VECTOR REPRESENTABLE MATROIDS OF GIVEN RANK WITH GIVEN AUTOMORPHISM GROUP

László BABAI
Dept. Algebra and Number Theory, Eötvös L. University, H-1088 Budapest, Hungary

Received 25 August 1977
Revised 29 May 1978

A simple way of associating a matroid of prescribed rank with a graph is shown. The matroids so constructed are representable over any sufficiently large field. Their use is demonstrated by the following result: Given an integer \(k \geq 3 \) and a function \(G \) associating a group with each subset of a set \(S \), there is a matroid \(M(E) \), representable over any sufficiently large field, such that \(E = S \), and for any \(T \subseteq S \), the rank of \(M \setminus T \) is \(k \), and the automorphism group of \(M \setminus T \) is isomorphic to \(G(T) \).

1. Introduction

By matroids we mean both finite and infinite ones, but of finite rank only. For matroid terminology we refer to [11, 1].

Automorphisms of a matroid \(M = M(E) \) are isomorphisms of \(M \) onto itself. \(\text{Aut } M \) denotes the group of automorphisms of \(M \); whence it consists of those permutations of the set \(E \) which preserve both independence and dependence. (The latter is not a consequence of the former one if \(E \) is infinite.) For a graph \(X \) without parallel edges, the automorphism group \(\text{Aut } X \) is defined similarly, as a permutation group acting on the set of vertices. It is well known (Frucht [3]) that any finite group is isomorphic to \(\text{Aut } X \) for some finite graph \(X \). This graph may be required to be 3-connected. As the isomorphisms of the circuit matroids of 3-connected graphs are just the mappings induced by graph isomorphisms (Whitney [12]), it follows that any finite group is isomorphic to \(\text{Aut } M \) for some graphic matroid \(M \). The ranks of these matroids are, however, unbounded. This is necessarily so for matroids, representable over a fixed finite field (not only for graphic ones).

Mendelsohn [9] has proved that any (finite or infinite) group is isomorphic to the automorphism group of some projective plane. A projective plane being a rank 3 matroid, we obtain a positive answer to the question whether the rank of \(M \) with \(\text{Aut } M \cong G \) may be bounded. It is, however, a disadvantage of this construction that it associates infinite planes with finite groups, and, of course, the resulting planes are not vector-representable.

The aim of the present note is to solve both problems. We shall exhibit matroids of prescribed rank and automorphism group, representable over any
sufficiently large field (Theorem 3.1). Using a result of the author on automorphism groups of graphs, we derive that the automorphism group of several restrictions of a vector representable matroid of rank k (obtained by deleting subsets of a fixed subset of the underlying set) can be prescribed independently (Theorem 3.2, see the abstract).

The proof of these results is based on the following simple construction.

Definition 1.1. Let $k \geq 3$ be a positive integer and let $X = (V, E)$ be a (finite or infinite) graph. (Loops and parallel edges are admitted.) The rank-k star matroid of X, denoted by $S_k(X)$ is defined as follows:

$$S_k(X) = M(E);$$

$H \subseteq E$ is independent in M if either $|H| < k-1$, or $|H| = k$ and there is no vertex incident to all edges in H.

Remark 1.2. It is clear by definition that the rank of $S_k(X)$ never exceeds k, and $rk(S_k(X)) = k$ if and only if X has at least k edges and no point common to all edges of X.

We shall prove that the matroids $S_k(X)$ are representable over any sufficiently large field (Theorem 2.5 and Remark 2.6). Ideas due to Atkin [1] are employed to obtain an effective bound for this minimum size. On the other hand, if each vertex of X has degree $\geq k$, $k \geq 3$, then the automorphism groups of X and $S_k(X)$ are isomorphic (Lemma 2.1). This simple observation enables us to apply known results on automorphism groups of graphs to matroids.

2. Preliminaries

Lemma 2.1. Let $X = (V, E)$ be a (finite or infinite) graph without loops and parallel edges. Let $k \geq 3$ and assume that each vertex of G has degree $\geq k$. Then

$$\text{Aut } X \cong \text{Aut } S_k(X).$$

Proof. Let $A_1(X)$ denote the group of permutations of E induced by $\text{Aut } X$. By our assumption, obviously, $A_1(X) \cong \text{Aut } X$.

We assert that $A_1(X) = \text{Aut } M$ where $M = M(E) = S_k(X)$. Clearly, $A_1(X) \subseteq \text{Aut } M$.

For $v \in V$, let E_v denote the star of v, i.e., the set of edges, incident with v. Let us observe, that the sets $H = E_v$ ($v \in V$) have the following properties:

(a) $|H| \geq k$;
(b) $rk(H) = k - 1$ (in M);
(c) H is maximal with respect to (a) and (b).

Since clearly no subsets of E other than the E_v's have these properties, it
follows, that any automorphism $\alpha \in \text{Aut} M$ permutes the E_v's: given $\alpha \in \text{Aut} M$ there is a permutation β of V such that
\[
\alpha E_v = E_{\beta v} \quad (v \in V).
\]
For $v, w \in V$, $v \neq w$ we have $|E_v \cap E_w| = 1$ or 0 depending on whether v and w are adjacent or not. The cardinality of $E_v \cap E_w$ being preserved by α, it follows that $\beta \in \text{Aut} X$. For $e = \{v, w\} \in E$ we have $\{e\} = E_v \cap E_w$, $\{ae\} = E_{\beta v} \cap E_{\beta w}$, hence α is induced by $\beta, \alpha \in A_1(X)$. \hfill \Box

Lemma 2.2. Let x_1, \ldots, x_6 be distinct variables and F a field.

Let β_i, γ_i ($i = 1, 2, 3$) denote not necessarily different positive integers ≤ 6. The determinant
\[
\begin{vmatrix}
1 & 1 & 1 \\
x_{\beta_i} + x_{\gamma_i} & x_{\beta_i} + x_{\gamma_i} & x_{\beta_i} + x_{\gamma_i} \\
x_{\beta_i} x_{\gamma_i} & x_{\beta_i} x_{\gamma_i} & x_{\beta_i} x_{\gamma_i}
\end{vmatrix}
\]
vanishes (as a polynomial in $F[x_1, \ldots, x_6]$) if and only if either

(a) $\{\beta_i, \gamma_i\} = \{\beta_j, \gamma_j\}$ for some $1 \leq i < j \leq 3$; or

(b) $\bigcap_{i=1}^3 \{\beta_i, \gamma_i\} \neq \emptyset$; or

(c) $\beta_i = \gamma_i (i = 1, 2, 3)$ and F has characteristic 2.

Proof. Let t be a new variable. Let $f_i(t) = (t - x_{\beta_i})(t - x_{\gamma_i})$ ($i = 1, 2, 3$). Our determinant vanishes if and only if f_1, f_2, f_3 are linearly dependent over the field $F(x_1, \ldots, x_6)$. Any of (a), (b) and (c) is clearly a sufficient condition of this.

Let now $a_1 f_1 + a_2 f_2 + a_3 f_3 = 0$ where $a_1, a_2, a_3 \in F(x_1, \ldots, x_6)$, not all zero.

Assume first $\beta_1 = \beta_2$. Then $f_1(x_{\beta_1}) = f_2(x_{\beta_1}) = 0$, hence either $a_3 = 0$, or $f_3(x_{\beta_1}) = 0$. In the latter case $\beta_1 \in \{\beta_3, \gamma_3\}$, and (b) holds. In the first case f_1 and f_2 are linearly dependent, whence $\gamma_1 = \gamma_2$ and (a) holds.

By symmetry, we may now assume that the sets $\{\beta_i, \gamma_i\}$ ($i = 1, 2, 3$) are pairwise disjoint. If moreover, $\beta_i = \gamma_i (i = 1, 2, 3)$, we have twice a non-vanishing Vandermonde determinant, consequently (c) holds.

Assume now $\beta_1 \neq \gamma_1$. Replacing x_{β_1} at every occurrence by x_{β_1}, we obtain a vanishing determinant of the kind first treated. We conclude that either β_1 or β_2 belongs to $\{\beta_3, \gamma_3\}$, or $\gamma_1 = \gamma_2$, or if $\gamma_2 = \beta_2$ $\gamma_1 = \beta_1$. Any of these possibilities contradicts the assumptions that $\gamma_1 \neq \beta_1$ and the sets $\{\beta_i, \gamma_i\}$ are pairwise disjoint. \hfill \Box

Lemma 2.3 (Atkin [1, Lemma 3]). Suppose that a non-zero polynomial f in the polynomial ring $\mathbb{F}[x_1, \ldots, x_k]$ over a field \mathbb{F} has degree less than the order of \mathbb{F} in every single variable x_i. Then the function $f^*: \mathbb{F}^k \to \mathbb{F}$ defined by f is not identically zero.
We shall also need an analogous lemma for an infinite set of variables. Each cardinal is, as customary, identified with its initial ordinal number. \(\beta < \kappa \) below indicates that \(\beta \) is an ordinal less than \(\kappa \).

Lemma 2.4. Let \(\kappa \) be an infinite cardinal, \(I \) an integral domain of power \(\geq \kappa \), \(H \) a subset of \(I \), having power less than \(\kappa \), further \(\{ \gamma_\beta : \beta < \kappa \} \) a set of variables and \(m \) an integer. Let \(\mathcal{F} \) denote the subset of the polynomial ring \(\mathbb{I}[x_\beta : \beta < \kappa] \), consisting of those non-zero polynomials having degree \(\leq m \) in every single variable \(x_\beta \), and having all coefficients from \(H \).

Then there are elements \(\xi_\beta \in I (\beta < \kappa) \) such that, \(f(\xi_\beta : \beta < \kappa) \neq 0 \) for any \(f \in \mathcal{F} \).

Proof. Let \(\mathcal{F}_\lambda = \mathcal{F} \cap F[x_\beta : \beta < \lambda] (\lambda < \kappa) \). We shall define \(\xi_\beta \in I \) by transfinite recursion. Assume that the following condition \((A_\lambda)\) holds:

\[(A_\lambda) \quad \xi_\beta \text{ is defined for all } \beta < \lambda \text{ such that none of the polynomials in } \mathcal{F}_\lambda \text{ vanishes if substituting } \xi_\beta \text{ for } x_\beta (\beta < \lambda). \]

Any \(f \in \mathcal{F}_{\lambda+1} \) is a polynomial of \(x_\lambda \), with coefficients belonging to \(\mathcal{F}_\lambda \). By assumption, none of these coefficient polynomials turns into the zero polynomial if substituting \(\xi_\beta \) for \(x_\beta (\beta < \lambda) \). As \(|\mathcal{F}_\lambda| < \kappa \), it follows that there is a \(\xi_\beta \in I \) which is not a root of any of the resulting polynomials of \(x_\lambda \). This choice of \(\xi_\beta \) assures that \(A_{\lambda+1} \) is valid. For \(\lambda < \kappa \) a limit ordinal, \(A_\lambda \) clearly follows from the conditions \(A_{\mu}, \mu < \lambda \). Observing that \(A_0 \) holds, we obtain \(A_\kappa \) hence the lemma. \(\square \)

Theorem 2.5. Let \(k \geq 3 \) and let \(X = (V, E) \) denote a (finite or infinite) graph without loops and parallel edges. Then \(\text{St}_k(X) \) is representable over any field \(F \) of power \(|F| \geq |V|^{2k-1} \).

Proof. The case \(rk(\text{St}_k(X)) < k \) being obvious we assume \(rk(\text{St}_k(X)) = k \).

Let us associate distinct variables \(\{x_v : v \in V\} \) and \(\{y_{e,j} : e \in E, j = 1, 2, \ldots, k-3\} \) with the graph \(X \). First we represent the matrix \(M = M(E) = \text{St}_k(X) \) over the field \(F' = F(x_v, y_{e,j} : V \in V, e \in E, 1 \leq j \leq k-3) \). Let us associate the \(k \)-dimensional vector \(a_e = [1, x_v + x_{v', x_1, 1} y_{e,1}, \ldots, y_{e,k-3}] \) with \(e = \{v, w\} \in E \).

Let \(e_1, \ldots, e_k \) be a set of \(k \) distinct edges of \(X \). Let us consider the \(k \) by \(k \) matrix \(A = [a_{e_1}^T, \ldots, a_{e_k}^T] \) (\(^T\) indicates transpose.) Expanding the determinant of \(A \) as a polynomial of the \(y \)'s we see that the coefficient of \(\prod_{i=1}^k y_{e_i, \pi_i} \), where \(J \subseteq \{1, \ldots, k\}, |J| = k-3 \) and \(\pi \) is a bijection \(\pi : J \rightarrow \{1, \ldots, k-3\} \) is \pm a determinant of the form described in Lemma 2.2. It follows that if \(\det A = 0 \), then the edges \(e_j, j \in \{1, \ldots, k\} \setminus J \), have a vertex in common. (The other possibilities of Lemma 2.2 are excluded as the \(e_j \)'s are distinct and there are no loops in \(X \).) As this holds for any \(3 \) edges, all the \(k \) edges \(e_1, \ldots, e_k \) have a common vertex.

On the other hand, if \(e_1, \ldots, e_k \) have a common vertex then the first \(3 \) rows of \(A \) are linearly dependent over \(F' \) (by Lemma 2.2), hence \(\det A = 0 \).
To sum up: a k-tuple of edges is independent in M if and only if the corresponding vectors a_e are independent over F'. These k-tuples being the bases of M we see that the mapping $e \mapsto a_e$ is a representation of M over F'.

Now we use Lemmas 2.3 and 2.4 to obtain a representation of M over F rather than over F'.

Let us introduce the notation $\kappa = |V| - (k - 3) |E|$, and

$$\{x_\beta : \beta < \kappa\} = \{x_e : e \in V\} \cup \{v_{e,j} : e \in E, j = 1, \ldots, k - 3\}.$$

For $B = \{e_1, \ldots, e_k\}$ a basis of M, let f_B denote the non-zero polynomial

$$\det A = \det [a_{e_1}^\kappa, \ldots, a_{e_k}^\kappa] \in F[x_\beta : \beta < \kappa].$$

We have to find $\xi \in F (\beta < \kappa)$ such that none of these polynomials vanish if substituting ξ for x_e. (Such a substitution changes our representation $e \mapsto a_e$ over F' into a representation $e \mapsto a_e$ over F.)

Let 1 denote the unit element of F and $\mathcal{H} = \{l : -6 \leq l \leq 6\}$. Clearly, all coefficients of f_B belong to the finite set $\mathcal{H} \subseteq F$. Moreover, f_B has degree ≤ 2 in every single variable.

Let us first consider the case when V is infinite. Clearly, $|V| = \kappa$. Assume $|F| \geq \kappa$. Then an application of Lemma 2.4 shows that the required substitution exists.

Let now V be finite. Set $f = \prod f_B$ where the product is taken over all bases B of M. The degree of f in any variable $y_{e,j} (e \in E, j = 1, \ldots, k - 3)$ is at most $\binom{|E|}{k - 1}$; and in any variable $x_e (e \in V)$ it is at most $\deg v_{e,j}$. Hence, in both cases, it is less than $|V| |E|^{k-1}/(k - 1)! < |V|^{2k-1}$. An application of Lemma 2.3 completes the proof. \square

Remark 2.6. From the proof we obtain, for finite V, that

$$|F| > d_{\text{max}} \left(\frac{|E|}{k - 1} \right)$$

is sufficient, where d_{max} is the maximum degree of the vertices of X. This is not best possible. If X is an infinite graph without isolated vertices, our condition $|F| \geq |V|$ is clearly best possible.

3. Conclusions

Theorem 3.1. Given a group G and an integer $k \geq 3$ there exists a matroid M of rank k such that

(a) $\Aut M \cong G$;

(b) any $(k - 1)$-set is independent in M;

(c) M is representable over any field F of power $|F| \geq |G|$ for infinite G, and of power $|F| \geq f(|G|, k)$ for finite G (where the function $f(u, k)$ takes finite values).
Proof. This is a combination of Lemma 2.2 and Theorem 2.5, in view of the following result: Given a group G and an integer k there is a graph X (without loops and parallel edges) such that $\text{Aut }X \cong G$ and every vertex of X has degree $\geq k$. X may be required to be finite if G is finite and to have the same cardinality as G if G is infinite.

For finite G this result is due to Frucht [3, cf. 6, p. 169]. An obvious modification of his proof is necessary to obtain degrees $\geq k$. The existence of graphs X satisfying $\text{Aut }X \cong G$ for infinite G was proved independently by De-Groot [5] and G. Sabidussi [10], but the exact cardinality bound was first established in the proofs of much more general results by H. Harrin, Puitr and Vopěnka (see [7, 8]). □

Remark 3.2. A bound for $f(n, 3)$ can be obtained using Frucht’s theorem [4]: Given a finite group G of order n, there is a graph X, having $cn \log n$ vertices, each of degree ≥ 3, such that $\text{Aut }X \cong G$. For such a graph, $|E| = 3|V|/2$ whence, by Remark 2.6,

$$f(n, 3) \approx Cn^2 \log^2 n,$$

(c and C are constants.) With somewhat more effort, one can derive (using the same theorem of Frucht), that

$$f(n, k) \approx (Cn \log n)^{k-1}.$$

Theorem 3.2. Given an integer $k \geq 3$, a set S and a function $G : 2^S \to \text{Groups}$, associating a group with each subset of S, there is a matroid $M = M(E)$ such that

(i) $E \supseteq S$;
(ii) $\text{rank } M = \text{rank } (M \setminus S) = k$;
(iii) $\text{Aut } (M \setminus T) \cong G(T)$ for any $T \subseteq S$;
(iv) M is representable over any sufficiently large field.

Sufficiently large means: $\geq n_0(G, k)$ where $n_0(G, k)$ is finite if S and all groups in the range of G are finite; and $n_0(G, k) = \sum_{T \subseteq S} |G(T)|$ otherwise. (If we require (iii) for a subset L of 2^S only, then the infinite case, $n_0 = |S| + \sum_{T \subseteq L} |G(T)|$.)

Proof. Let $X = (V, E)$ be a graph and $T \subseteq E$. We observe that $S_k(V, E \setminus T) = S_k(X \setminus T)$ Hence, this result is a combination of Lemma 2.1, Theorem 2.5 and a result of the author [2]; a particular case of which is as follows: ($[W]^2$ denotes the set of unordered pairs from W.)

Given a set W and a function G associating a group $G(T)$ with each $T \subseteq [W]^2$, there exists a graph $X = (V, E)$ such that

(i) $V \supseteq W, E \supseteq [W]^2$;
(ii) $\text{Aut } (V, E \setminus T) \cong G(T)$ for any $T \subseteq [W]^2$;
(iii) $|V|$ is finite if W and all groups in the range of G are finite; $|V| = \sum_T |G(T)|$ otherwise.
It is easily seen, that one can additionally require each vertex in $(V, E \setminus \{W\})$ to have degree $\geq k$. Namely, one can join each point of X to all points of an asymmetric graph Y (having no non-trivial automorphism) (cf. Frucht [3]) whose vertices have degree $\geq k$. The new graph will satisfy (i), (ii), (iii) again, provided the complements of both X and Y are connected, which we may assume. □

4. Matroids of rank ≤ 2

We note, that the rank condition $k \geq 3$ is necessary. The matroids of rank ≤ 2 have an obvious structure: if $rk(M(S)) = 2$, then $M(S)$ is uniquely determined by the partition $S = S_0 \cup \{T_\alpha : \alpha \in I\}$ where S_0 consists of those points x for which $\{x\}$ is not independent; and the T_α's are the classes of the equivalence relation defined on $S \setminus S_0$ by

\[x \sim y \text{ if the family } \{x, y\} \text{ is not independent} \]

(I is a set of indices.)

If $|S_0| = a$, and the cardinal b appears c_b times as $|T_\alpha| (\alpha \in I)$, then obviously

\[\text{Aut}(M(S)) = S_a \times \prod_b (S_b \sim S_{c_b}) \]

where S_n denotes the symmetric group of degree n, and \sim indicates wreath product. (a, b, c_b may be infinite.)

References

[9] E. Mendelsohn, Every group is the collineation group of some projective plane, J. Geometry 2(1972) 97-106.