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ABSTRACT 

A minimization problem for a matrix-valued matrix function is considered. A 
duality theorem is proved. Some examples illustrate its applicability. 

Let 2, be the set of real symmetric n X n matrices. In Z, a partial 
ordering-the L&vner ordering- is defined by A 2 B iff A - B is nonnega- 

tive definite. Using this ordering, investigations of monotonicity, convexity, 
and extremum properties of matrix functions with values in Z, have recently 
aroused considerable interest, mainly due to applications in statistics and 
electrical network theory; see e.g. [7], [5], [2], [8]. In this paper we will derive 
a primaldual relation for a quadratic minimization problem under a linear 
constraint, and we will show that some results from the literature can be 
subsumed under this problem. 

We will use the following terminology: For a real m X n matrix A we 
write AE Rmxn; AT is the transpose of A, and A’ the Moore-Penrose inverse 
of A. I, is the unit matrix in Rnx”. If A E Rnx”, A > 0, B E IWqXn, then PA 

denotes a minimum-A-seminorm g-inverse of B, i.e., & E Rnx9 satisfies 

BB,B= B and (B,B)~A= A&B 

[lo, p. 461. The matrix 

S = S( A, B) = A&B 

(1) 

(2) 

is invariant under the choice of Z?-* and satisfies 

S = BT( &)TAB,B; (34 
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in particular 

S>O and A&S (W 

(see [8]). S is called the shorted matrix A with respect to B. 
Using the shorted operator S for the present problem is suggested by the 

fact that ?RJA)n%(BT) = 9,(S), where CR(D) denotes the range of the 
matrix D. This together with S > 0 allows us to treat the p-dimensional 
problem, p > 2, with L6wner ordering in the same way as the case p = 1. 

THEOREM. LetAEIRnx”,A>O, BE[W~~“, C~RqXpbegiven,andlet 
S be defined by (2). Consider the following pair of primal and dual problems 
(with respect to the Liiwner ordering): 

g(X) = XAX*= min 

subject to BXT=C, x E IRPX” 
(4 

and 

h(Y)=CTB+TYT+YB+C-YS+YT=max 

(5) 
subject to (I,-Ss+)YT=o, YEIRPX”. 

Zf there exists a feasible solution of (4), then: 

(a) There exist feasible solutions X and Y of (4) and (5), respectively, 
such that for all feasible X and Y 

(b) The general solution of (4) is 

where Z is arbitrary, Z E R p Xn A-is an arbitrary g-inverse of A, and & is an 
arbitrary, but fixed, minimum-A-seminorrn g-inverse of B. 

(c) The solution of (5) is unique, namely 

p= cTB+TS. 
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Proof. Note first that a solution X of BXr = C exists iff C = BBC for a 
g-inverse B of B. 

(a): Let X and Y be feasible. Then using (2) and (3) 

= -(YT-sB+c)Ts+(YT-sB+~)+~T~+T~~+~ 

< CTB+ TSB+ C = XBTB+ TSB+ BXT = XsXT 

<XSXr+(XT-A+SXT)rA(XT-A+SXT)=XAXT=g(X). 

For X = CTgAT we have BkT = BBAC = C, i.e., X is feasible; and from (3) 

g(A) = CTE;A&C = CTB+ TSB+ C. 

Further, ? = CTB+ TS is feasible and 

h( f ) = 2CTB+ TSB+ C - CTB+ TSS+ SB+ C = CTB+ TSB+ C. 

(b): If PA is fixed, the general solution of BXT = C is 

where U E RPx” is arbitrary [ 10, p. 241. The proof of (a) shows that we have 
g(X) = g(X) iff XAXr = XSXT, i.e. X(A - S) = 0. Using C = B&C, (1) and 
(2), this implies U(A - S) = 0; hence 

U=Z(I-(A-S)(A-S)), 

where Z E Rpx” is arbitrary. Now from (l)-(3) it follows that Ais a g-inverse 
of A - S. The converse is straightforward, and (c) can be proved similarly. n 

REMARK. The dual problem (5) has been obtained by a Lagrangian-mul- 

tiplier approach to (4). Therefore, the result admits the following version as a 

saddlepoint theorem: Let the operator F: lRpXn X Iwpxq -+ RpXp be defined 

by 

F(X,Y)=XAXT-XBTYT-YBXT+YC+CTYT. 
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Then forrZ=CrZTz, Y=CrB+rSB’, and all XE[W~~“, Y 61RPX9 it holds 
that 

F(X,Y) 6 F(X,Y) < F(X,Y). 

In the case p = 1 this approach has been used in [6] to give a statistical 
interpretation of 9, if the primal problem is that of finding a BLUE in the 
Gauss-Markoff model. 

Let us consider now some special cases of the theorem. 

EXAMPLE 1. If A is positive definite, then BA = A-lBT(BA-lBT)+ satis- 
fies (1); hence S = Br(BA-‘Br)+ B. From this one easily obtains that X is 
uniquely determined. If additionally B = CCr, then & = A-‘C(CrA-‘C)+C+ 
and 

ri = C+C(CrA-‘C)CrA-‘. 

X satisfies the conditions (3.3.5) in [lo]. Thus we obtain a characterization of 
the I,-norm A- l-least-squares g-inverse of C as solution of a matrix optimiza- 
tion problem. In the special case A = I, we get with X = C+ the well-known 
characterization of the Moore-Penrose inverse; cf. [9] and [4]. 

Al 0 
A= o 

[ 1 A , B= [Z,J,l. 
2 

Then 

L+@,+Az)+(A,-A,) 
Z,+(A,+A,)+(A,-A,) I 

satisfies the condition (1); hence 

s= D D 
[ 1 D D' 

where 

D=Ar-A1(Al+A2)+Al=A2-A2(A,+A2)+A2 

=A1(Al+A2)+A2=A2(Al+A2)+Al 
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is the parallel sum of A, and A a; cf. [ 11. Thus the optimum value of the 
problem 

X,A,Xf + X,A,Xl= min 

subject to xy+ x;=c, Xl,X2EWx” 
(6) 

is CTDC. A solution is given by 

2, = CT - CTAl( A, + A,) +, 2s = CTA,( A, + As)+. 

The solution of (5) is ? = [?i, +s] = [CTD, CTD]. This is a generalization of 
problem (14) in [Z]. Moreover, (6) provides a characterization of the parallel 
sum as the optimum value of (6) when C = I,. 

EXAMPLE 3. Considering the problem (4) for the case that B = C, we get 
min(XAXT: BXT = B, X E lRPx”} = BTB + TSBi- B = S. This is a characteriza- 
tion of the shorted matrix S which is different from those given in [2, 
Theorems 1, 51 and in [8, Theorem 2.21. 

EXAMPLE 4. Let p = q = 1, A be positive definite, B = el, where ek is the 
kth unit vector in R”, C = 1. In this case Z?-* = A-lek(e~A-‘ek)-l satisfies 
(l), and hence 

see also [3, Theorem 71. If A, denotes the matrix obtained when deleting the 
k th row and column of A, and a kk is the kth diagonal element of A- ‘, then 
e:A- ‘ek = akk = det A,/det A. Thus we get from the theorem Bergstrom’s 
inequality [7, p. 4781, 

det( A(‘) + A@)) 

det ( A(k) + A(k2)) 
= min{ x’( A(‘) + Ac2))x: e$ = l} 

> min( xTA(‘)x: e:x = l} 

+ min{ rTAc2)x: e$x = 1) 

_ det A(‘) I det Ac2) 

det A(kl) det A(k) 
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for any two positive definite matrices A(‘), A@) E Iwnx”. Also from A > S we 
get the well-known relation akk > (akk)-‘. 

I wish to thank S. K. Mitra and the associate editor for their help in 

improving the presentation and results. 
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