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Let ϕ : Z/p → GLn(Z) denote an integral representation of the
cyclic group of prime order p. This induces a Z/p-action on the
torus X = R

n/Z
n . The goal of this paper is to explicitly compute

the cohomology groups H∗(X/Z/p;Z) for any such representation.
As a consequence we obtain an explicit calculation of the integral
cohomology of the classifying space associated to the family of
finite subgroups for any crystallographic group Γ = Z

n
� Z/p with

prime holonomy.
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All rights reserved.

1. Introduction

Let G be a finite group and ϕ : G → GLn(Z) an integral representation of G . In this way G
acts linearly on Rn preserving the integral lattice Zn , hence inducing a G-action on the torus
Xϕ = X := Rn/Zn . The quotient X → X/G has the natural structure of a global quotient orbifold and
is an example of what is often called a toroidal orbifold. The goal of this paper is to explicitly com-
pute the cohomology groups H∗(X/G;Z) for the particular case where G = Z/p is the cyclic group of
prime order.

The indecomposable integral representations of Z/p have been completely classified (see [6]). In
general, if L is a ZG-lattice then there are unique integers r, s and t and an isomorphism

L ∼=
(⊕

r

Ai

)
⊕

(⊕
s

P j

)
⊕

(⊕
t

Z

)
,

where Z is the trivial Z/p-module, each Ai is an indecomposable module that corresponds to an
element of the ideal class group of Z[ζp], where ζp is a primitive p-th root of unity, and each P j
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is a projective indecomposable module of rank p as an abelian group. In this case L is said to be a
Z/p-module of type (r, s, t). The situation simplifies after localizing at the prime p. Let Z(p) be the
ring of integers localized at the prime p. Then (see [6]), there are only three distinct isomorphism
classes of indecomposable Z(p)G-lattices, namely the trivial module Z(p) , the augmentation ideal IG
and the group ring Z(p)G . Moreover, if L is any finitely generated ZG-lattice, then there is a ZG-lattice
L′ ∼= IGr ⊕ZGs ⊕Zt and a ZG-homomorphism f : L′ → L such that f is an isomorphism after tensoring
with Z(p) .

In this paper it is shown that given a ZG-lattice L induced by an integral representation ϕ , the
cohomology groups H∗(Xϕ/G;Z) only depends on the type of L. Moreover, if L is of type (r, s, t) then
explicit descriptions for these cohomology groups are obtained in terms of r, s and t . More precisely
the goal of this paper is to prove the following theorem.

Theorem 1. Let G = Z/p where p is a prime number. Suppose that X is the G-space induced by a ZG-lattice L
of type (r, s, t) and rank n. Then

Hk(X/G;Z) ∼= Zαk ⊕ (Z/p)βk ,

and the coefficients αk and βk are given as follows: consider the formal power series in x

F L(x) =
(

1 − (αx)p

1 − αx

)r(
1 + εpxp)s

(1 + x)t

subject to the relations α2 = 1, ε2 = α and εp = 1 for p > 2. Using these relations, F L(x) can be written in
the form

F L(x) =
∑
i�0

f ix
i +

∑
i�0

giαxi,

then

αk = 1

p

[(
n

k

)
+ (p − 1)( fk − gk)

]
.

Similarly, βk is obtained by writing the formal series in x

T L(x) = x(1 + x)t

1 − x2

[
pr x2(1 + x)s − x2 + 1 − (1 + αx)

(
1 + εp xp)s

(
1 − (αx)p

1 − αx

)r]

in the form T L(x) = ∑
i�0 βi xi + ∑

i�0 γiαxi , where α and εp subject to the same relations as above.

Toroidal orbifolds naturally appear in different geometric contexts. In dimension six they are a
source of key examples connected to mathematical aspects of orbifold string theory (see [3]). They
also arise in the context of spaces of representations; it can be shown that the moduli space of
isomorphism classes of flat connections on principal stable symplectic bundles over the torus (S1)n ,
can be described as the infinite symmetric product of a toroidal orbifold,

Rep
(
Zn, Sp

) := colim
m→∞ Rep

(
Zn, Sp(m)

) ∼= SP∞((
S1)n

/Z/2
)

where Z/2 acts diagonally by complex conjugation, an action which arises from the direct sum of
copies of the sign representation. In fact this space turns out to be a product of Eilenberg–MacLane
spaces determined precisely by the homology of the quotient orbifold (S1)n/Z/2 (see [2] for details).
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Similarly, recall that given a topological space Y , the m-th cyclic product of Y is defined to be the
quotient C Pm(Y ) := Y m/Z/m, where Z/m acts on Y m by a cyclic permutation. The calculations here
provide a complete computation for the homology of the p-th cyclic powers of any torus (S1)n , as the
permutation action corresponds to a direct sum of copies of the regular representation of Z/p. Note
that a method for such calculations was formulated long ago by Swan [10]; the approach outlined
here is of course much more explicit.

However the most important motivation for these calculations arises from the study of topological
invariants of crystallographic groups with prime holonomy. Given a rank n integral representation
of Z/p, it can be easily seen that this gives rise to an action of the semi-direct product Γ = Zn � Z/p
on Y = Rn with the following crucial properties: for a subgroup H ⊂ Γ , Y H is non-empty if and
only if H is a finite subgroup of Γ , and furthermore in that case Y H is contractible. Thus Y is a
universal space for the family of finite subgroups in Γ , denoted by EΓ (see [9] for definitions), and
the associated classifying space is BΓ = EΓ/Γ , which in this case is precisely the orbifold quotient
(S1)n/Z/p. Thus our main result together with the results in [5] can be reformulated as follows:

Theorem 2. Let Γ be a crystallographic group with holonomy of prime order p, expressed as an extension

1 → L → Γ → Z/p → 1. (1)

Then the cohomology of the classifying space for the family of all finite subgroups in Γ can be explicitly com-
puted and depends only on the representation type of L over the ring of integers localized at p as follows:

• If Γ is torsion-free then Γ is a Bieberbach group, BΓ = BΓ and H∗(BΓ ;Z) can be computed using [5,
Theorem 2].

• If Γ is not torsion-free, then the sequence (1) splits, Γ = L � Z/p and H∗(BΓ ;Z) can be computed using
Theorem 1.

Using methods from equivariant K -theory and an analysis analogous to that done in this paper,
these computations will serve as important input for the calculation of the complex K -theory of BΓ

for Γ a crystallographic group with prime holonomy.

2. Preliminaries

Let G be a finite group and ϕ : G → GLn(Z) an integral representation of G . Consider X = Xϕ the
G-space induced by the representation ϕ . Then the fibration sequence

X → X ×G EG → BG (2)

induces a long exact sequence of homotopy groups

· · · → πi(X) → πi(X ×G EG) → πi(BG) → πi−1(X) → ·· · .
This sequence is trivial for i > 1 and thus X ×G EG is an Eilenberg–MacLane space of type K (Γ,1),
where Γ := π1(X ×G EG) fits into a short exact sequence

1 → π1(X) → Γ → G → 1. (3)

The action of G on X makes

L := π1(X) ∼= H1(X;Z) ∼= Zn

into a ZG-module that corresponds to the representation ϕ . Moreover, [0] ∈ Rn/Zn = X is a fixed
point for this action and thus (2) has a section. This implies that the extension (3) splits and thus
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Γ ∼= L � G . For example, when the representation ϕ is faithful the group Γ is a crystallographic
group.

The cohomology groups of groups of the form Γ ∼= L � G , for G = Z/p with p a prime number,
were computed in [3, Theorem 1.1]. In there it was proved that the Lyndon–Hochschild–Serre spectral
sequence associated to the short exact sequence

1 → L → Γ → G → 1

collapses on the E2-term without extension problems. This can be seen as follows. Suppose first that
L is a ZG-lattice of the form L = IGr ⊕ ZGs ⊕ Zt . For such lattices it follows by [3, Theorem 3.2]
and [3, Proposition 3.3] that there is a special free resolution ε : F → Z of Z as a Z[L]-module
admitting an action of G compatible with ϕ . Thus by [3, Theorem 2.4] the corresponding Lyndon–
Hochschild–Serre spectral sequence collapses in this particular case. Suppose now that L is any
ZG-lattice. Then we can find a ZG-lattice L′ ∼= IGr ⊕ ZGs ⊕ Zt and a ZG-homomorphism f : L′ → L
such that f is an isomorphism after tensoring with Z(p) . By comparing the spectral sequences cor-
responding to L and L′ as done in [3, Theorem 4.1] it can be seen that the Lyndon–Hochschild–Serre
corresponding to L also collapses on the E2-term without extension problems. Therefore, for any
k � 0

Hk(Γ ;Z) ∼=
⊕

i+ j=k

Hi
(

G;
∧ j(

L∗)).

Here L∗ , as usual, denotes the dual G-module Hom(L,Z). As an application of this, by [3, Theo-
rem 1.2], if G = Z/p acts on X via a representation ϕ : G → GLn(Z), then for each k � 0

Hk
G(X;Z) ∼=

⊕
i+ j=k

Hi(G; H j(X;Z)
)
. (4)

This completely describes the additive structure of the equivariant cohomology groups Hk
G(X;Z).

Moreover, these groups can explicitly be computed as observed in [5] in the following way. Suppose
that L is a ZG-lattice of type (r, s, t) and rank n. Consider the formal power series in x

F L(x) =
(

1 − (αx)p

1 − αx

)r(
1 + εpxp)s

(1 + x)t

subject to the relations α2 = 1, ε2 = α and εp = 1 for p > 2. Using these relations, the formal se-
ries F L(x) can be written in the form

F L(x) =
∑
i�0

f ix
i +

∑
i�0

giαxi

for integer numbers f i and gi for i � 0. The coefficients f i and gi determine the type of the ZG-
module

∧i L. Indeed, by [5, Corollary 5.8] if

hi = 1

p

[(
n

i

)
+ (p − 1)( f i − gi)

]

then
∧i L is of type (gi,hi − f i, f i) and thus

H0
(

G,
∧i

L
)

= Zhi , H1
(

G,
∧i

L
)

= (Z/p)gi , H2
(

G,
∧i

L
)

= (Z/p) f i .
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As a corollary the following is obtained.

Corollary 3. Suppose G = Z/p acts on X via a representation ϕ : G → GLn(Z) inducing a ZG-lattice L of type
(r, s, t). Then for each k � 0

Hk
G(X;Z) ∼= Zak ⊕ (Z/p)bk

and the coefficients ak and bk are given as follows: write

F L(x) =
∑
i�0

f ix
i +

∑
i�0

giαxi

then

ak = 1

p

[(
n

k

)
+ (p − 1)( fk − gk)

]
.

Similarly the coefficients bk can be obtained in the following way. Fix k � 0 and write the formal power se-
ries

G L,k(x) = αx

(
1 − (αx)k

1 − αx

)(
1 − (αx)p

1 − αx

)r(
1 + εp xp)s

(1 + x)t

in the form G L,k(x) = ∑
i�0 ci,kxi + ∑

i�0 di,kαxi where α and εp subject to the same relations as above.

Then bk = ck,k is the coefficient of xk in G L,k(x).

This corollary can be used as a first step towards the computation of the cohomology groups of
the form Hk(X/G;Z) as is shown next.

Corollary 4. Let X be induced by an integral representation ϕ : G → GLn(Z) inducing a ZG-lattice of type
(r, s, t). Then

Hk(X/G;Z) = Fk ⊕ Tk,

where Fk is a free abelian group of rank

αk = 1

p

[(
n

k

)
+ (p − 1)( fk − gk)

]

and Tk is a p-torsion abelian group.

Proof. Consider the map φ : X ×G EG → X/G obtained by mapping EG to a point. Given x ∈ X ,
φ−1([x]) ∼= BGx , where Gx is the isotropy group of G at x. Since G = Z/p, then Gx is either the trivial
subgroup or G . In either case BGx has trivial cohomology with coefficients in Q and also with coef-
ficients in Fq , the field with q-elements for a prime q different from p. The Vietoris–Begle theorem
shows that φ induces isomorphisms

φ∗ : H∗(X/G;Q)
∼=−→ H∗

G(X;Q),

φ∗ : H∗(X/G;Fq)
∼=−→ H∗

G(X;Fq).
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Using the previous corollary and the universal coefficient theorem we see that

Hk
G(X;Q) ∼= Qαk and Hk

G(X;Fq) ∼= F
αk
q

and the corollary follows. �
The previous corollary reduces our problem to computing Tk , the p-torsion subgroup of

Hk(X/G;Z). The strategy that we will follow to compute these groups is as follows. Consider
φ : X ×G EG → X/G the map defined above and let F be the fixed point set of X under the action
of G . Then [4, Proposition VII 1.1] shows that φ induces an isomorphism

φ∗ : H∗(X/G, F ;Z) → H∗
G(X, F ;Z).

Via this isomorphism, the groups Tk can be computed using the following steps. First we compute
the p-torsion subgroups of H∗

G(X, F ;Z). Then we use this information together with the long exact
sequence in cohomology associated to the pair (X/G, F ) to deduce the structure of Tk .

We establish now some notation. Let R∗ = H∗(G,Z). Then R∗ can be seen as a graded commu-
tative ring whose structure is given by R∗ = Z[t]/(pt), where deg(t) = 2. Graded R∗-modules of the
form M = ⊕

n�0 Mn , where Mn is a finite dimensional Fp-vector space for n > 0, appear naturally in
our computations. For such modules we have the following definition.

Definition 5. Given a graded R∗-module M = ⊕
n�0 Mn as above, define the formal power series

in Z[[x]]

qM(x) := a1x + a2x2 + a3x3 + · · ·

where an = dimFp Mn for n > 0.

If M is a graded R∗-module M as above, the series qM(x) together with M0 completely deter-
mine the structure of M as an abelian group. For example, if L is a ZG-lattice, then H∗(G, L) is a
graded R∗-module of this kind and the series qH∗(G,L)(x) can be explicitly computed in the following
way. Suppose first that A is an indecomposable module of rank p − 1 that corresponds to an ele-
ment of the ideal class group of Z[ζp]. Then by [1, Corollary 1.7], it follows that S∗ := H∗(G, A) is
a graded R∗-module such that Sn = 0 for n even and Sn = Z/p for n > 0 odd. Also, given any pro-
jective indecomposable module P of rank p then by [1, Proposition 1.5], H∗(G, P ) = Z is the trivial
graded R∗-module concentrated on degree 0. Therefore, given a ZG-lattice L of type (r, s, t) there is
an isomorphism of graded R∗-modules

H∗(G, L) ∼= Zs ⊕ (
R∗)t ⊕ (

S∗)r
.

In particular

qH∗(G,L)(x) = rx + tx2 + rx3 + tx4 · · · (5)

= rx + tx2

1 − x2
. (6)

To compute the p-torsion subgroup of Hk
G(X, F ;Z) we use the Serre spectral sequence

Ei, j
2 = Hi(G, H j(X, F ;Z)

) 
⇒ Hi+ j
G (X, F ;Z) (7)
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associated to the pair (X, F ). In this spectral sequence when j and r are fixed, E∗, j
r is a graded

R∗-module of the kind considered in Definition 5 and each differential

dr : E∗, j
r → E∗, j−r+1

r

is homomorphism of graded R∗-modules of degree r. In here we will show that the different formal
power series q

E∗, j∞
(x), for j � 0, determine the p-torsion subgroups of Hk

G(X, F ;Z). This will be done

by determining the nontrivial differentials in the spectral sequence (7). To do this we first consider
the particular cases of ZG-lattices of type (r,0,0) in Section 4 and type (0, s,0) in Section 5. Then
we use this information to handle the general case in Section 6.

The following lemma plays a key role in our computations.

Lemma 6. Suppose that p is a prime number. Let G = Z/p act on a finistic space X with fixed point set F . If
there is an integer N such that Hk(X, F ;Z) = 0 for k > N, then Hk

G(X, F ;Z) = 0 for k > N.

Proof. This follows by applying [4, Exercise III.9] and [4, Proposition VII 1.1]. �
3. Structure of the fixed points

In this section we investigate the nature of the fixed point set of the action of G on a torus X
induced by a general ZG-lattice L.

To start, note that if L and M are two ZG-lattices then as G-spaces

XL⊕M = XL × XM . (8)

In particular this shows that F L⊕M = F L × F M . Here F L denotes the fixed point set of the action of G
on XL for a given ZG-lattice L.

We consider next the particular cases L = A, L = P and L = Z, where A and P are indecomposable
modules as of rank p − 1 and rank p respectively, as described before.

Lemma 7. Let A be an indecomposable module of rank p − 1 corresponding to an element of the ideal class
group of Z[ζp]. Then the fixed point set F of the G-action on the induced torus X is a discrete set with p points.

Proof. Consider the short exact sequence of G-modules defining the G-space X

0 → A → A ⊗ R → (A ⊗ R)/A = X → 0.

This short exact sequence induces a long exact sequence on the level of group cohomology

0 → H0(G, A) → H0(G, A ⊗ R) → H0(G, X) → H1(G, A) → H1(G, A ⊗ R) → ·· · .
Note that H1(G, A ⊗ R) = 0 and H0(G, A) = H0(G, A ⊗ R) = 0, thus there is an isomorphism

F = H0(G, X) ∼= H1(G, A) ∼= Z/p. �
Lemma 8. Let P be a projective indecomposable module of rank p. Then F P ∼= S1 . Moreover, there is a com-
mutative diagram

S1

h1

�
(S1)p

h2

F P
i

X P ,

(9)
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where � denotes the diagonal inclusion of S1 into (S1)p and h1 , h2 are covering maps of degree relatively
prime with p.

Proof. Consider the exact sequence defining X P

0 → P → P ⊗ R → X P → 0.

This yields a short exact sequence of the form

0 → P G → (P ⊗ R)G → (X P )G → 0

as H1(G, P ) = 0. Note that P G ∼= Z and (P ⊗ R)G ∼= R, therefore F = X G
P

∼= S1. To prove the sec-
ond assertion, suppose that L = ZG . Then in this particular case it is easy to see that the inclusion
i : FZG → XZG corresponds to the diagonal inclusion � : S1 → (S1)p . Let f : ZG → P be homomor-
phism of ZG-modules such that f is an isomorphism after tensoring with Z(p) . In particular, f is an
isomorphism after tensoring with R and we have a commutative diagram

0 Z

f G

R

( f ⊗1)G

(XZG)G

f̃

0

0 P G (P ⊗ R)G (X P )G 0.

The map f G : Z = (ZG)G → P G ∼= Z must be multiplication by a number q, where q is relatively
prime to p. This proves that the map

h1 : S1 → F P

induced by f is a degree q covering map. Similarly, h2 : (S1)p → X P is a covering map of degree
relatively prime to p. �

Notice that when L = Z is the trivial G-module then XZ = FZ = S1. As a corollary we obtain.

Corollary 9. Let X be the G-space induced by a ZG-lattice of type (r, s, t). Then

F := X G ∼=
⊔
pr

(
S1)s+t

.

Lemma 10. Let L and M be two ZG-lattices. Assume that f : L → M is a ZG-homomorphism that is an
isomorphism after tensoring with Z(p) . Then f induces an isomorphism

f ∗ : H∗
G(XM , F M;Z(p)) → H∗

G(XL, F L;Z(p)).

Proof. Let K = Z(p) . Consider the Serre spectral sequence with K -coefficients

Ei, j
2 = Hi(G, H j(XM , F M; K )

) 
⇒ Hi+ j
G (XM , F M; K ).

Similarly we obtain a spectral sequence Ẽ i, j
r associated to L. The map f : L → M induces a map of

spectral sequences

f i, j
r : Ei, j

r → Ẽ i, j
r .
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We will prove the lemma by showing that f induces an isomorphism on the corresponding E2-terms.
Let L∗

K = L∗ ⊗ K and M∗
K = M∗ ⊗ K . To start note that H j(XL; K ) ∼= ∧ j L∗

K and similarly H j(XM; K ) ∼=∧ j M∗
K . By hypothesis

∧ j L∗
M and

∧ j L∗
M are isomorphic KG-modules, with isomorphism induced

by f . Thus

f ∗ : H j(XM; K ) → H j(XL; K ) (10)

is an isomorphism of KG-modules. On the other hand, since f : L → M is an isomorphism after tensor-
ing with K , then L can be seen as a sub-lattice of M of finite index q, with q relatively prime with p.
Consider the map f G : F L → F M induced by f on the level of fixed points. An argument similar to
that in Lemma 8 can be used to show that f G is a covering map of degree relatively prime to p. In
particular

(
f G)∗

: H j(F M; K ) → H j(F L; K ) (11)

is an isomorphism of KG-modules. Finally, note that f induces a morphism between the long exact
sequences in cohomology with K -coefficients associated to the pairs (XL, F L) and (XM , F M). By (10),
(11) and the 5-lemma we conclude that

f ∗ : H∗(XM , F M; K ) → H∗(XL, F L; K )

is an isomorphism of KG-modules. This proves the lemma. �
4. Modules of type (r,0,0)

In this section we consider the particular case of a ZG-lattice L of type (r,0,0) determined by an
integral representation ϕ .

Suppose that L is such a lattice. Then as an abelian group L has rank n = r(p − 1) and thus the
associated torus X has rank r(p − 1). Consider the Serre spectral associated to the pair (X, F )

Ei, j
2 = Hi(G, H j(X, F ;Z)

) 
⇒ Hi+ j
G (X, F ;Z). (12)

In this case F is a finite set with pr points by Corollary 9. In particular Hk(X, F ) = 0 if k > r(p − 1),
thus Lemma 6 implies that Hk

G(X, F ) = 0 for k > r(p − 1). We will use this fact to show that in the
spectral sequence (12) all the differentials are trivial except for the differentials of the form

d j : E∗, j
j → E∗,1

j ,

whenever 1 � j � r(p − 1). Moreover, we will see that for such j the differential d j is injective on
positive degrees. To show this, note that as F is a discrete set then H0(X, F ) = 0 and for j � 2

H j(X, F ) ∼= H j(X) ∼=
∧ j

L∗.

Since L∗ is of type (r,0,0), if

F L(x) =
(

1 − (αx)p

1 − αx

)r

=
∑
i�0

f ix
i +

∑
i�0

giαxi
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and j � 2, then H j(X, F ) is a ZG-lattice of type (g j,h j − f j, f j) with

h j = 1

p

[(
n

j

)
+ (p − 1)( f j − g j)

]
.

In particular there is an isomorphism of graded R∗-modules

H∗(G, H j(X, F )
) ∼= Zh j− f j ⊕ (

R∗) f j ⊕ (
S∗)g j

. (13)

Define pr( j) to be the number of all possible sequences of integers l1, . . . , lr such that 0 � li � p − 1
and l1 + · · · + lr = j. Then in this case it is easy to see that for j even f j = pr( j) and g j = 0 and
for j odd f j = 0 and g j = pr( j). Let’s compute now H∗(G, H1(X, F )). The long exact sequence in
cohomology associated to the pair (X, F ) gives a short exact sequence of ZG-modules

0 → Zpr−1 → H1(X, F ) → H1(X) → 0.

In particular, as a group, H1(X, F ) is a free abelian group and there is a long exact sequence

· · · → Hi(G,Zpr−1) → Hi(G, H1(X, F )
) → Hi(G, H1(X)

)
δ−→ Hi+1(G,Zpr−1) → ·· · . (14)

We claim that when i is odd Hi(G, H1(X, F )) = 0. To see this it is enough to show that if i is odd
and sufficiently large Hi(G, H1(X, F )) = 0. Pick i odd with i > r(p − 1) so that Hi+1

G (X, F ) = 0 for
such i. In particular there are no nontrivial permanent cocycles in total degree i + 1 in the spectral
sequence (12). Trivially all the differentials with source Ei,1

2 = Hi(G, H1(X, F )) are zero and therefore

any element in Ei,1
2 must be in the image of some differential. However, (13) implies that any differ-

ential with target Ei,1
k has a trivial source. This shows that Hi(G, H1(X, F )) = 0 for i odd. In particular,

the long exact sequence (14) reduces to the short exact sequence

0 → Hi(G, H1(X)
) → Hi+1(G,Zpr−1) → Hi+1(G, H1(X, F )

) → 0, (15)

for i > 0 odd. Since H1(X) ∼= L∗ is a ZG-module of type (r,0,0) it follows that H1(X, F ) is a ZG-
module of type (0, r, pr − r − 1) and

H∗(G, H1(X, F )
) ∼= Zr ⊕

( ⊕
pr−r−1

R∗
)

.

This describes the E2-term of the spectral sequence (12). Consider now the Serre spectral sequence

Ẽ i, j
2 = Hi(G, H j(X)

) 
⇒ Hi+ j
G (X)

associated to the fibration sequence X → X ×G EG → BG . As it was pointed out before this se-
quence collapses on the E2-term. The inclusion f : X → (X, F ) defines a map of spectral sequences
f i, j
k : Ei, j

k → Ẽ i, j
k . Notice that f i, j

2 is an isomorphism when j � 2. This shows that the only possibly
nontrivial differentials in (12) are of the form

d j : E∗, j
j → E∗,1

j

for 2 � j � r(p −1). We determine next the nature of these differentials. Note that the factor Zh j− f j ⊂
(H j(X, F ))G lies in the image of the norm map. Consider the transfer map associated to the trivial
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subgroup {1} ↪→ G . This map preserves the filtrations that induce the Serre spectral sequence and
thus it induces a map of the corresponding spectral sequences

τ G
{1} : Hi({1}, H j(X, F )

) → Hi(G, H j(X, F )
)
.

Since the image of the transfer map τ G{1} : H0({1}, H j(X, F )) → H0(G, H j(X, F )) consists of elements in
the image of the norm map, it follows that all the differentials in the Serre spectral sequence (12) are
trivial on the summand Zh j− f j . Let’s show now that the differential d j is injective on positive degrees.

To see this it suffices to show that d j : Ei, j
j → Ei+ j,1

j is injective for i big enough. If i > r(p − 1)

then Hi
G(X, F ) = 0, therefore in total degree i with i > r(p − 1) there are no nontrivial permanent

cocycles. Since all the differentials landing in E∗, j
j are trivial for j � 2 this forces d j : Ei, j

j → Ei+ j,1
j to

be injective when i > r(p − 1).
The above can be summarized in the following way. If j = 1 then

q
E∗, j∞

(x) = 0. (16)

On the other hand, since H1(X, F ) is of type (0, r, pr − r − 1) then by (5)

qE∗,1
2

(x) = (pr − r − 1)x2

1 − x2
.

Also, d j : E∗, j
j → E∗,1

j is a homomorphism of graded R∗-modules of degree j that is injective on posi-

tive degrees and E∗, j
j = E∗, j

2 is a ZG-lattice of type (g j,h j − f j, f j), it follows that

qE∗,1
j+1

(x) = qE∗,1
j

(x) −
(

f j + xg j

1 − x2

)
x j .

Therefore

qE∗,1∞ (x) = (pr − r − 1)x2

1 − x2
−

∑
j�2

(
f j + xg j

1 − x2

)
x j (17)

= 1

1 − x2

[(
pr − 1

)
x2 + 1 −

∑
j�0

( f j + xg j)x j
]
. (18)

This completely characterizes the E∞-term in the spectral sequence (12) and determines
H∗

G(X, F ;Z) up to extension problems. Let’s assume for a moment that there are no extension prob-
lems in this case. If this is true then

Hk
G(X, F ;Z) ∼= Zκk ⊕ (Z/p)λk ,

for some integers κk and λk . Moreover, the integers λk are determined by the formal series

Q̄ L(x) :=
∑
j�0

λ jx
j =

∑
j�0

x jq
E∗, j∞

(x).

From (16) and (18) it follows that

Q̄ L(x) =
∑
j�1

x jq
E∗, j∞

(x) = x

1 − x2

[
pr x2 − x2 + 1 −

∑
j�0

( f j + xg j)x j
]
.
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Let’s show now that indeed there are no extension problems in the spectral sequence (12). To see
this we need to consider the Serre spectral sequence computing H∗

G(X, F ;F), where F = Q, F = Fp

and F = Fq , for a prime number q different from p. Arguments similar to those formulated above can
be applied in these cases to obtain explicit descriptions of the E∞-term in these spectral sequences.
This way we obtain

Hk
G(X, F ;Q) ∼= Qκk ,

Hk
G(X, F ;Fq) ∼= F

κk
q ,

Hk
G(X, F ;Fp) ∼= F

κk+λk+λk+1
p .

The only way that this is possible is that indeed there are no extension problems in the spectral
sequence (12). To finish note that in Lemma 16 it is proved that the p-torsion of Hk(X/G;Z) is an
Fp-vector space of dimension βk that in this case equals λk . Thus these groups are determined by the
formal power series

Q L(x) :=
∑
j�0

β jx
j = Q̄ L(x).

To find the explicit description for the series Q L(x) notice that

(1 + αx)F L(x) = (1 + αx)

(
1 − (αx)p

1 − αx

)r

=
∑
i�0

( f i + xgi)xi +
∑
i�0

α(xfi + gi)xi .

Thus if

T L(x) = x

1 − x2

[
pr x2 − x2 + 1 − (1 + αx)

(
1 − (αx)p

1 − αx

)r]

then T L(x) = Q L(x)+αRL(x), for some RL(x) ∈ Z[[x]]. This together with Corollary 4 prove the follow-
ing theorem.

Theorem 11. 2 Suppose that X is induced by a ZG-lattice L of type (r,0,0). Then

Hk(X/G;Z) ∼= Zαk ⊕ (Z/p)βk ,

where the coefficients αk and βk are given as follows: using the same relations as before, write the formal
power series in x in the form

F L(x) =
(

1 − (αx)p

1 − αx

)r

=
∑
i�0

f ix
i +

∑
i�0

giαxi

then

αk = 1

p

[(
r(p − 1)

k

)
+ (p − 1)( fk − gk)

]
.

2 This result forms part of the Doctoral dissertation of the second author (see [8]).
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Similarly, βk is obtained by writing the formal series in x

T L(x) = x

1 − x2

[
pr x2 − x2 + 1 − (1 + αx)

(
1 − (αx)p

1 − αx

)r]

in the form T L(x) = ∑
i�0 βi xi + ∑

i�0 γiαxi , where α and εp subject to the same relations as before.

Example. It is easy to see that in Theorem 11 the coefficients βk are given by

βk =
{∑r(p−1)

j=k pr( j) if k is odd and k > 1,

0 else.

Here, as defined above, pr( j) is the number of all possible sequences of integers l1, . . . , lr such that
0 � li � p − 1 and l1 + · · · + lr = j. For example when p = 2, if X is induced by a ZG-lattice of type
(r,0,0) then

Hk(X/G;Z) ∼=
⎧⎨
⎩

Z(r
k) if k is even, 0 � k � r,

(Z/2)(
r
k)+( r

k+1)+···+(r
r) if k is odd, 1 < k � r,

0 else.

Remark. Independently and by different methods, Davis and Lück in [7] obtained the same answers
for the cohomology groups of the form H∗(X/G;Z), where X is the G-space induced by a ZG-lattice
of type (r,0,0).

5. Modules of type (0, s,0)

In this section we compute the cohomology groups of the form H∗(X/G;Z), where now X is
induced by a module L of type (0, s,0). We begin by considering the particular case L = (ZG)s and
later extend the computations for a general module.

Lemma 12. Suppose that L = (ZG)s . Consider the formal power series in x

F (x) = (
1 + εp xp)s =

∑
i�0

f ix
i +

∑
i�0

giαxi,

O (x) = (1 + x)s =
∑
i�0

vix
i

subject to the same relations as before. Then for j � 1, H j(X, F ) is a ZG-lattice of type (g j + v j, w j − f j, f j),
where

w j = 1

p

[(
sp

j

)
−

(
s

j

)
+ (p − 1)( f j − g j − v j)

]
.

Proof. Write L = P1 ⊕ · · · ⊕ P s , where P j = ZG for 1 � j � s and let i : F → X be the inclusion map.
Then, up to homeomorphism, i can be identified with the diagonal inclusion of (S1)s into ((S1)p)s .
This shows that

i∗ : H j(X) → H j(F )
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is surjective j � 0. Because of this, the long exact sequence in cohomology associated to the pair
(X, F ) reduces to the different short exact sequences

0 → H j(X, F ) → H j(X) → H j(F ) → 0.

In particular, H j(X, F ) is a free abelian group (ignoring the G-action) and there is a long exact se-
quence

· · · → Hk(G, H j(X, F )
) → Hk(G, H j(X)

) i∗−→ Hk(G, H j(F )
)

δ−→ · · · . (19)

We claim that the map i∗ : Hk(G, H j(X)) → Hk(G, H j(F )) is trivial when k > 0. To see this note that

H j(X) ∼=
∧ j

H1(X) ∼=
∧ j

L∗ ∼=
∧ j(

P∗
1 ⊕ · · · ⊕ P∗

s

)

and by the Kunneth theorem there is a commutative diagram

Hk(G, H j(X))
i∗

∼=

Hk(G, H j(F ))

∼=
⊕

n1+···ns= j Hk(G,
∧n1 P∗

1 ⊗ · · · ⊗ ∧ns P∗
s )

εn1,...,ns ⊕
n1+···ns= j Hk(G,

∧n1 Z ⊗ · · · ⊗ ∧ns Z),

where εn1,...,ns is induced by the inclusion map i : F → X . Notice that the G-module
∧n1 Z ⊗

· · · ⊗ ∧ns Z is trivial unless 0 � nq � 1 for all q. Suppose then that 0 � nq � 1 for all q. Since
n1 + · · · + ns = j � 1 it follows that nq = 1 for some q and therefore

∧n1 P∗
1 ⊗ · · · ⊗ ∧ns P∗

s has
trivial cohomology. This shows that in any case the map i∗ : Hk(G, H j(X)) → Hk(G, H j(F )) is trivial
for k > 0 and (19) reduces to the short exact sequence

0 → Hk−1(G, H j(F )
)

δ−→ Hk(G, H j(X, F )
) f ∗−→ Hk(G, H j(X)

) → 0 (20)

for k > 1. This sequence splits for k > 1 as it is a short exact sequence of vector spaces over Fp . The
lemma follows using the fact that H j(X) is a ZG-lattice of type (g j,h j − f j, f j) where

F (x) = (
1 + εpxp)s =

∑
i�0

f ix
i +

∑
i�0

giαxi

and the fact that H j(F ) is of type (0,0, v j) with (1 + x)s = ∑
j�0 v j x j . �

The previous lemma can be used to determine the p-torsion of Hk
G(X, F ;Z) in this case. The

following theorem is then obtained.

Theorem 13. Suppose that X is induced by the ZG-lattice L = (ZG)s . Then the p-torsion subgroup of
Hk

G(X, F ;Z) is an Fp-vector space of dimension λk, where λk is obtained by writing the formal series in x

T̄ L(x) = x

1 − x2

[
(1 + x)s − (1 + αx)

(
1 + εpxp)s]

in the form T̄ L(x) = ∑
i�0 λi xi + ∑

i�0 κiαxi , where α and εp subject to the same relations as above.
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Proof. As before write L = P1 ⊕ · · · ⊕ P s , where P j = ZG for 1 � j � s. The proof of the theorem
follows by a careful study of the differentials in the Serre spectral sequence

Ei, j
2 = Hi(G, H j(X, F )

) 
⇒ Hi+ j
G (X, F ). (21)

Consider the natural map of pairs f : X → (X, F ). If j > s then

f ∗ : H j(X, F ) → H j(X)

is an isomorphism and the Serre spectral sequence

Ẽ i, j
2 = Hi(G, H j(X)

) 
⇒ Hi+ j
G (X)

collapses on the E2-term. Therefore any nontrivial differential in (21) lands in Ei, j
k for 1 � j � s. By

the previous lemma for j � 1

H∗(G, H j(X, F )
) ∼= Zw j− f j ⊕ (

R∗) f j ⊕ (
S∗)g j+v j

where f j , g j , w j and v j are as described there. Note that in particular v j = (s
j

)
for all j � 1 and

f j = g j = 0 if p � j. As in the previous section all the differentials are trivial in the summand Zw j− f j ⊂
H0(G, H j(X, F )) as it consists of elements in the image of the norm map. We are going to show that
in this case all the differentials are trivial except for the ones of the form

dl(p−1)+1 : E∗,lp
l(p−1)+1 → E∗,l

l(p−1)+1, (22)

whenever 1 � l � s. Moreover, we are going to show that

E∗,lp
l(p−1)+1

∼= Zwlp− flp ⊕ (
R∗) flp ⊕ (

S∗)glp+vlp , (23)

E∗,l
l(p−1)+1

∼= Zwl ⊕ (
S∗)vl , (24)

and the homomorphism dl(p−1)+1 maps the factor (R∗) flp ⊕ (S∗)glp injectively on positive degrees.
Suppose for a moment that this is true. Then for all l � 1

q
E∗,l

l(p−1)+1
(x) = vlx

1 − x2

and since dl(p−1)+1 is a homomorphism of graded R∗-modules of degree l(p − 1) + 1 then

q
E∗,l∞

(x) = q
E∗,l

l(p−1)+2
(x) = vl

1 − x2
x −

(
flp + glpx

1 − x2

)
xl(p−1)+1.

A similar argument to the one provided below to study the differentials in the spectral sequence (21)
can be used to handle the case where the coefficients in the sequence (21) are Q, Fp and Fq , where
q is a prime different to p. This can be used to show that there are no extension problems in the
spectral sequence (21). Therefore, the p-torsion of Hk

G(X, F ) is an Fp -vector space of dimension λk
and
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Q̄ L(x) :=
∑
l�0

λlx
l =

∑
l�0

xlq
E∗,l∞

(x)

=
∑
l�1

(
vl

1 − x2

)
xl+1 −

∑
l�1

(
flp + glpx

1 − x2

)
xlp+1

= x

1 − x2

[
(1 + x)s −

∑
l�0

( flp + glpx)xlp
]
.

Notice that

F L(x) = (
1 + εpxp)s =

∑
i�0

( f i + αgi)xi =
∑
l�0

( flp + αglp)xlp,

and thus

(1 + αx)F L(x) =
∑
i�0

( f i + xgi)xi +
∑
i�0

α(xfi + gi)xi .

Therefore

T̄ L(x) := x

1 − x2

[
(1 + x)s − (1 + αx)

(
1 + εpxp)s]

,

can be written in the form T̄ L(x) = Q̄ L(x) + α R̄ L(x), for some formal power series with integer coeffi-
cients R̄ L(x). This together with Corollary 4 proves the theorem.

Induction on s will be used to prove statements (22), (23) and (24). When s = 1 then v1 = 1,
f p = 1 and gp = 0 for p > 2. When p = 2, f2 = 0 and g2 = 1. In any case, by Lemma 12 the only
possible nontrivial differential is

dp : E∗,p
p

∼= Zw p− f p ⊕ (
R∗) f p ⊕ (

S∗)gp → E∗,1
p

∼= Zw1 ⊕ S∗.

In this case, Lemma 8 implies that Hi(X, F ) = 0 if i > sp. Using Lemma 6 for such i we have
Hi

G(X, F ) = 0. Since there are no nontrivial differentials landing in E∗,p
p it follows that dp is injec-

tive for sufficiently high degrees and the statements follows as dp is a homomorphism of graded
R∗-modules of degree p. Suppose that the statements are true for s � 1 and suppose

L = P1 ⊕ · · · ⊕ P s+1,

where Pi = ZG for all 1 � j � s + 1. For every 1 � k � s + 1 let

L(k) := P1 ⊕ · · · ⊕ P̂k ⊕ · · · ⊕ P s+1,

where as usual P̂k means that the factor Pk is not included. For such k we have natural projection
and inclusion maps

ik : L(k) → L and πk : L → L(k).

These are homomorphisms of ZG-modules that satisfy πk ◦ ik = 1. Moreover, these maps induce
G-equivariant maps

ik : XL(k) → XL and πk : XL → XL(k)
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such that πk ◦ ik = 1. By comparing the Serre spectral sequences associated to the pairs (XL(k), F L(k))

and (XL, F L) using the maps πk and ik for 1 � k � s + 1, it follows by induction that

dl(p−l)+1 : E∗,lp
l(p−1)+1 → E∗,l

l(p−1)+1

is as claimed in (22) for 1 � l � s. Also, we can conclude that if 1 � j � sp and p � j, then

dr : E∗, j
r → E∗, j−r+1

r

is trivial for all r. Consider now the graded R∗-modules of the form E∗,s+1
r , for r � 2. There are two

possibilities depending whether p divides s + 1 or not. Suppose first that p � (s + 1). In this case
f s+1 = gs+1 = 0 and vs+1 = 1. Thus by Lemma 12

E∗,s+1
2

∼= Zws+1− f s+1 ⊕ (
R∗) f s+1 ⊕ (

S∗)gs+1+vs+1 ∼= Zws+1 ⊕ S∗.

Note that 1 � s + 1 � sp and p � (s + 1), then by the previous comment it follows that all the differen-
tials starting at E∗,s+1

r are trivial for all r � 2. By Lemma 6 there are no nontrivial permanent cocycles
in total degree bigger than (s + 1)p. Therefore if i is odd with i > (s + 1)p then all the elements in
Ei,s+1

2 = 0 must be in the image of some differential dr : Ei−r,s+r → Ei,s+1
r with r � 2. Note that if

sp < j < (s + 1)p then E∗, j
2

∼= Zw j , in particular E∗, j
2 is a graded R∗-module concentrated on degree 0

and consists of elements in the image of the norm map. Thus all differentials starting at E∗, j
r are triv-

ial for all r � 2. Because of this and the induction hypothesis, the only possible nonzero differential
that has E∗,s+1

r as target for some r is

d(s+1)(p−l)+1 : E∗,(s+1)p
(s+1)(p−1)+1 → E∗,s+1

(s+1)(p−1)+1.

This shows that d(s+1)(p−l)+1 must be nontrivial,

E∗,(s+1)p
(s+1)(p−l)+1

∼= E∗,(s+1)p
2

∼= Zw(s+1)p− f(s+1)p ⊕ (
R∗) f(s+1)p ⊕ (

S∗)g(s+1)p

and the restriction of dl(p−1)+1 to the factor (R∗) f(s+1)p ⊕ (S∗)g(s+1)p is injective on positive degrees.
This proves the induction hypothesis in this case. The case p | (s + 1) is handled in a similar way. �

Suppose now that L is a ZG-lattice of type (0, s,0). Then we can find a ZG-homomorphism

f : (ZG)s → L

that is an isomorphism after tensoring with Z(p) . By Lemma 10 f induces an isomorphism

f ∗ : H∗
G(XL, F L;Z(p)) → H∗

G(X(ZG)s , F(ZG)s ;Z(p)).

This shows that the p-torsion of H∗
G(XL, F L;Z) is an Fp -vector space of dimension λk , where λk

is determined by the formal power series Q̄ L(x) = ∑
j�0 λ j x j . Finally, in Lemma 16 the long exact

sequence in cohomology associated to the pair (X/G, F ) is studied to conclude that p-torsion of
Hk(X/G;Z) is also Fp-vector space of dimension βk and the coefficients βk are determined by

Q L(x) :=
∑
j�0

β jx
j = Q̄ L(x) − x

[
(1 + x)s − 1

]
.

This proves the following theorem.
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Theorem 14. Suppose that X is induced by a ZG-lattice L of type (0, s,0). Then

Hk(X/G;Z) ∼= Zαk ⊕ (Z/p)βk ,

where the coefficients αk and βk are given as follows: write the formal power series in x

F L(x) = (
1 + εp xp)s =

∑
i�0

f ix
i +

∑
i�0

giαxi

where ε2 = α and εp = 1 for p > 2. Then

αk = 1

p

[(
sp

k

)
+ (p − 1)( fk − gk)

]
.

Similarly, βk is obtained by writing the formal series in x

T L(x) = x

1 − x2

[
x2(1 + x)s − x2 + 1 − (1 + αx)

(
1 + εpxp)s]

in the form T L(x) = ∑
i�0 βi xi + ∑

i�0 γiαxi , where α and εp subject to the same relations as above.

6. The general case

The information collected in the previous two sections is now assembled to compute the coho-
mology groups H∗(X/G;Z), where the G-space X is induced by a general ZG-lattice L.

We start by computing the following special case.

Theorem 15. Suppose that X is the G-space associated to a ZG-lattice L of type (r, s,0). Then the p-torsion
subgroup of Hk

G(X, F ;Z) is an Fp-vector space of dimension λk. The coefficients λk are obtained by writing
the formal series in x

T̄ L(x) = x

1 − x2

[
(1 + x)s(pr x2 − x2 + 1

) − (1 + αx)
(
1 + εp xp)s

(
1 − (αx)p

1 − αx

)r]

in the form T̄ L(x) = ∑
i�0 λi xi + ∑

i�0 κiαxi , where α and εp subject to the same relations as before.

Proof. For simplicity we are going to consider the case p > 2. The case p = 2 is handled in a similar
way. It is enough to prove the theorem for a ZG-lattice of the form L = L1 ⊕ L2 where L1 = ⊕

r Ai
and L2 = ⊕

s P j with Ai an indecomposable module of rank p − 1 as before and P j = ZG for all
1 � j � s. This reduction is possible by Lemma 10 and the fact that given any ZG-lattice M of type
(r, s,0) then we can find a homomorphism of G-modules f : L → M that is an isomorphism after
tensoring with Z(p) . In this case, by (8) X = XL1 × XL2 and F = F L1 × F L2 . Also F L1 is a finite set with
pr points, F L2

∼= (S1)s and the inclusion i2 : F L2 → XL2 can be identified, up to homeomorphism, with
the diagonal inclusion � : (S1)s → ((S1)p)s . Consider the Serre spectral sequence

Ei, j
2 := Hi(G, H j(X, F ;Z)

) 
⇒ Hi+ j
G (X, F ;Z). (25)

We are going to study this spectral sequence by determining explicitly it’s E2-term and the nontrivial
differentials. We start investigating the ZG-module H j(X, F ) for j � 1. When j = 1 it is easy to see
that

H1(X, F ) ∼= H1(XL1 , F L1) ⊕ H1(XL2 , F L2),



132 A. Adem et al. / Journal of Algebra 344 (2011) 114–136
in particular, by the work done in Sections 4 and 5 it follows that H1(X, F ) is a ZG-lattice of type
(s, r, pr − r − 1). Suppose now that j � 2 and consider the long exact sequence

· · · → H j−1(F )
δ−→ H j(X, F ) → H j(X)

i∗−→ H j(F ) → ·· ·

induced by the pair (X, F ). Note that H j(F ) ∼= Zpr(s
j) and Im(i∗) ∼= Z(s

j) , therefore the previous se-
quence reduces to the different short exact sequences

0 → Z(pr−1)( s
j−1) → H j(X, F ) → M j → 0, (26)

where M j fits into the short exact sequence of ZG-modules

0 → M j → H j(X)
i∗−→ Z(s

j) → 0. (27)

Since M j is a subgroup of a free abelian group, then M j is a ZG-lattice. To determine it’s type recall
that H j(X) is of type (g j,h j − f j, f j), where

F L(x) = (
1 + εpxp)s

(
1 − (αx)p

1 − αx

)r

=
∑
i�0

f ix
i +

∑
i�0

giαxi

and h j is determined by f j , g j and the rank of H j(X). Explicitly,

h j = 1

p

[(
n

j

)
+ (p − 1)( f j − g j)

]
.

Using the same method that was used in Lemma 12, it can be proved that

i∗ : Hk(G, H j(X)
) → Hk(G,Z(s

j)
)

is the trivial map for k > 0. Therefore, the long exact sequence associated in group cohomology to the
short exact sequence (27) reduces to the short exact sequences

0 → Hk−1(G,Z(s
j)
) → Hk(G, M j) → Hk(G, H j(X)

) → 0,

for k > 1. This shows that M j is of type (g j +
(s

j

)
,m j − f j, f j) and m j is determined by f j , g j and the

rank of M j as above. On the other hand, the short exact sequence (26) yields a long exact sequence

· · · → Hk(G,Z(pr−1)( s
j−1)

) → Hk(G, H j(X, F )
) → Hk(G, M j)

∂−→ · · · . (28)

When j � 2 the connecting homomorphism

∂ : Hk(G, M j) → Hk+1(G,Z(pr−1)( s
j−1)

)

is trivial for k > 0. This can be seen by comparing the long exact sequence (28) with that associated
to the pair (XL1 × F L2 , F L1 × F L2 ). Therefore (28) reduces to the short exact sequence

0 → Hk(G,Z(pr−1)( s
j−1)

) → Hk(G, H j(X, F )
) → Hk(G, M j) → 0
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for k > 0. This sequence splits as it is a short exact sequence of Fp-vector spaces. This shows that
H j(X, F ) is a ZG-lattice of type

(g j + v j, w j − f j − u j, f j + u j),

where u j = (pr − 1)
( s

j−1

)
and v j = (s

j

)
and the coefficient w j is determined in the same way as h j .

In particular, there is an isomorphism of graded R∗-modules

E∗,1
2

∼= Zr ⊕ (
R∗)pr−r−1 ⊕ (

S∗)s

∼= Zr ⊕ (
R∗)u1−r ⊕ (

S∗)v1

and for j � 2

E∗, j
2

∼= Zw j− f j−u j ⊕ (
R∗) f j+u j ⊕ (

S∗)g j+v j
.

This completely describes the E2-term of the spectral sequence (25). The differentials in this spectral
sequence can be determined explicitly in a similar fashion as it was done in Theorems 11 and 13.
As a general rule, on positive degrees the terms of the form (R∗) f j ⊕ (S∗)g j are the source of a non-
trivial differential, hence these terms do not survive to the E∞-term. Also the terms of the form
(R∗)u j ⊕ (S∗)v j are the target of nontrivial differentials. More precisely, write

(
1 − (αx)p

1 − αx

)r

=
∑
i�0

yix
i +

∑
i�0

ziαxi .

Then an inductive argument on s while keeping r fixed similar to the one provided in Theorem 13
shows that differentials in this spectral sequence are given as follows:

• Suppose that 1 � l � s, then just as in Theorem 13

dl(p−1)+1 : E∗,lp
l(p−1)+1 → E∗,l

l(p−1)+1

is such that

qIm dl(p−1)+1(x) =
(s

l

)
1 − x2

xl(p−1)+1.

• Suppose that 1 � l � s + 1 and 1 � k � rp are such that (l − 1)(p − 1) + k � 2, then

d(l−1)(p−1)+k : E∗,(l−1)p+k
(l−1)(p−1)+k → E∗,l

(l−1)(p−1)+k

is such that

qIm d(l−1)(p−1)+k (x) =
(

s

l − 1

)(
yk + zkx

1 − x2

)
x(l−1)(p−1)+k.

• All the other differentials are trivial.
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Let h(x) = ∑
k�1(yk + zkx)xk . Then

qE∗,1∞ (x) = 1

1 − x2

[(
sx − sxp) + (

pr − r − 1
)
x2 −

∑
k�2

(yk + zkx)xk
]

= 1

1 − x2

[
s
(
x − xp) + (

pr − 1
)
x2 −

∑
k�1

(yk + zkx)xk
]

= 1

1 − x2

[
s
(
x − xp) + (

pr − 1
)
x2 − h(x)

]
.

Also, for j � 2

q
E∗, j∞

(x) = 1

1 − x2

[
v jx + u jx

2 −
(

s

l

)
xl(p−1)+1

]
− 1

1 − x2

(
s

j − 1

)[∑
k�1

(yk + zkx)x( j−1)(p−1)+k
]

= 1

1 − x2

[(
s

j

)(
x − x j(p−1)+1) +

(
s

j − 1

)((
pr − 1

)
x2 − h(x)x( j−1)(p−1)

)]
.

In the spectral sequence (25) there are no extensions problems. This can be seen by studying in
the same way the sequence (25) with coefficients in Q, Fp and Fq , for a prime q different from p.
Therefore the p-torsion of Hk

G(X, F ;Z) is an Fp-vector space of dimension λp and these coefficients
are determined by the formal power series

Q̄ L(x) :=
∑
j�0

λ jx
j =

∑
j�1

x jq
E∗, j∞

(x)

= 1

1 − x2

[∑
j�1

(
s

j

)(
x j+1 − x jp+1)]

+ 1

1 − x2

[(
pr − 1

)
x2

(∑
j�1

(
s

j − 1

)
x j

)
− h(x)

(∑
j�1

(
s

j − 1

)
x( j−1)p+1

)]

= x

1 − x2

[((
pr − 1

)
x2 + 1

)
(1 + x)s − (

1 + xp)s(
h(x) + 1

)]
.

Note that h(x) + 1 = ∑
k�0(yk + zkx)xk and

(
1 − (αx)p

1 − αx

)r

=
∑
i�0

(yi + αzi)xi .

Therefore

(1 + αx)

(
1 − (αx)p

1 − αx

)r

=
∑
k�0

(yk + zkx)xk +
∑
k�0

α(ykx + zk)xk.

This shows that

T̄ L(x) := x

1 − x2

[
(1 + x)s((pr − 1

)
x2 + 1

) − (1 + αx)
(
1 + εpxp)s

(
1 − (αx)p

1 − αx

)r]
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can be written in the form T̄ L(x) = Q̄ L(x) + α R̄ L(x), for some formal power series with integer coeffi-
cients R̄ L(x). �
Lemma 16. Let X be the G-space induced by a ZG-lattice L of type (r, s,0). Then the p-torsion subgroup of
Hk(X/G;Z) is a finite dimensional vector space over Fp of dimension βk. The coefficients βk, are determined
by the formal power series

Q L(x) :=
∑
k�0

βkxk = Q̄ L(x) − x
[
(1 + x)s − 1

]
.

Here Q̄ L(x) := ∑
k�0 λkxk and λk is the dimension of the p-torsion subgroup of Hk

G(X, F ;Z) as an Fp-vector
space.

Proof. Let us consider first the particular case where the ZG-lattice L is of the form L = (IG)r ⊕(ZG)s .
The previous lemma shows that the p-torsion subgroup of Hk

G(X, F ;Z) is an Fp-vector space of di-
mension λk . The natural map

φ : X ×G EG → X/G

induces an isomorphism

φ∗ : H∗(X/G, F ;Z) → H∗
G(X, F ;Z) (29)

by [4, Proposition VII 1.1]. Therefore the same is true for Hk(X/G, F ;Z). To handle H∗(X/G;Z) con-
sider the long exact sequence in cohomology associated to the pair (X/G, F )

· · · → H j−1(F ;Z)
δ−→ H j(X/G, F ;Z) → H j(X/G;Z) → H j(F ;Z) → ·· · . (30)

By Corollary 9

F ∼=
⊔
pr

(
S1)s

,

in particular H j(F ;Z) ∼= Z
pr(s

j) . By comparing the long exact sequence (30) with the exact sequences
in cohomology and equivariant cohomology associated to the pair (X, F ), it can be proved that (30)
reduces to the following exact sequences

0 → Zpr−1 → H1(X/G, F ) → H1(X/G) → Zs → 0,

for j = 1 and

0 → (Z/p)(
s

j−1) ⊕ Z(pr−1)( s
j−1) δ−→ H j(X/G, F ) → H j(X/G) → Z(s

j) → 0,

for j � 2. Also it follows that Z
(pr−1)( s

j−1) splits off H j(X/G, F ;Z). Therefore we conclude that the
p-torsion subgroup of Hk(X/G;Z) is a finite dimensional Fp-vector space of dimension βk , where
β0 = λ0 = 0, β1 = λ1 and

βk = λk −
(

s

k − 1

)
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for k � 2. This shows that

Q L(x) = Q̄ L(x) − x
[
(1 + x)s − 1

]

and the lemma is true in this case. Suppose now that L is a general ZG-lattice of type (r, s,0). Then
we can find a ZG-homomorphism

f : L′ → L

that is an isomorphism after tensoring with Z(p) and with L′ of the kind discussed above so the
lemma is true for L′ . Using Lemma 10 we see that f induces an isomorphism

f ∗ : H∗
G(XL, F L;Z(p)) → H∗

G(XL′ , F L′ ;Z(p)).

This in turn shows that f induces an isomorphism

f ∗ : H∗(XL/G, F L;Z(p)) → H∗(XL′/G, F L′ ;Z(p))

by (29). Finally, by comparing the long exact sequences in cohomology with Z(p)-coefficients associ-
ated to the pairs (XL/G, F L) and (XL′/G, F L′ ) it follows that f induces an isomorphism

f ∗ : H∗(XL/G;Z(p)) → H∗(XL′/G;Z(p))

and thus using the universal coefficient theorem we see that the lemma is also true for L. �
We are now ready to prove the main theorem.

Proof of Theorem 1. Suppose that L is a ZG-lattice of type (r, s, t). Then we can write L ∼= L′ ⊕ Zt

where L′ is of type (r, s,0). By (8) we have

XL ∼= XL′ × (
S1)t

,

where G acts trivially on the factor (S1)t . Then the Kunneth theorem gives an isomorphism

H∗(XL/G) ∼= H∗
G(XL′/G) ⊗ H∗((S1)t;Z

)
.

Using this isomorphism and Corollary 4, Theorem 15 and Lemma 16 the theorem is proved. �
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