smolyak algorithm for H to approximate
the embedding operator into Lx‘(IR{”d)7 in particular, to approximate the function
his14(21, ..., Zry1). By the fact proven above and [9, Theorem 1] the cost bound (12)
holds for our case. [



M. Kwas, Y. Li | Journal of Complexity 19 (2003) 730-743 739
4.3. Final step: algorithm, error and cost analysis

We are now ready to present the final construction step of the algorithm for
approximating S(v, V). We first consider approximating Si.1(v, V) by the algorithm

G (v, V) = /(Hm(Us7k+1hk+l7d)gk+1,d(zl7 o Ziey1) dzy . d2py
R d

where /11 4 is defined by (6) and gi114 by (5). Using (10) we can rewrite ¢, as

n(ek+1)
Pepir (0, V) Z Mir,a(tic1s oo tie k1) s irts (14)
where
Civk1 = /(HW Giokr1 (215 o Zi)Ghy1,a(Z0,s oo Zpgr) A2y o d2gy (15)
e

The following lemma gives an estimate of the error of ¢, ;.

Lemma 3. The error of ¢, satisfies

14 i+
Seat(6, V) = g (o, 1] el LML

Proof.
1Sk1 (v, V) = by pey1 (0, V)]

< /(HW |(Mies1,d — Usperthicir,a)gk1,a(Z1s - 2k )| dzy ... d 2y
”

<|lhks1.a = Uskrrhicrrall ooy ||gal | goesney

||V||p||v||plk .
\ k' .
To define the final algorithm that computes an e-approximation of S(v, V), we

need to restrict ourselves to the following class of functions. Let § = (B, ;) € R? and
f;>0. Define

Fp={(fv.fa) e F < Fr ([ fillp <P, 1 12l <o} (16)

where, as before, F stands for the normed linear space of functions defined over R?,
continuously embedded into L., (R?) and satisfying (4). For (o, V)eFp, we now
define

= Z ¢szk+1,k+l(v’ V)7 (17)
k=0
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where
ek!
k1 = W (18)
By Lemma 3 we have
[[ol] HVII l" -
|®, (v, vV|<Zs WENeDE ES 2k+1_ , (19)

and hence the absolute error of @, is at most ¢. Formally @, is defined as an infinite
sum. However, observe that &, | grows super-exponentially fast to infinity with k. As
we have already remarked ¢, = 0 is the zero algorithm for g1 > K and we have
only finitely many non-zero terms in (17). Moreover, it is easy to see that the number
of non-zero terms in (17) depends logarithmically on &~

The cost of @, is estimated in the following theorem.

Theorem 1. Let n(®,) denote the (information) cost of the algorithm ®,. Then for F
satisfying (4), (7) and (8) we have

n(®,) < KoC(e)e™), (20)
where
Ko = 2¢0(218,)"",
w KeF)

x (Kz o In(e”!) + ln(Zﬁ}c) — In((k + 1)!)) (j(F)H)k
with
Ky =2tB,, and K, =c|+c3In(2p,).
Moreover

n(®,) = 0™~ v5>0. (21)

Proof. We only sketch the proof because of its similarity to the proof of Theorem 1
from [5]. First, we have

o0

n(®,) <> nlesr,k+1).

k=0

Using (12) and (18), we obtain the bound in (20). To prove (21), it suffices to show
that C(e) = O(¢7?) holds for all positive §. Using the Stirling formula

k
k! = \/an<]£> R0 for some 0<O(k) <1,
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we see that there exists a constant K3 >0, such that

o p2k(@(F)+1) 1N 2K(a(F)+1)
K; In(e™")
C(,s)<2+kzT ) (1 +— :

and the same argumentation as in [5] yields (21). O

Remark 1. In Theorem 1 the information cost of the algorithm &, was determined.
The combinatorial cost of @, satisfies

o
nom (D) < 2k + (e, k+1). (22)

k=0
It is easy to see that by using similar technique as in the proof of Theorem 1, we can

obtain the estimate n°°™°(&,) = O(¢~*F)=?) for any positive J. Thus the total cost of
our algorithm also satisfies this estimate.

5. Complexity of multivariate Feynman—Kac path integration

The analysis of the complexity of the multivariate Feynman—Kac path integration
is quite similar to the one presented in [5]. We can bound the complexity of the
multivariate Feynman—-Kac path integration by complexities of two auxiliary
problems—uniform approximation and weighted integration. Note, that although
the problem that we are dealing with is non-linear, the problems establishing bounds
of its complexity are linear. Let us define these problems precisely.

The uniform approximation problem APP is defined as follows. For an arbitrary
function f € F, we compute an e-approximation of 4: F— L. (R?) defined as

Af =f YfeF.

In this case e-approximation is given as
n
Cf = Zf(ti,n)gi,m
i=1

where t;,, € R? and gin€F are fixed, and

Af — C y
€APP(C”7F) _ sup || f nf”L»L([RI)
ek IvAlP

X 6.

The weighted integration problem INT is defined as follows. For an arbitrary
function f'e F, we compute an ¢-approximation of I : F — R defined as

1f = Q) [ ) exp(=lul/(20) du.
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Now, ¢-approximation is given as
n
B,f = E f(Ti.n)ai,m
i=1

where 7;, € R? and a;,€R and
If — B
eNT(B,, F) = sup Més.
rer W fllp

Similarly to Section 2, we define n'™NT (¢, F) and n*? (e, F) as the minimal n such
that algorithms B, and C, of the forms mentioned above give ¢-approximations of
INT and APP, respectively. Define p*(F) and ¢*(F) as

p*(F) =sup{p: 3B, ¢ (B,,F) = O(n") as n— w0},
q*(F) = sup{q: 3C, ***(C,,F) = O(n™%) as n— w0 }.
Obviously, the quantities p*(F) and ¢*(F) yield the bounds
Q(gfl/p*(F)eri) _ nINT(E,F) — 0(871/p*(F)75)’ (23)

Q(gfl/q*(F)ﬂS) _ I’lAPP(S,F) — 0(871/q*(F)76) (24)

for any positive 0.
5.1. Lower bound

It is easy to see that computing of an eg-approximation of the multivariate
Feynman—Kac path integral is not easier than solving the problem INT. Indeed, by
setting ¥ = 0 in formula (3) and using the Wiener measure property we obtain

S(v,0) = Iv.

Since (v, V)eFp, we have |[v]|z<p;. Thus, by setting V =0, the multivariate
Feynman—Kac path integration can be reduced to the rescaled INT problem.
Obviously, this scaling has no influence on the asymptotic dependence of the
complexity of the problem INT on ¢~'. Then by (23) we obtain

Qe PRy — R (g Fp) Wo>0.

5.2. Upper bound

Obviously, the cost of every particular algorithm that computes an g-approxima-
tion of multivariate Feynman—Kac path integration is an upper bound of the
complexity of this problem. Thus, we have

n"& (e, Fp) <n(®,). (25)
Observe that each algorithm C, for the approximation problem APP can be used as

the basic algorithm for Smolyak’s construction Uy from Lemma 2 leading to
¢ x+1 and @, see Sections 4.1 and 4.2 for details. By Theorem 1, we then obtain
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n(®,) = 0(e~*¥)=9). Thus, by (24) and (25), we finally obtain
ntR (e, Fp) = O(e7V/4 =9y v5>0.

This proves that the approximation problem APP is essentially no harder than the
multivariate Feynman—Kac path integration.

From Sections 5.1 and 5.2 we finally obtain the lower and upper bounds for the
information complexity of multivariate Feynman—Kac path integration, namely

Qe M) = n™ (e, Fy) = 0(e7170) >0,

By Remark 1 such an estimate holds for the complexity of our problem. Thus our
result is analogous with the result from [5].

We now illustrate the theoretical results of the previous sections by considering the
two examples from Section 4.2.

Example 3. We consider the classes F defined in Examples 1 and 2. It turns out that for
both of them the complexities of the problems INT and APP are of order ¢ %/". Thus
the algorithm &,, based on the almost optimal algorithms of the uniform approximation
for these classes, computes an e-approximation of the multivariate Feynman—Kac path
integral with cost of order ¢~¢/" and is almost optimal for these classes.
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