A- Matrix Optimization Problem

Olaf Krafft
Technical University
Aachen, West Germany

Submitted by Ingram Olkin

Abstract

A minimization problem for a matrix-valued matrix function is considered. A duality theorem is proved. Some examples illustrate its applicability.

Let Σ_{n} be the set of real symmetric $n \times n$ matrices. In Σ_{n} a partial ordering-the Löwner ordering-is defined by $A \geqslant B$ iff $A-B$ is nonnegative definite. Using this ordering, investigations of monotonicity, convexity, and extremum properties of matrix functions with values in Σ_{n} have recently aroused considerable interest, mainly due to applications in statistics and electrical network theory; see e.g. [7], [5], [2], [8]. In this paper we will derive a primal-dual relation for a quadratic minimization problem under a linear constraint, and we will show that some results from the literature can be subsumed under this problem.

We will use the following terminology: For a real $m \times n$ matrix A we write $A \in \mathbb{R}^{m \times n} ; A^{T}$ is the transpose of A, and A^{+}the Moore-Penrose inverse of A. I_{n} is the unit matrix in $\mathbb{R}^{n \times n}$. If $A \in \mathbb{R}^{n \times n}, A \geqslant 0, B \in \mathbb{R}^{q \times n}$, then \bar{B}_{A} denotes a minimum- A-seminorm g-inverse of B, i.e., $\bar{B}_{A} \in \mathbb{R}^{n \times q}$ satisfies

$$
\begin{equation*}
B \bar{B}_{A} B=B \quad \text { and } \quad\left(\bar{B}_{A} B\right)^{T} A=A \bar{B}_{A} B \tag{1}
\end{equation*}
$$

[10, p. 46]. The matrix

$$
\begin{equation*}
S=S(A, B)=A \bar{B}_{A} B \tag{2}
\end{equation*}
$$

is invariant under the choice of \bar{B}_{A} and satisfies

$$
\begin{equation*}
S=B^{T}\left(\bar{B}_{A}\right)^{T} A \bar{B}_{A} B \tag{3a}
\end{equation*}
$$

in particular

$$
\begin{equation*}
S \geqslant 0 \quad \text { and } \quad A \geqslant S \tag{3b}
\end{equation*}
$$

(see [8]). S is called the shorted matrix A with respect to B.
Using the shorted operator S for the present problem is suggested by the fact that $\Re(A) \cap \Re\left(B^{T}\right)=\Re(S)$, where $\mathscr{R}(D)$ denotes the range of the matrix D. This together with $S \geqslant 0$ allows us to treat the p-dimensional problem, $p \geqslant 2$, with Löwner ordering in the same way as the case $p=1$.

Theorem. Let $A \in \mathbb{R}^{n \times n}, A \geqslant 0, B \in \mathbb{R}^{q \times n}, C \in \mathbb{R}^{q \times p}$ be given, and let S be defined by (2). Consider the following pair of primal and dual problems (with respect to the Löwner ordering):

$$
\begin{gather*}
g(X)=X A X^{T}=\min \\
B X^{T}=C, \quad X \in \mathbb{R}^{p \times n} \tag{4}
\end{gather*}
$$

subjectto
and

$$
\begin{equation*}
h(Y)=C^{T} B^{+T} Y^{T}+Y B^{+} C-Y S^{+} Y^{T}=\max \tag{5}
\end{equation*}
$$

subject to $\quad\left(I_{n}-S S^{+}\right) Y^{T}=0, \quad Y \in \mathbb{R}^{p \times n}$.
If there exists a feasible solution of (4), then:
(a) There exist feasible solutions \hat{X} and \hat{Y} of (4) and (5), respectively, such that for all feasible X and Y

$$
g(X) \geqslant g(\hat{X})=C^{T} B^{+T} S B^{+} C=h(\hat{Y}) \geqslant h(Y)
$$

(b) The general solution of (4) is

$$
\hat{X}=C^{T} \bar{B}_{A}^{T}+Z(I-(A-S) \bar{A})\left(I-B^{T} \bar{B}_{A}^{T}\right)
$$

where Z is arbitrary, $Z \in \mathbb{R}^{p \times n}, \bar{A}$ is an arbitrary g-inverse of A, and \bar{B}_{A} is an arbitrary, but fixed, minimum-A-seminorm g-inverse of B.
(c) The solution of (5) is unique, namely

$$
\hat{Y}=C^{T} B^{+T} S
$$

Proof. Note first that a solution X of $B X^{T}=C$ exists iff $C=B \bar{B} C$ for a g-inverse \bar{B} of B.
(a): Let X and Y be feasible. Then using (2) and (3)

$$
\begin{aligned}
h(Y) & =C^{T} B^{+T} S S^{+} Y^{T}+Y S^{+} S B^{+} C-Y S^{+} Y^{T} \\
& =-\left(Y^{T}-S B^{+} C\right)^{T} S^{+}\left(Y^{T}-S B^{+} C\right)+C^{T} B^{+T} S B^{+} C \\
& \leqslant C^{T} B^{+T} S B^{+} C=X B^{T} B^{+T} S B^{+} B X^{T}=X S X^{T} \\
& \leqslant X S X^{T}+\left(X^{T}-A^{+} S X^{T}\right)^{T} A\left(X^{T}-A^{+} S X^{T}\right)=X A X^{T}=g(X)
\end{aligned}
$$

For $\hat{X}=C^{T} \bar{B}_{A}^{T}$ we have $B \hat{X}^{T}=B \bar{B}_{A} C=C$, i.e., \hat{X} is feasible; and from (3)

$$
g(\hat{X})=C^{T} \bar{B}_{A}^{T} A \bar{B}_{A} C=C^{T} B^{+T} S B^{+} C .
$$

Further, $\hat{Y}=C^{T} B^{+T} S$ is feasible and

$$
h(\hat{Y})=2 C^{T} B^{+T} S B^{+} C-C^{T} B^{+T} S S^{+} S B^{+} C=C^{T} B^{+T} S B^{+} C
$$

(b): If \bar{B}_{A} is fixed, the general solution of $B X^{T}=C$ is

$$
X=C^{T} \bar{B}_{A}^{T}+U\left(I-B^{T} \bar{B}_{A}^{T}\right)
$$

where $U \in \mathbb{R}^{p \times n}$ is arbitrary [10, p. 24]. The proof of (a) shows that we have $g(X)=g(\hat{X})$ iff $X A X^{T}=X S X^{T}$, i.e. $X(A-S)=0$. Using $C=B \bar{B}_{A} C$, (1), and (2), this implies $U(A-S)=0$; hence

$$
U=Z(I-(A-S) \overline{(A-S)})
$$

where $Z \in \mathbb{R}^{p \times n}$ is arbitrary. Now from (1)-(3) it follows that \bar{A} is a g-inverse of $A-S$. The converse is straightforward, and (c) can be proved similarly.

Remark. The dual problem (5) has been obtained by a Lagrangian-multiplier approach to (4). Therefore, the result admits the following version as a saddle-point theorem: Let the operator $F: \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{p \times p}$ be defined by

$$
F(X, Y)=X A X^{T}-X B^{T} Y^{T}-Y B X^{T}+Y C+C^{T} Y^{T}
$$

Then for $\hat{X}=C^{T} \bar{B}_{A}^{T}, \hat{Y}=C^{T} B^{+T} S B^{+}$, and all $X \in \mathbb{R}^{p \times n}, Y \in \mathbb{R}^{p \times q}$ it holds that

$$
F(\hat{X}, Y) \leqslant F(\hat{X}, \hat{Y}) \leqslant F(X, \hat{Y})
$$

In the case $p=1$ this approach has been used in [6] to give a statistical interpretation of \hat{Y}, if the primal problem is that of finding a BLUE in the Gauss-Markoff model.

Let us consider now some special cases of the theorem.
Example 1. If A is positive definite, then $\bar{B}_{A}=A^{-1} B^{T}\left(B A^{-1} B^{T}\right)^{+}$satisfies (1); hence $S=B^{T}\left(B A^{-1} B^{T}\right)^{+} B$. From this one easily obtains that \hat{X} is uniquely determined. If additionally $B=C C^{T}$, then $\bar{B}_{A}=A^{-1} C\left(C^{T} A^{-1} C\right)^{+} C^{+}$ and

$$
\hat{X}=C^{+} C\left(C^{T} A^{-1} C\right) C^{T} A^{-1}
$$

\hat{X} satisfies the conditions (3.3.5) in [10]. Thus we obtain a characterization of the I_{q}-norm A^{-1}-least-squares g-inverse of C as solution of a matrix optimization problem. In the special case $\Lambda=I_{q}$ we get with $\hat{X}=C^{+}$the well-known characterization of the Moore-Penrose inverse; cf. [9] and [4].

Example 2. Let $A_{1}, A_{2} \in \mathbb{R}^{n \times n}, A_{1} \geqslant 0, A_{2} \geqslant 0$; put

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad B=\left[I_{n}, I_{n}\right]
$$

Then

$$
\bar{B}_{A}=\frac{1}{2}\left[\begin{array}{l}
I_{n}+\left(A_{1}+A_{2}\right)^{+}\left(A_{1}-A_{2}\right) \\
I_{n}+\left(A_{1}+A_{2}\right)^{+}\left(A_{2}-A_{1}\right)
\end{array}\right]
$$

satisfies the condition (1); hence

$$
S=\left[\begin{array}{ll}
D & D \\
D & D
\end{array}\right]
$$

where

$$
\begin{aligned}
D & =A_{1}-A_{1}\left(A_{1}+A_{2}\right)^{+} A_{1}=A_{2}-A_{2}\left(A_{1}+A_{2}\right)^{+} A_{2} \\
& =A_{1}\left(A_{1}+A_{2}\right)^{+} A_{2}=A_{2}\left(A_{1}+A_{2}\right)^{+} A_{1}
\end{aligned}
$$

is the parallel sum of A_{1} and A_{2}; cf. [1]. Thus the optimum value of the problem
subject to

$$
\begin{align*}
X_{1} A_{1} X_{1}^{T}+ & X_{2} A_{2} X_{2}^{T}
\end{aligned}=\min \quad l \text { } \quad \begin{aligned}
X_{1}^{T}+X_{2}^{T} & =C, \quad X_{1}, X_{2} \in \mathbb{R}^{p \times n} \tag{6}
\end{align*}
$$

is $C^{T} D C$. A solution is given by

$$
\hat{X}_{1}=C^{T}-C^{T} A_{1}\left(A_{1}+A_{2}\right)^{+}, \quad \hat{X}_{2}=C^{T} A_{1}\left(A_{1}+A_{2}\right)^{+} .
$$

The solution of (5) is $\hat{Y}=\left[\hat{Y}_{1}, \hat{Y}_{2}\right]=\left[C^{T} D, C^{T} D\right]$. This is a generalization of problem (14) in [2]. Moreover, (6) provides a characterization of the parallel sum as the optimum value of (6) when $C-I_{n}$.

Example 3. Considering the problem (4) for the case that $B=C$, we get $\min \left\{X A X^{T}: B X^{T}=B, X \in \mathbb{R}^{p \times n}\right\}=B^{T} B^{+T} S B^{+} B=S$. This is a characterization of the shorted matrix S which is different from those given in [2, Theorems 1, 5] and in [8, Theorem 2.2].

Example 4. Let $p=q=1$, A be positive definite, $B=e_{k}^{T}$, where e_{k} is the k th unit vector in $\mathbb{R}^{n}, C=1$. In this case $\bar{R}_{A}=A^{-1} e_{k}\left(e_{k}^{T} A^{-1} e_{k}\right)^{-1}$ satisfies (1), and hence

$$
S=S\left(A, e_{k}^{T}\right)=\left(e_{k}^{T} A^{-1} e_{k}\right)^{-1} e_{k} e_{k}^{T}
$$

see also [3, Theorem 7]. If A_{k} denotes the matrix obtained when deleting the k th row and column of A, and $a^{k k}$ is the k th diagonal element of A^{-1}, then $e_{k}^{T} A^{-1} e_{k}=a^{k k}=\operatorname{det} A_{k} / \operatorname{det} A$. Thus we get from the theorem Bergström's inequality [7, p. 478],

$$
\begin{aligned}
\frac{\operatorname{det}\left(A^{(1)}+A^{(2)}\right)}{\operatorname{det}\left(A_{k}^{(1)}+A_{k}^{(2)}\right)}= & \min \left\{x^{T}\left(A^{(1)}+A^{(2)}\right) x: e_{k}^{T} x=1\right\} \\
\geqslant & \min \left\{x^{T} A^{(1)} x: e_{k}^{T} x=1\right\} \\
& +\min \left\{x^{T} A^{(2)} x: e_{k}^{T} x=1\right\} \\
= & \frac{\operatorname{det} A^{(1)}}{\operatorname{det} A_{k}^{(1)}}+\frac{\operatorname{det} A^{(2)}}{\operatorname{det} A_{k}^{(2)}}
\end{aligned}
$$

for any two positive definite matrices $A^{(1)}, A^{(2)} \in \mathbb{R}^{n \times n}$. Also from $A \geqslant S$ we get the well-known relation $a_{k k} \geqslant\left(a^{k k}\right)^{-1}$.

I wish to thank S. K. Mitra and the associate editor for their help in improving the presentation and results.

REFERENCES

1 W. N. Anderson and R. J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl. 26:576-594 (1969).
2 W. N. Anderson and G. E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28:60-71 (1975).
3 R. Bott and R. J. Duffin, On the algebra of networks, Trans. Amer. Math. Soc. 74:99-109 (1953).
4 J. S. Chipman and M. M. Rao, The treatment of linear restrictions in regression analysis, Econometrica 32:198-209 (1964).
5 N. Gaffke and O. Krafft, Matrix inequalities in the Löwner ordering, in Modern Applied Mathematics (B. Korte, Ed.), North Holland, Amsterdam, 1982, pp. 595-622.
6 O. Krafft and S. K. Mitra, Least favorable parameters in the Gauss-Markoff model, Sankhya Ser. A 44, to appear.
7 A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic, New York, 1979, Chapter 16E.
8 S. K. Mitra and M. L. Puri, Shorted operators and generalized inverses of matrices, Linear Algebra Appl. 25:45-56 (1979).
9 Penrose, R., On best approximate solutions of linear matrix equations, Proc. Cambridge Philos. Soc. 52:17-19 (1956).
10 C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971.

