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A complete mapping of a group G is a permutation φ : G → G such
that g �→ gφ(g) is also a permutation. Complete mappings of G
are equivalent to transversals of the Cayley table of G , considered
as a Latin square. In 1953, Hall and Paige proved that a finite group
admits a complete mapping only if its Sylow-2 subgroup is trivial
or noncyclic. They conjectured that this condition is also sufficient.
We prove that it is sufficient to check the conjecture for the 26
sporadic simple groups and the Tits group.
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1. Introduction

All groups will be assumed finite. Let G be a group. For the sake of brevity, we say G is bad if the
Sylow-2 subgroup of G is nontrivial and cyclic, and otherwise we say G is good. A complete mapping
of G consists of an indexing set I and bijections a,b, c : I → G , such that

a(i)b(i) = c(i)

for all i ∈ I . Note that φ = ba−1 and ψ = ca−1 are bijections, so G possesses a complete mapping if
and only if there are permutations φ and ψ of G with gφ(g) = ψ(g). Complete mappings also have
a combinatorial interpretation; a group possesses a complete mapping if and only if its Cayley table,
which is a Latin square, possesses an orthogonal mate [16].

Hall and Paige [12] proved that if G possesses a complete mapping, then it is good; they also
conjectured the converse (henceforth the “HP conjecture”), and proved it in many special cases. They
also proved many useful results, including Propositions 1, 2 and 3 below.

Proposition 1. (See [12, Theorem 6].) Any good soluble group possesses a complete mapping.
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In particular, any group of odd order is soluble [11] and therefore possesses a complete mapping
(this can be easily shown directly by making φ the identity).

Recall that a left transversal of a subgroup H ⊆ G is a set X ⊆ G such that

G =
∐
x∈X

xH,

and similarly for a right transversal.

Proposition 2. (See [12, Theorem 1].) Suppose H is a subgroup of G, and H possesses a complete mapping.
Suppose X is both a left and right transversal for H, and φ and ψ are permutations of X such that

xφ(x)H = ψ(x)H

for x ∈ X. Then G possesses a complete mapping.

The following result is a direct corollary of Proposition 2.

Proposition 3. (See [12, Corollary 2].) Suppose N is a normal subgroup of G such that both N and H = G/N
possess complete mappings. Then G possesses a complete mapping.

Recently many groups have been shown to satisfy the conjecture. The Mathieu groups M11, M12,
M22, M23 and M24, and some groups of Lie type, have been shown to possess complete mappings [5,7,
8,17]. Dalla Volta and Gavioli have shown that a minimal counterexample to the HP conjecture would
have to be almost simple, or contain a central involution [6]. Continuing in this direction, we will
show that a minimal counterexample must be one of the 26 sporadic simple groups or the Tits group.
In a companion paper, Evans [9] deals with 26 of these groups (including an alternative treatment of
the Mathieu groups), leaving the fourth Janko group as the only possible counterexample. John Bray
reports that this group is also not a counterexample, thus completing the proof of the HP conjecture.

In Section 2 we give two versions of Proposition 3 in which N and H are replaced by Z2 (see
Propositions 7 and 11 respectively). These are used, along with Proposition 1, to reduce the conjecture
to simple groups.

In Section 3 we prove a version of Proposition 2 in which the assumption on the cosets of H is
weakened (see Proposition 14). We also prove versions in which this assumption is replaced by an
assumption on the double cosets of H , which is often easier to check in practice (see Corollaries 15
and 16).

Finally in Section 4, we use the results of Section 3 and results about (B, N)-pairs to prove that a
minimal counterexample cannot be a finite simple group of Lie type.

2. Reduction to simple groups

We start with some well known results.

Lemma 4. Suppose G is bad. Then there exists a characteristic subgroup of G of index 2.

Corollary 5. Suppose G is bad. Then G contains a characteristic subgroup N of odd order, such that the quotient
G/N is a cyclic 2-group. In particular, G is soluble.

The first result follows by considering the inverse image of the alternating group under the regular
representation G → SG . The second follows from the first by induction on |G|.

To prove the first version of Proposition 3, we need the following well known combinatorial result,
the proof of which is straightforward.
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Lemma 6. Suppose I is a finite set and S and T are involutions on I with no fixed points. Then we can write I
as a disjoint union

I = J � K

such that S( J ) = T ( J ) = K (in particular |K | = | J | = 1
2 |I|).

Now we are ready to prove:

Proposition 7. Suppose that G is a good finite group, and N is a normal subgroup of G isomorphic to Z2 .
Suppose H = G/N possesses a complete mapping. Then G possesses a complete mapping.

Proof. Let N = {1, x}, so that x is a central involution in G . Let π : G � H be the natural surjection.
Clearly if |H| is odd, then N is a Sylow-2 subgroup of G , contradicting the goodness of G . Thus |H| is
even. In particular, H contains an involution ȳ. Then right multiplication by ȳ gives an involution ry

on H with no fixed points.
Now H admits a complete mapping, so choose an indexing set I and bijections ā, b̄, c̄ : I → H such

that ā(i)b̄(i) = c̄(i) for i ∈ I . Then S = b̄−1ryb̄ and T = c̄−1ryc̄ are both involutions on I with no fixed
points. By Lemma 6, we can write

I = J � K

such that S( J ) = T ( J ) = K . Now let y be one of the two elements in π−1( ȳ). We lift b̄ and c̄ to G as
follows. Let

b, c : J → G

be any maps satisfying πb = b̄ and πc = c̄. Extend b and c to K by defining

b(S j) = b( j)y and c(T j) = c( j)y for j ∈ J . (1)

By definition of S , we have b̄(Si) = b̄(i) ȳ for all i ∈ I . Thus

π
(
b(S j)

) = π
(
b( j)y

) = b̄( j) ȳ = b̄(S j)

for j ∈ J . With a similar calculation for c, we see that πb = b̄ and πc = c̄ on all of I . Finally define
a(i) = c(i)b(i)−1. Then

π
(
a(i)

) = π
(
c(i)

)
π

(
b(i)

)−1 = c̄(i)b̄(i)−1 = ā(i),

so that πa = ā. Now define maps A, B, C : I × N → G by

A( j,1) = a( j), B( j,1) = b( j), C( j,1) = c( j),

A( j, x) = a( j)x, B( j, x) = b( j)yx, C( j, x) = c( j)y,

A(k,1) = a(k), B(k,1) = b(k)y−1x, C(k,1) = c(k)y−1x, and

A(k, x) = a(k)x, B(k, x) = b(k), C(k, x) = c(k)x

for j ∈ J and k ∈ K . Because a(i)b(i) = c(i) for all i ∈ I , and x is central, it is clear that A(i, t)B(i, t) =
C(i, t) for all (i, t) ∈ I × N . It remains to show that A, B and C are bijective. Since |I × N| = |G|, it
is sufficient to prove surjectivity. Since πb = b̄ is a bijection, b(I) is a transversal for N in G , so that
G = b(I) � b(I)x. Also (1) shows that b(K ) = b( J )y, so
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B(I × N) = B
(

J × {1}) ∪ B
(

J × {x}) ∪ B
(

K × {1}) ∪ B
(

K × {x})
= b( J ) ∪ b( J )yx ∪ b(K )y−1x ∪ b(K )

= b( J ) ∪ b(K )x ∪ b( J )x ∪ b(K )

= b(I) ∪ b(I)x

= G,

as required. The calculations for A and C are similar. �
Note that Hall and Paige prove Proposition 1 by proving the HP conjecture for 2 groups. The above

result allows us to easily reproduce the conjecture for 2 groups by induction on the order of the
group; indeed if G is a noncyclic 2 group and G � Z2 × Z2, one can always find a central involution
x ∈ G such that G/{1, x} is noncyclic.

Our second version of Proposition 3, which deals with a subgroup N in G of index 2, was proven
in [10] under the following technical assumption: that there exist elements a,b ∈ G − N such that
xai x−1 �= b j for all x ∈ N and odd integers i, j. We will show that, provided G is good, this assumption
always holds.

A theorem of Frobenius states that if n divides the order of a finite group G , then the number of
solutions of xn = 1 in G is divisible by n (see [15] for an elementary proof). We will use the following
special case. Recall that a 2-element in G is an element whose order is a power of 2.

Lemma 8. Suppose G is a finite group and P is a Sylow-2 subgroup of G. Then the number of 2-elements in G
is divisible by |P |.

The following result is well known and can be found, for instance, in Theorem 4.2.1 of [14].

Lemma 9. Suppose P is a finite 2-group and H ⊂ P is a proper subgroup. Then the normaliser N P (H) is strictly
larger than H.

Lemma 10. Suppose G is a good finite group and N ⊆ G is a normal subgroup of index 2. Consider the cyclic
subgroups generated by 2-elements in the set complement G − N. These subgroups are not all conjugate in G.

Proof. Let X be the set of 2-elements in G − N . Let

Y = {〈x〉 ∣∣ x ∈ X
}

be the set of cyclic groups generated by elements of X . For any x ∈ X , we have

〈x〉 − N = {
xk

∣∣ k ∈ Z odd
}
.

Since x is a 2-element, if k is odd then xkl = x for some l ∈ Z. Thus 〈x〉 is generated by any element
of 〈x〉 − N . It follows that if H, H ′ ∈ Y are distinct, then (H − N) ∩ (H ′ − N) = ∅. Thus

X =
∐

H ′∈Y

(H ′ − N).

Let P ⊆ G be a Sylow-2 subgroup of G . Then P is not contained in N , so choose x ∈ P − N ⊆ X , and
let H = 〈x〉 ∈ Y . Suppose by way of contradiction that every H ′ ∈ Y is conjugate to H . Then the orbit
stabiliser theorem gives

|Y | = |G|
.
|NG(H)|
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Also each H ′ ∈ Y has the same order as H , so

|X | =
∑
H ′∈Y

|H ′ − N| =
∑
H ′∈Y

|H ′|
2

= 1

2
|H| · |Y | = |H| · |G|

2|NG(H)| .

Now Lemma 8 shows that |P |/2 divides the number of 2-elements in N , and the number of 2-
elements in G . Thus it divides |X |, so that

|G|
|P | · [N P (H) : H] = |H| · |G|

|NG(H)| · 1

|P | · |NG(H)|
|N P (H)| = 2|X |

|P | · [NG(H) : N P (H)
] ∈ Z.

Now |G|/|P | is odd and [N P (H) : H] is a power of 2, so [N P (H) : H] = 1. That is, H = N P (H). By
Lemma 9, we must have P = H . But H is cyclic, contradicting the goodness of G . �

We can now prove the second version of Proposition 3:

Proposition 11. Suppose that G is a good finite group, and N is a normal subgroup of G such that N possesses
a complete mapping and G/N ∼= Z2 . Then G possesses a complete mapping.

Proof. By the previous lemma, we can find 2-elements a and b in G − N , such that 〈a〉 and 〈b〉 are
not conjugate in G . For any odd integers i and j, we have 〈ai〉 = 〈a〉 and 〈b j〉 = 〈b〉. Therefore 〈ai〉 is
not conjugate to 〈b j〉, so in particular, ai and b j are not conjugate in G . The result now follows by
Theorem 11 of [10]. �

We can now reduce the Hall Paige conjecture to simple groups. The idea of taking a minimal
counterexample to the conjecture and considering a minimal normal subgroup is due to Dalla Volta
and Gavioli [6].

Theorem 12. Suppose G is a minimal counterexample to the HP conjecture. That is, G is good but has no
complete mapping, and any good group smaller than G has a complete mapping. Then G is simple.

Proof. Suppose otherwise, and let N be a minimal nontrivial normal subgroup of G . There are four
cases to consider. Suppose first that N and G/N are both good. By the minimality of G , they must
satisfy the HP conjecture. Thus they both possess complete mappings. Proposition 3 now shows that
G possesses a complete mapping.

Next suppose N and G/N are both bad. They are both soluble by Corollary 5. Thus G is soluble
and good, so it possesses a complete mapping by Proposition 1.

Now suppose N is good and G/N is bad. If |N| is odd, then N is soluble, and G possesses a
complete mapping just as in the last case. Suppose |N| is even. By Lemma 4, there is a characteristic
subgroup H̄ of G/N of index 2. The inverse image H of H̄ is a normal subgroup of G of index 2
containing N . Because the Sylow-2 subgroup of N is noncyclic, the same is true of H . Thus H is good,
so it possesses a complete mapping by minimality. It follows from Proposition 11 that G possesses a
complete mapping.

Finally suppose N is bad and G/N is good. By Lemma 4, we have a characteristic subgroup H
of N of index 2. Because H is characteristic in N , it is normal in G . But N is a minimal nontrivial
normal subgroup of G , so H is trivial. That is, N ∼= Z2. Again G/N possesses a complete mapping by
minimality of G , so it follows from Proposition 7 that G possesses a complete mapping. �
3. Double coset results

In this section we prove some results similar to Proposition 2, in which a complete mapping of
a subgroup is extended to a complete mapping of the group. We will use the following result about



1412 S. Wilcox / Journal of Algebra 321 (2009) 1407–1428
transversals, which is an immediate corollary of Theorem 5.1.6 of [13] (see the proof of [13, Theorem
5.1.7]).

Lemma 13. Suppose H and K are subgroups of G with the same order. Then there exists a left transversal for
H which is also a transversal for K (either left or right, as desired).

In fact the proof of Proposition 2 given in [12] is valid under weaker hypotheses; namely, the
elements x, φ(x) and ψ(x) may run through three different left transversals of H as x varies, and only
one need also be a right transversal. Using this observation and the previous lemma, we may now
prove:

Proposition 14. Suppose H ⊆ G is a subgroup of G which admits a complete mapping. Suppose we have
bijections x̃, ỹ and z̃ from an indexing set I to G/H (so that |I| = [G : H]), and suppose x̃(i) ỹ(i) ⊇ z̃(i) for all
i ∈ I . Then G possesses a complete mapping.

Proof. By Lemma 13, we can find a set {yi | i ∈ I} which is both a left and right transversal of H . We
can label these elements so that yi ∈ ỹ(i). For a given i ∈ I , we have

z̃(i) ⊆ x̃(i) ỹ(i) =
⋃

x∈x̃(i)

xỹ(i).

Now each xỹ(i) is a left coset of H , and we know distinct left cosets are disjoint, so z̃(i) = xi ỹ(i) for
some xi ∈ x̃(i). Define zi = xi yi ∈ xi ỹ(i) = z̃(i), so {xi} and {zi} are both left transversals of H .

As noted above, the remainder of the proof follows [12]. Since H possesses a complete mapping,
we can choose an indexing set J and bijections a, b and c from J to H such that a( j)b( j) = c( j) for
j ∈ J . Because {yi} is a right transversal of H , for any (i, j) ∈ I × J we can write

yia( j) = d(i, j)yr(i, j) (2)

for some d(i, j) ∈ H and r(i, j) ∈ I . Then

zic( j) = xi yia( j)b( j) = xid(i, j)yr(i, j)b( j).

Thus C(i, j) = A(i, j)B(i, j), where the maps A, B and C from I × J to G are defined by

A(i, j) = xid(i, j), B(i, j) = yr(i, j)b( j), C(i, j) = zia( j).

It remains to show that these maps are bijective. Since |I × J | = |G|, it suffices to prove injectivity.
Suppose A(i, j) = A(i′, j′), so that xid(i, j) = xi′d(i′, j′). Now the xi form a left transversal for H and
d(i, j), d(i′, j′) ∈ H , so i = i′ and d(i, j) = d(i′, j′). Thus (2) gives

yr(i, j)a( j)−1 = d(i, j)−1 yi = d(i′, j′)−1 yi′ = yr(i′, j′)a( j′)−1.

Now the yi also from a left transversal for H , so a( j)−1 = a( j′)−1. Since a is a bijection, this gives
j = j′ , as required.

Now assume B(i, j) = B(i′, j′), so that yr(i, j)b( j) = yr(i′, j′)b( j′). Since the yi form a left transversal
for H , we have r(i, j) = r(i′, j′) and b( j) = b( j′). Hence j = j′ . Now (2) gives

d(i, j)−1 yi = yr(i, j)a( j)−1 = yr(i′, j′)a( j′)−1 = d(i′, j′)−1 yi′ .

Since the yi form a right transversal for H , we conclude that i = i′ , as required. The injectivity of C
is straightforward. �
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The above result is similar to Proposition 3; although we are no longer considering a normal
subgroup, we require a “complete mapping” of sorts on G/H . In fact we have more freedom when
H is not normal, since the “product” of two left cosets aH and bH can be any left coset contained
in aHbH ; in general |aHbH| > |H|, so there will be more than one choice. The expression aHbH
motivates us to consider double cosets; recall that a double coset of H ⊆ G is a set of the form HxH ,
for some x ∈ G . We denote the set of double cosets by H\G/H .

Corollary 15. Suppose H ⊆ G is a subgroup of G which admits a complete mapping. Suppose φ and ψ are
permutations of H\G/H such that for each D ∈ H\G/H, we have |D| = |φ(D)| = |ψ(D)| and Dφ(D) ⊇
ψ(D). Then G possesses a complete mapping.

Proof. Fix D ∈ H\G/H and pick some zD ∈ ψ(D) ⊆ Dφ(D), so that zD = xD yD for some xD ∈ D and
yD ∈ φ(D). It is well known that

D = HxD H =
∐
h∈X

hxD H

for any left transversal X of H ∩ xD Hx−1
D in H . In particular,

|D| = |H|2
|H ∩ xD Hx−1

D | .

Now |D| = |φ(D)| = |ψ(D)|, so |H ∩ xD Hx−1
D | = |H ∩ yD H y−1

D | = |H ∩ zD H z−1
D |. By Lemma 13, we can

find a subset XD ⊆ H which is simultaneously a left transversal for H ∩ xD Hx−1
D and for H ∩ zD H z−1

D
in H . Thus

D =
∐

h∈XD

hxD H and ψ(D) =
∐

h∈XD

hzD H .

Also let Y D be a left transversal for H ∩ yD H y−1
D in H , so that

φ(D) =
∐

h∈Y D

hyD H .

Now |XD | = |Y D |, so choose a bijection μD : XD → Y D . Let

I = {
(D,h)

∣∣ D ∈ H\G/H and h ∈ XD
}
.

Define maps x̃, ỹ and z̃ : I → G/H by

x̃(D,h) = hxD H, ỹ(D,h) = μD(h)yD H and z̃(D,h) = hzD H .

Certainly since μD(h)−1 ∈ H for h ∈ XD , we have

z̃(D,h) = hzD H = hxD yD H ⊆ hxD HμD(h)yD H = x̃(D,h) ỹ(D,h).

Thus the statement will follow from Proposition 14, provided x̃, ỹ and z̃ are bijections. Equivalently,
G should be a disjoint union of x̃(D,h) for (D,h) ∈ I , and similarly for ỹ and z̃. Since φ and ψ are
permutations, and μD is a bijection,
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G =
∐

D∈H\G/H

D =
∐

D∈H\G/H
h∈XD

hxD H =
∐

(D,h)∈I

x̃(D,h),

G =
∐

D∈H\G/H

φ(D) =
∐

D∈H\G/H
h∈Y D

hyD H

=
∐

D∈H\G/H
h∈XD

μD(h)yD H =
∐

(D,h)∈I

ỹ(D,h) and

G =
∐

D∈H\G/H

ψ(D) =
∐

D∈H\G/H
h∈XD

hzD H =
∐

(D,h)∈I

z̃(D,h). �

We will use the special case in which φ and ψ are the identity:

Corollary 16. Suppose H ⊆ G is a subgroup of G which admits a complete mapping. Suppose D2 ⊇ D for all
D ∈ H\G/H. Then G possesses a complete mapping.

4. The HP conjecture for groups of Lie type

In this section we suppose that G is a finite simple group of Lie type, excluding the Tits group. We
begin by stating a number of properties of such groups, which can be found in [3]. First we recall in
Table 1 the list of families of such groups.

Consider first the untwisted groups, namely those with no superscript on the left. Let Φ = Φ+ ∪Φ−
denote the corresponding root system, and let K denote the field of q elements. The group G is
generated by elements xr(t) for r ∈ Φ and t ∈ K , which satisfy xr(t)xr(u) = xr(t + u). If r, s ∈ Φ are
linearly independent, then xs(u) and xr(t) satisfy Chevalley’s commutator formula [3, Theorem 5.2.2]:

xr(t)xs(u) = xs(u)

[ ∏
i, j>0,

ir+ js∈Φ

xir+ js
(
Cijrstiu j)]xr(t), (3)

where the product is taken in order of increasing i + j, and the integer constants Cijrs are determined
by

Table 1
Families of groups of Lie type.

Group Parameter values Rank l

Ak(q) k � 1 and q a prime power k
Bk(q) k � 2 and q a prime power k
Ck(q) k � 3 and q a prime power k
Dk(q) k � 4 and q a prime power k
E6(q) q a prime power 6
E7(q) q a prime power 7
E8(q) q a prime power 8
F4(q) q a prime power 4
G2(q) q a prime power 2
2 Ak(q) k � 2 and q a prime power squared �k/2�
2 Dk(q) k � 4 and q a prime power squared k − 1
3 D4(q) q a prime power cubed 2
2 E6(q) q a prime power squared 4
2 B2(q) q = 22k+1 1
2 F4(q) q = 22k+1 2
2G2(q) q = 32k+1 1
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Ci1rs = Mrsi; C1 jrs = (−1) j Msr j;
C32rs = 1

3
Mr+s,r,2; C23rs = −2

3
Ms+r,s,2;

Mrsi = 1

i!
i−1∏
j=0

Nr, jr+s; Nr,s = ±max{p + 1 | s − pr ∈ Φ}.

The signs of Nr,s are chosen to satisfy certain conditions that do not concern us here [3, Sections 4.2].
We will only use (3) for G2, in which case we use the values for Nr,s at the end of Section 12.4 of [3].

For r ∈ Φ we have a homomorphism ρr : SL2(K ) → G satisfying

ρr

(
1 t
0 1

)
= xr(t) and ρr

(
1 0
t 1

)
= x−r(t).

Let

hr(t) = ρr

(
t 0
0 t−1

)
and nr = ρr

(
0 1

−1 0

)
,

for t ∈ K ∗ . Clearly n2
r = hr(−1). Let H , U , V , B and N be the subgroups of G generated by:

H = 〈
hr(t)

∣∣ r ∈ Φ, t ∈ K ∗〉 ⊆ G,

U = 〈
xr(t)

∣∣ r ∈ Φ+, t ∈ K
〉 ⊆ G,

V = 〈
xr(t)

∣∣ r ∈ Φ−, t ∈ K
〉 ⊆ G,

B = 〈H, U 〉 ⊆ G,

N = 〈
hr(t), nr

∣∣ r ∈ Φ, t ∈ K ∗〉 ⊆ G.

We will need an explicit description of the subgroup H . Let Λ denote the lattice spanned by Φ; this
is a free abelian group whose rank is the rank l in Table 1. Let Λ∗ denote the dual lattice to Λ. The
Cartan matrix of Φ gives a bilinear form on Λ (not necessarily symmetric) which allows us to identify
Λ with a subgroup of Λ∗ . Then H can be identified with the image of Hom(Λ∗, K ∗) in Hom(Λ, K ∗)
(see [3, Section 7.1]). Explicitly, hr(t) corresponds to the function

hr(t)(v) = t
2(r,v)
(r,r) for v ∈ Λ,

where (·,·) is a symmetrised version of the above bilinear form. In particular, if r, s, ir + js ∈ Φ and
t ∈ K ∗ , then

hir+ js(t)
(ir+ js,ir+ js) = hr(t)

i(r,r)hs(t)
j(s,s). (4)

We have a left exact sequence

Hom
(
Λ∗/Λ, K ∗) ↪→ Hom

(
Λ∗, K ∗) → Hom

(
Λ, K ∗), (5)

so H ∼= Ĥ/H1, where Ĥ = Hom(Λ∗, K ∗) ∼= (K ∗)⊕l and H1 = Hom(Λ∗/Λ, K ∗). The group Λ∗/Λ is
given by the following table (see Section 8.6 of [3]):

G Ak Bk Ck D2k+1 D2k G2 F4 E6 E7 E8
Λ∗/Λ Zk+1 Z2 Z2 Z4 Z2 ⊕ Z2 0 0 Z3 Z2 0

In particular, Λ∗/Λ is generated by at most two elements in the case of D2k , and is cyclic otherwise.
The same statement is true of H1, since K ∗ is cyclic.
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Now suppose G is a twisted group, that is, one with a superscript on the left. Let Ḡ be the corre-
sponding untwisted group obtained by removing the superscript, with subgroups H̄ , Ū , V̄ , B̄ and N̄
as constructed above. There is an automorphism σ of Ḡ (described in [3, Section 13.4]) fixing all of
these subgroups. Let U = Ūσ and V = V̄ σ be the groups of σ -invariant elements in Ū and V̄ . Then G
is defined to be the subgroup of Ḡ generated by U and V . Let H = H̄ ∩ G , and similarly for B and N .
Again we will need to describe H more explicitly. First suppose that Ḡ is simply laced; that is, G is
not 2 B2(q), 2 F4(q) or 2G2(q). Recall H̄ is the image of the second map in (5). The action of σ on H̄
can be extended to Hom(Λ, K ∗) by

σ(χ)(r) = χ(τ r)θ ,

where τ is an isometry of Λ fixing the set of simple roots Π ⊆ Φ , and θ is an automorphism of K
(see [3, Lemma 13.7.1]). Similarly σ acts on Hom(Λ∗, K ∗) and Hom(Λ∗/Λ, K ∗), and we obtain a left
exact sequence

Hom
(
Λ∗/Λ, K ∗)σ ↪→ Hom

(
Λ∗, K ∗)σ → Hom

(
Λ, K ∗)σ .

In fact H is the image of the second map [3, Theorem 13.7.2], so we can again write H as a quotient

H ∼= Ĥ/H1,

now with Ĥ = Hom(Λ∗, K ∗)σ and H1 = Hom(Λ∗/Λ, K ∗)σ . Since τ permutes the set Π∗ , which freely
generates Λ∗ as an abelian group, we have

Ĥ ∼=
⊕

O∈τ\Π∗

(
K ∗)θ |O |

,

where τ\Π∗ is the set of orbits of τ in Π∗ , and (K ∗)θ |O |
is the subgroup of K ∗ fixed by θ |O | .

The number of orbits l = |τ\Π∗| is exactly the rank listed in Table 1. If Ḡ is not of type D2k , then
Hom(Λ∗/Λ, K ∗) is cyclic as noted above, so the same is true of the subgroup H1. In fact H1 is trivial
when G has type 3 D4(q), and is trivial or Z2 when G has type 2 D2k(q) (see the note after [3, Lemma
14.1.2]).

Finally suppose G is of type 2 B2(q), 2 F4(q) or 2G2(q). Let p be the characteristic of K . For 2 B2(q)

we have Λ∗/Λ ∼= Z2 and p = 2, and otherwise Λ∗/Λ = 0, so

Hom
(
Λ∗/Λ, K ∗) = Ext1(Λ∗/Λ, K ∗) = 0

in either case. Hence

H̄ = Hom
(
Λ∗, K ∗) = Hom

(
Λ, K ∗).

We again have a permutation τ of Π ; this no longer induces an isometry as the roots of Π have
different lengths. Nevertheless we have the following explicit description of H [3, Theorem 13.7.4]:

H = {
χ ∈ H̄

∣∣ χ(r) = χ(τ r)(r,r)θ for r ∈ Π
}
, (6)

where q = pθ2 and (·,·) is normalised to give short roots length 1. Also τ acts on Π as an involution
switching long and short roots, and l = |τ\Π | is the rank listed in Table 1. It follows that

H ∼= (
K ∗)⊕l

.

In this case we set Ĥ = H and H1 = 0.
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We now state some results applicable to every group G in Table 1. In each case we have written H
as a quotient Ĥ/H1, where Ĥ is a product of l cyclic groups, each of order ps − 1 for some s, where p
is the characteristic of K . The subgroups U , V , B , H and N in G , constructed above, satisfy H = B ∩ N
and B = H � U . It is shown in [3] Sections 8.6 and 14.1 that

|U | = pM for some integer M , and p � [G : U ]. (7)

The subgroups B and N form a (B, N)-pair in G . The following results about (B, N)-pairs are
proved in [2]. Firstly H is normal in N , and the quotient W = N/H is a Coxeter group, generated by
a set S of involutions. In fact l = |S| is the rank listed in Table 1. Moreover if G is untwisted, we may
take S to be the image of {nr | r ∈ Π}, and W is the Coxeter group with the same Dynkin diagram
as G . If G is twisted, W is either dihedral or of type A1, Bl or F4. The double cosets of B in G are
indexed by W , so that

G =
∐

w∈W

B w B.

Here, by abuse of notation, we use B w B to denote B w̄ B for any w̄ ∈ N which maps to w ∈ W = N/H .
In fact we can say more in the case of groups of Lie type. For each w ∈ W , choose nw ∈ N mapping
to w . Then every element of G has a unique expression of the form

u′nwhu, (8)

where w ∈ W , u ∈ U , h ∈ H and u′ is in a subgroup U−
w of U [3, Corollary 8.4.4 and Proposition

13.5.3]. We will not use any properties of U−
w , except that U−

1 is trivial and U−
w = U when w is the

longest element of W .
Let � : W → Z�0 denote the usual length function. The product of two double cosets of B in G is

determined by the formula

(BsB)(B w B) =
{

Bsw B if �(sw) > �(w),

Bsw B ∪ B w B if �(sw) < �(w),
for s ∈ S and w ∈ W . (9)

A subgroup W ′ of W is called a parabolic subgroup if it is generated by W ′ ∩ S . In this case each
double coset in W ′\W /W ′ contains a unique element of minimal length; these elements are the
minimal double coset representatives for W ′ in W . Also the subset

P =
∐

w∈W ′
B w B

is a subgroup of G , also called a parabolic subgroup. There is a natural correspondence between
W ′\W /W ′ and P\G/P . Explicitly, every double coset in P\G/P can be written as

PaP =
∐

w∈W ′ vW ′
B w B (10)

for some W ′vW ′ ∈ W ′\W /W ′ .
Now suppose r ∈ S , and let W ′ ⊆ W be the parabolic subgroup generated by S − {r}. Let P be the

corresponding parabolic subgroup of G as above. Our aim is to apply Corollary 16 to P ⊆ G . We first
prove:

Lemma 17. We can choose r so that P is good, except when G has type 2G2 , 2 A2 or A1 , and q is odd and |H|
is even. Moreover any r will suffice, except for types B2 and 2 A3 .
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Proof. First suppose q is even. Then |U | is a power of 2 and [G : U ] is odd, by (7). Hence U is a
Sylow-2 subgroup of G . It is noncyclic since G is good. Since U ⊆ B ⊆ P , this shows that P is good.

Now suppose q is odd. Note that this excludes types 2 B2 and 2 F4. Suppose first that l = 1, so that
G has type 2G2, 2 A2 or A1. In these cases, we are not required to prove the statement when |H| is
even, so suppose |H| is odd (in fact this can only occur for type A1). Since l = 1 for these groups, W ′
is trivial and P = B . But then |P | = |H| · |U | is odd by (7), so P is good.

Now suppose l � 2. It suffices to prove that P contains two nontrivial commuting involutions, as
this would prevent the Sylow-2 subgroup of P from being cyclic. Since H ⊆ B ⊆ P and H is abelian,
it suffices to prove that H contains two nontrivial involutions. Let #(H) denote the number of invo-
lutions of H (including the identity).

Recall that H is a quotient H = Ĥ/H1. It is easy to see that #(Ĥ) � #(H)#(H1). Moreover since p
is odd, Ĥ is a direct product of l cyclic groups of even order, so #(Ĥ) = 2l . If G is of type Dk , then
l = k � 4 and H1 is generated by at most two elements, so

16 � #(Ĥ) � #(H)#(H1) � 4 × #(H).

Hence #(H) � 4, as required. In any other case, H1 is cyclic, so #(H1) � 2, giving #(H) � 2l−1. If l � 3,
we again obtain #(H) � 4. We are left with the rank 2 cases, namely A2, B2, G2, 2 A3, 2 A4 and 3 D4.
For types A2, G2 and 2 A4, the group Λ∗/Λ has odd order, so the same is true of H1. For type 3 D4,
the group H1 is trivial as noted above. In these cases, #(H1) = 1, so #(H) � #(Ĥ) = 4, as required.

The remaining cases, B2 and 2 A3, are dealt with most easily by realising the group G explicitly.
First consider the B2 case. Let

X =
⎛
⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎠ ,

and consider the group

M = {
A ∈ SL4(K )

∣∣ At X A = X
}
,

where At denotes the transpose of A. Let Z = {±1} denote the subgroup of scalar matrices in M .
There is an isomorphism G ∼= M/Z mapping H to the image of the diagonal matrices in M (see [3,
Theorem 11.3.2(iii)]). Thus H contains the image of

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ .

Unfortunately, H may not be good in this case. However, P must also contain the double coset of B
corresponding to one of the elements of S . By choosing r appropriately, we may suppose P contains
the image of

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ .

The images of these elements in M/Z are distinct commuting involutions, and we are done.
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Now consider the 2 A3 case. Recall that q = |K | is a prime power squared, so K is a degree 2
extension of a subfield L. Let ¯ be the unique nontrivial automorphism of K over L. Let

X =
⎛
⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠ ,

and consider the group

M = {
A ∈ SL4(K )

∣∣ A† X A = X
}
,

where A† denotes the conjugate transpose of A with respect to ¯ . Again we have G ∼= M/Z , where
Z is the subgroup of scalar matrices in M , and H maps to the image of diagonal matrices (see
[3, Theorem 14.5.1]). Now H contains the image of

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠ .

Again by choosing r appropriately, we may ensure that P contains the image of

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ .

As above, the images are distinct commuting involutions, and we are done. �
For the next proof, we require two easy consequences of (9). We say that the expression

u1u2 . . . uk ∈ W is reduced if

�(u1u2 . . . uk) = �(u1) + �(u2) + · · · + �(uk).

It follows inductively from (9) that if s1s2 . . . sk is a reduced expression, with si ∈ S , then

Bs1s2 . . . sk B = (Bs1 B)(Bs2 B) . . . (Bsk B).

Hence

(B w B)(BuB) = B wuB whenever wu is reduced. (11)

It follows that

(B w B)(BuB) = (BuB)(B w B) if wu = uw is reduced. (12)

Lemma 18. We can choose r so that every double coset D ∈ P\G/P satisfies D2 ⊇ D. In the cases of B2 and
2 A3 , either choice of r will suffice.
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Proof. Because G is a disjoint union of double cosets of P , we need only show that D2 intersects D
for each D ∈ P\G/P . By (10), it suffices to show that every double coset in W ′\W /W ′ contains an
element w satisfying

(B w B)2 ⊇ B w B.

This will follow if w has a reduced expression of the form

w = u−1s1s2 . . . spu, (13)

where u ∈ W and the si are commuting elements of S (we allow p to be 0 and u to be the identity).
Indeed,

(B w B)(B w B) = (
Bu−1 B

)
(Bs1 B) . . . (Bsp B)(BuB)

× (
Bu−1 B

)
(Bs1 B) . . . (Bsp B)(BuB) by (11)

⊇ (
Bu−1 B

)
(Bs1 B) . . . (Bsp B)(Bs1 B) . . . (Bsp B)(BuB)

= (
Bu−1 B

)
(Bs1 B)2 . . . (Bsp B)2(BuB) by (12)

⊇ (
Bu−1 B

)
(Bs1 B) . . . (Bsp B)(BuB) by (9)

= B w B by (11).

We will consider each possibility for W and, for a particular choice of r, find a set of double coset
representatives for W ′ in W , each with a reduced expression of the form (13); in fact it will be the
set of minimal coset representatives in each case.

Case 1 – Dihedral group. Suppose that l = 2; that is, W is the dihedral group. Then S = {r, s} and rs
has order n, where |W | = 2n. Now W ′ = {1, s}, so the minimal double coset representatives are

1, r, rsr, rsrsr, . . . , rsrs . . . srsr,

where the length of the last word is n or n − 1. All these words are of the form (13), as follows. For
the identity we take p = 0 and u = 1. For the rest we take p = 1; either s1 = r and u = (sr)i , or s1 = s
and u = r(sr)i .

Note that our argument did not depend on the choice of r ∈ S; indeed there is an automorphism
of W switching the elements of S . In particular this applies in the cases B2 and 2 A3, both of which
have rank 2.

Case 2 – Type Al . In this case W is the symmetric group Sl+1. Choose r to be the rightmost node,
so W ′ is the natural copy of Sl in Sl+1. It is easy to see that there are just two double cosets of W ′
in W ; the minimal coset representatives are 1 and r, both of which are of the form (13).

Case 3 – Type Bl = Cl . Now W is the wreath product

W = Sl � Z2 = {
(σ , ε1, ε2, . . . , εl)

∣∣ σ ∈ Sl, εi = ±1
}
.

Write S = {τ , s1, s2, . . . , sl−1}, where the si generate Sl , and

τ = (1,−1,1,1, . . . ,1).
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Let r = sl−1. Consider the double coset of W ′ in W containing u = (σ , ε1, ε2, . . . , εl). As in Case 2, by
multiplying u on the left and right by elements of Sl−1, we may suppose that σ = 1 or σ = r. Also
for any ν1, ν2, . . . , νl−1 ∈ {±1}, the element (1, ν1, ν2, . . . , νl−1,1) is in W ′ . Hence if σ = 1, we may
replace u by

u(1, ε1, ε2, . . . , εl−1,1) = (1,1, . . . ,1, εl).

If σ = r, we may replace u by

(1,1, . . . , εl,1)u(1, ε1, ε2, . . . , εl−1,1) = (r,1, . . . ,1,1).

Therefore the elements (1,1, . . . ,1,±1) and (r,1, . . . ,1) form a set of double coset representatives
for W ′ in W . Written in terms of the generators, these elements are

1, r, sl−1sl−2 . . . s1τ s1s2 . . . sl−1.

Again each is of the form (13).

Case 3 – Type Dl . We may realise W as the subgroup

W = {
(σ , ε1, ε2, . . . , εl) ∈ Sl � Z2

∣∣ ε1ε2 . . . εl = 1
}
.

The generating involutions are {ρ, s1, . . . , sl−1}, where the si are as above, but ρ is now (s1,−1,−1,

1, . . . ,1). Again let r = sl−1. Arguing as in the previous case, the double cosets of W ′ in W are
represented by the elements

(1,1,1, . . . ,1,1) = 1,

(1,−1,1, . . . ,1,−1) = sl−1sl−2 . . . s2s1ρs2s3 . . . sl−1,

(r,1,1, . . . ,1,1) = r.

As above, these expressions are of the form (13).
For a specific Coxeter group, a computer algebra package such as MAGMA [1] can be used to

find the minimal double coset representatives for W ′ in W , and to determine when specified words
are reduced. We do so in the remaining cases without further comment. Also for brevity, we simply
denote elements of S by integers, and we use ε to denote the identity.

Case 4 – W = E6. Label S as shown below.

Let r = 6. The minimal double coset representatives are

ε,6,65324356.

The last representative can be written u−124u, with u = 356. Since 2 and 4 commute, each represen-
tative is of the form (13), and we are done.
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Case 5 – W = E7. Label S as shown below.

Let r = 7. The minimal double coset representatives are

ε,7,7653243567,765321432534653217653243567.

The last two words can be written u−1
1 24u1 and u−1

2 457u2 respectively, where

u1 = 3567,

u2 = 635234123567.

Since 2, 4, 5 and 7 all commute, again each word is of the form (13).

Case 6 – W = E8. Label S as shown below.

Let r = 8. The minimal double coset representatives are

ε,8,876532435678,87653214325346532176532435678,

876532143253465321765324356787653214325346532176532435678.

The last three words can be written u−1
1 24u1, u−1

2 457u2 and u−1
3 8u3 respectively, where

u1 = 35678,

u2 = 6352341235678,

u3 = 7653423567123564352341235678.

Again since 2, 4, 5 and 7 all commute, each word is of the form (13).

Case 7 – W = F 4. Label S as shown below.

Let r = 4. The minimal double coset representatives are

ε,4,43234,43213234,432132343213234.

The last three words can be written u−1
1 2u1, u−1

2 13u2 and u−1
3 4u3 respectively, where
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u1 = 34,

u2 = 234,

u3 = 3213234.

Since 1 and 3 commute, each word is of the form (13). �
The previous two lemmas allow us to apply Corollary 16, except when G has type A1, 2 A2 or 2G2,

and q is odd and |H| is even. From this point, suppose G is such a group. Then the Weyl group of
G has rank 1; that is, |W | = 2. Unfortunately this implies that there is only one proper parabolic
subgroup, namely B , and it is bad. We are forced to do some explicit calculations in these cases.

Lemma 19. There is an involution n ∈ N − H, and nUn = V . Every element of G is uniquely expressible either
as hu or u′nhu, where h ∈ H and u, u′ ∈ U .

Proof. The second statement is true for any n ∈ N − H by (8). For type A1, the group G is PSL2(K ) [3,
Theorem 11.3.2], and we may take

n =
(

0 1
−1 0

)
.

In the 2 A2 case, K is a degree 2 extension of a subfield L. Let ¯ denote the nontrivial automorphism
of K over L. Let

X =
(0 0 1

0 −1 0
1 0 0

)

and M = {A ∈ SL3(K ) | A† X A = X}, where † denotes conjugate transpose with respect to ¯. Then G is
M modulo scalar matrices [3, Theorem 14.5.1], and we may take n to be the image of X .

Finally suppose G = 2G2(q), where q = 32k+1 = 3θ2. Recall that G is a subgroup of the group Ḡ
of type G2(q). Let r and s denote, respectively, the short and long simple roots of the root system Φ

of Ḡ . For brevity we will denote

xij(t) = xir+ js(t), yij(t) = x−ir− js(t), hij(t) = hir+ js(t), nij = nir+ js

for ir + js ∈ Φ+ and t ∈ K . The root system Φ is depicted below.
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Let n = n11n31. Then n11 and n31 commute by (3), so

n2 = n2
11n2

31 = h11(−1)h31(−1) = 1,

using (4). Also n maps to the longest element of the Weyl group of Ḡ , so nŪn = V̄ [3, Lemma 7.2.1].
We have an explicit description of the subgroups U ⊆ Ū and V ⊆ V̄ [3, Propositions 13.6.1 and 13.6.3]:

U = {
x10

(
tθ

)
x01(t)x11

(
tθ+1 + uθ

)
x21

(
t2θ+1 + vθ

)
x31(u)x32(v)

∣∣ t, u, v ∈ K
}
, (14)

V = {
y10

(
tθ

)
y01(t)y11

(
tθ+1 + uθ

)
y21

(
t2θ+1 + vθ

)
y31(u)y32(v)

∣∣ t, u, v ∈ K
}
. (15)

In particular,

n = x11(1)x31(1)y11(−1)y31(−1)x11(1)x31(1) ∈ U V U ⊆ G.

Hence n ∈ G ∩ (N̄ − H̄) = N − H , and nUn = G ∩ nŪn = G ∩ V̄ = V , as required. �
Lemma 20. There is a nontrivial element a ∈ U such that H ⊆ U V aV .

Proof. We give the calculation in the case 2G2(q). Let a = x31(1)x11(1), which is in U by (14). We will
show that any element h ∈ H is in U V aV . By (4), we can write h = h10(λ)h01(μ) for some λ,μ ∈ K ∗ .
Recall that we have identified H̄ with Hom(Λ, K ∗) by defining

hq(λ)(v) = λ
2(q,v)
(q,q)

for q ∈ Φ . By (6),

λ2μ−1 = h(r) = h(s)θ = λ−3θμ2θ .

Putting both sides to the power 3θ − 2, and noting that t3θ2 = t for t ∈ K , we obtain λ = μθ . Since
|K ∗| = 32k+1 − 1 ≡ 2 (mod 4), there are no elements of order 4 in K ∗ , so −1 is not a square. Thus we
can either write μ−1 = ν2 or μ−1 = −ν2 = ν2 + ν2. In either case μ−1 = ν2 + κ2 for some ν ∈ K ∗
and κ ∈ K . Finally

(3θ + 1,q − 1) = (
3θ + 1,3θ2 − 1

) = (3θ + 1, θ + 1) = (2, θ + 1) = 2,

so we can choose ι ∈ K ∗ with ι3θ+1 = ν2. We can therefore write

h = h10
(
ιθ+1 + κ2θ

)−1
h01

(
ι3θ+1 + κ2)−1

(16)

with ι �= 0. Given t, u ∈ K with tu �= −1, we have

(
1 0
t 1

)(
1 u
0 1

)
=

(
1 u
t 1 + tu

)
=

(
1 uλ

0 1

)(
1 0

tλ−1 1

)(
λ 0
0 λ−1

)
,

where λ = (1 + tu)−1. Applying the homomorphism ρir+ js : SL2(K ) → Ḡ gives yij(t)xij(u) =
xij(uλ)yij(tλ−1)hij(λ). Using this and Chevalley’s commutator formula (3), and noting that K has
characteristic 3, we calculate
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Ū y21(t)y32(u)x31(v)x11(w)V̄

= Ū y21(t)x31(v)y01(−uv)y32(u)x11(w)V̄

= Ū x31(v)x10(−tv)y11
(
t2 v

)
y32

(
t3 v

)
y01

(
t3 v2)y21(t)y01(−uv)y32(u)x11(w)V̄

= Ū y01
(
t3 v2 − uv

)
y32

(
t3 v + u

)
y11

(
t2 v

)
y21(t)x11(w)V̄

= Ū y01
(
t3 v2 − uv

)
y32

(
t3 v + u

)
y11

(
t2 v

)
x11(w)y10(2t w)y21(t)V̄

= Ū y01
(
t3 v2 − uv

)
y32

(
t3 v + u

)
y11

(
t2 v

)
x11(w)V̄

= Ū y01
(
t3 v2 − uv

)
y32

(
t3 v + u

)
x11(wμ)V̄ h11(μ) with μ = (

1 + t2 v w
)−1

= Ū y01
(
t3 v2 − uv

)
x11(wμ)x01

(−w3μ3(t3 v + u
))

V̄ h11(μ)

= Ū y01
(
t3 v2 − uv

)
x01

(−w3μ3(t3 v + u
))

V̄ h11(μ)

= Ū V̄ h01
(
1 − v w3μ3(t3 v + u

)(
t3 v − u

))−1
h11(μ)

= Ū V̄ h01
(
1 − v w3μ3(t6 v2 − u2))−1

h01(μ)3h10(μ) by (4)

= Ū V̄ h01
((

1 + t2 v w
)3 − v w3(t6 v2 − u2))−1

h10(μ)

= Ū V̄ h01
(
1 + u2 v w3)−1

h10
(
1 + t2 v w

)−1
,

assuming that 1 + t2 v w and 1 + u2 v w3 are nonzero. Thus with ι and κ as in (16),

Ū y21
(
κθ

)
y32(κ)y31(ι − 1)y11

(
ιθ − 1

)
aV̄

= Ū y21
(
κθ

)
y32(κ)y31(ι − 1)y11

(
ιθ − 1

)
x31(1)x11(1)V̄

= Ū y21
(
κθ

)
y32(κ)x31

(
ι−1)x11

(
ι−θ

)
V̄ h11

(
ι−θ

)
h31

(
ι−1)

= Ū V̄ h01
(
1 + κ2ι−3θ−1)−1

h10
(
1 + κ2θ ι−θ−1)−1

h11
(
ι−θ

)
h31

(
ι−1)

= Ū V̄ h10
(
ιθ+1 + κ2θ

)−1
h01

(
ι3θ+1 + κ2)−1

by ( 4)

= Ū V̄ h.

Now y21(κ
θ )y32(κ)y31(ι − 1)y11(ι

θ − 1) ∈ V by (15), so

h ∈ Ū V aV̄ = ŪnUnanŪn.

Write h = bncnandn, where b,d ∈ Ū and c ∈ U . Rearranging,

dnh−1b = na−1nc−1n.

Recall that U and V are the subgroups of Ū and V̄ fixed by σ . The right hand side above is invariant
under σ , so dnh−1b = σ(d)nh−1σ(b). Now (8) implies d = σ(d) and b = σ(b); that is, d,b ∈ U . Hence
h ∈ U V aV , as required.

In the notation of the previous proof, we may take

a =
(

1 1
0 1

)
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in the A1 case, and

a =
(1 0 ε

0 1 0
0 0 1

)

in the 2 A2 case, where ε ∈ K ∗ satisfies ε + ε̄ = 0. We omit these calculations as they are similar to,
but much easier than, the 2G2 calculation. �
Lemma 21. The double cosets of U satisfy (UnhU )(Unh′U ) ⊇ (Unh′′U ) for all h,h′,h′′ ∈ H.

Proof. Let a ∈ U be the nontrivial element constructed in the previous lemma. Suppose nan ∈ B . Then
nan = hb for some h ∈ H and b ∈ U , giving an = nhb. Expressions of the form UnHU are unique, so
a = 1, a contradiction. Hence nan /∈ B , so nan ∈ UnhU for some h ∈ H . Since H normalises U , we
obtain

H ⊆ UnUnanUn ⊆ UnU (UnhU )Un = UnUnUnhn.

But n normalises H , so hn ∈ H . Hence H ⊆ UnUnUn. Now for arbitrary h,h′,h′′ ∈ H , we have

nh′′ ∈ nHhnh′ = Hnhnh′ ⊆ UnUnUhnh′ = UnhUnh′U .

Thus (UnhU )(Unh′U ) ⊇ Unh′′U , as required. �
This lemma suggests that we should apply Corollary 15 to the subgroup U ; indeed |U | is odd by

(7), so U possesses a complete mapping. However, the normaliser of U is B , and B/U ∼= H . Since
l = 1, the group Ĥ is cyclic, so H is a cyclic group of even order. This implies that no permutations of
U\G/U can satisfy the conditions of Corollary 15. Nevertheless we can come close using the following
lemma, which says that H falls one equation short of having a complete mapping.

Lemma 22. If C is a cyclic group of even order, then there exist permutations α and β of C such that cα(c) =
β(c) for c �= 1. Moreover we can take β(1) = 1 and α(1) �= 1.

Proof. Identify C with Z2k , written additively. Let α(0) = k. For 1 � i < k, let α(i) = i, and for k � i <

2k, let α(i) = i + 1. For 0 � i < k, let β(i) = 2i, and for k � i < 2k, let β(i) = 2i + 1. It is clear that
i + α(i) = β(i) for i �= 0. Also β(i) takes all the even values for 0 � i < k, and all the odd values for
k � i < 2k. Thus β is a permutation, and it is easy to see that α is a permutation also. �

The proof of Corollary 15 constructs permutations of the left cosets satisfying the conditions of
Proposition 14. To prove the next result, we apply the same construction to permutations of U\G/U
which do not quite satisfy the required conditions. After some tweaking, we can apply Proposition 14
directly.

Lemma 23. Suppose G has type A1 , 2 A2 or 2G2 , q is odd and |H| is even. Then G possesses a complete mapping.

Proof. The left cosets of U in G are exactly hU and unhU for u ∈ U and h ∈ H . Let I = H � (U × H).
We will define bijections x̄, ȳ and z̄ from I to G/U as follows. Firstly, for any h ∈ H , Lemma 21 gives

nhU ⊆ UnhUnhU .
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Thus there exists vh ∈ U such that nhU ⊆ vhnhUnhU . Let α and β be the permutations of H given by
Lemma 22. Define

x̄(h) = hU , ȳ(h) = α(h)U , z̄(h) = β(h)U ,

x̄(u,h) = uvhnhU , ȳ(u,h) = unhU , z̄(u,h) = unhU .

Since α and β are permutations, x̄, ȳ and z̄ are certainly bijections from I to G/U . Also

x̄(u,h) ȳ(u,h) = uvhnhU unhU = u(vhnhUnhU ) ⊇ unhU = z̄(u,h)

for any (u,h) ∈ U × H , and

x̄(h) ȳ(h) = hα(h)U = β(h)U = z̄(h),

provided h �= 1. Unfortunately this does not hold when h = 1. We therefore tweak a few values; put
ζ = α(1)−1 �= 1, and define

x̃(1) = vζ v1nU , ỹ(1) = vζ nU , z̃(1) = U ,

x̃(vζ ,1) = vζ nζ U , ỹ(vζ ,1) = α(1)U , z̃(vζ ,1) = vζ nU ,

x̃(1, ζ ) = U , ỹ(1, ζ ) = nζ U , z̃(1, ζ ) = nζ U .

Define x̃, ỹ and z̃ to coincide with x̄, ȳ and z̄ on I − {1, (vζ ,1), (1, ζ )}. Recalling that β(1) = 1, we
have

x̄
({

1, (vζ ,1), (1, ζ )
}) = {U , vζ v1nU , vζ nζ U } = x̃

({
1, (vζ ,1), (1, ζ )

})
,

ȳ
({

1, (vζ ,1), (1, ζ )
}) = {

α(1)U , vζ nU ,nζ U
} = ỹ

({
1, (vζ ,1), (1, ζ )

})
,

z̄
({

1, (vζ ,1), (1, ζ )
}) = {U , vζ nU ,nζ U } = z̃

({
1, (vζ ,1), (1, ζ )

})
.

Thus x̃, ỹ and z̃ are also bijections. Also

x̃(1) ỹ(1) = vζ v1nU vζ nU ⊇ vζ v1n2U = U = z̃(1),

x̃(vζ ,1) ỹ(vζ ,1) = vζ nζ Uα(1)U = vζ nα(1)−1α(1)U = vζ nU = z̃(vζ ,1),

x̃(1, ζ ) ỹ(1, ζ ) = Unζ U ⊇ nζ U = z̃(1, ζ ).

Thus x̃(i) ỹ(i) ⊇ z̃(i) for all i ∈ I , so Proposition 14 gives the result. �
Summarising these results, we have:

Theorem 24. Suppose G is a minimal counterexample to the HP conjecture. Then G is one of the 26 sporadic
simple groups or the Tits group.

Proof. By Theorem 12, the group G must be simple. Therefore G is either a cyclic group, an al-
ternating group, a simple group of Lie type, the Tits group, or one of the 26 sporadic groups [4].
The HP conjecture holds for cyclic groups by Proposition 1. It holds for alternating groups by The-
orem 3 of [12]. Suppose G is a simple group of Lie type. Suppose G is not covered by Lemma 23.
Then Lemmas 17 and 18 show that G has a good proper subgroup P whose double cosets D satisfy
D2 ⊇ D . By the minimality assumption, P admits a complete mapping, so Corollary 16 shows that
G admits a complete mapping. Therefore the only remaining groups are the sporadic groups and the
Tits group. �
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