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" Thermal activation at 850 �C made
the flint kaolin more reactive to acid
leaching.

" Catalysts prepared using
microwaves decreased time and
temperature of reaction.

" Metakaolin activated at 400 W by
15 min presented better
performance.

" A more efficient and eco-friendly
catalyst for production of biodiesel.
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a b s t r a c t

Amazon flint kaolin, considered useless from an economic and industrial point of view, was calcined at
850 and 950 �C to obtain metakaolin samples. These samples were subsequently treated with sulfuric
acid (4 M) by assisted heating with microwave radiation. The prepared samples were characterized by
X-ray diffraction, scanning electron microscopy and N2 physisorption; the surface acidity was determined
by titration with 0.2 M KOH. The materials obtained were used as catalysts in the esterification of oleic
acid with methanol. Metakaolin that was calcined at 850 �C and activated at 400 W for 15 min presented
a surface area of 187 m2 g�1, yielding acidic sites with a concentration of 4.32 mmol g�1 and a conversion
of 96.5% (115 �C, 40 min, molar ratio of oleic acid: methanol 1:60). In addition to a lower preparation
time, the flint metakaolin activated by microwave radiation gave a catalytic performance equivalent or
superior to the one prepared by reflux, as well as it showed considerably reduced reaction time and
temperature.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction The production of biofuel as a substitute for fossil fuels has been
Most of the energy consumed worldwide comes from oil, coal
and natural gas. These sources are not renewable and are expected
be depleted in the near future. Moreover, fossil fuels are heavy pol-
luters that aggressively affect the environment. These reasons are
just a few that demonstrate the importance of studying alternative
energy sources [1].
ll rights reserved.
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a target of several studies in recent decades. Biodiesel can be pro-
duced by the catalytic esterification of oleic acid with methanol
[2,3]. Traditionally, these reactions are carried out in the homoge-
nous liquid phase, where strong Brønsted acids, such as sulfuric
acid, are usually used as catalysts. However, these acids need to
be neutralized after the reaction, due to the consequent salt forma-
tion. This problem can be solved by the use of solid acids as cata-
lysts such as Al-MCM-41 and heteropolyacids (PW) immobilized
in silica [2–4].
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Table 1
Percentage of chemical composition of kaolin and leached metakaolin.

SAMPLES SiO2 Al2O3 TiO2 Fe2O3 Loss on ignitiona

Theoretical kaolinite [10] 46.54 39.50 – – 13.96
Flint [4] 43.24 37.98 2.34 0.51 15.40
MF9S4M4W15 48.94 46.10 2.83 1.68 0.45
MF8S4M3W8 62.19 8.15 3.81 0.55 25.30
MF8S4M3W15 67.42 9.14 3.72 0.49 19.23
MF8S4M4W8 57.26 8.91 3.30 0.54 29.99
MF8S4M4W15 66.82 17.05 3.48 0.67 11.98

a At 1000 ± 25 �C (wt%).
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Another possibility is the use of solid acid catalysts produced
from clays, such as kaolin, which have been applied toward the
esterification of oleic acid with methanol [4].

Natural clays have low catalytic capacity for reactions in polar
or non-polar environments. Generally, the structural properties
of these materials can be modified by acid activation [5–10]. Kaolin
must be converted to metakaolin before acid activation because
metakaolin is more susceptible to acid leaching. Acid activation
of metakaolin increases the surface area and pore volume, and
can generate Brønsted and/or Lewis acid sites. These are important
characteristics for this catalytic transformation [4,11].

Acid activation under reflux requires high temperatures and
long periods of time [12]. The use of microwaves, also known as
dielectric heating, is an alternative to reflux heating and uses
reduced reaction times and temperatures. Acid treatment using
microwave radiation is a faster, cleaner, simpler, and in some cases,
a more energetically efficient process than conventional heating.
This method has the advantages of producing uniform volumetric
heating, creating good quality materials, saving energy and
providing a good cost–benefit ratio [13–15].

In recent publications from our research group, flint kaolin (con-
sidered a worthless material) has been presented as an interesting
raw material for the production of an efficient catalyst (showing up
to 98% conversion) for the esterification of oleic acid with methanol
[4]. This catalyst also accomplishes a 92.8% conversion for the ester-
ification of waste products from the deodorization of palm oil [7].

The objective of this paper was to prepare and characterize cat-
alysts prepared by microwave-assisted acidic leaching of Amazon
flint kaolin and to assess the performance of these solid acidic cat-
alysts toward the esterification of oleic acid with methanol.

2. Experimental

2.1. Materials

The chemical products used in this experiment were oleic acid
(synthetic grade, Vetec), methanol (AR grade, Nuclear) and sulfuric
acid (98%, ISOFAR). Flint kaolin from the Capim River region
(Pará-Brazil) used in this experiment was kindly provided by the
Geosciences Institute of the Universidade Federal do Pará
(IG-UFPA).

2.2. MF8 and MF9 metakaolin preparation by microwave-assisted acid
activation

Flint kaolin samples were calcined at 850 and 950 �C for 2 h.
These samples were designated as MF8 and MF9, respectively.
The materials that were obtained were leached with 4 M H2SO4

using dielectric heating at 300 or 400 W for 8 or 15 min. Using
the MF8S4M4W15 sample as an example, the identification codes
for these samples are as follows: MF8 = flint metakaolin prepared
by calcination at 850 �C; S4 = acid leaching with 4 M H2SO4;
M4W = microwave heating at 400 W; 15 = 15 min. Following the
acid treatment, all samples were washed, dried at 120 �C for 12 h
and calcined at 400 �C for 2 h.

2.3. Characterization

The chemical compositions of the samples were obtained using
a Shimadzu EDX-700 energy dispersive X-ray (EDX) spectrometer.
X-ray diffractions (XRD) were obtained using a PANalyticalXPERT
PRO MPD (PW 3040/60) diffractometer using the powder method
at 5 < 2H > 70� intervals. Cu Ka (40 kV and 40 mA) radiation was
used. The 2H scanning speed was 0.02� s�1.

N2 adsorption–desorption isotherms were obtained at �196 �C
using a Micromeritics TriStar II model 3020 V1.03 apparatus. Before
each measurement the samples were outgassed at 130 �C for 2 h.
The specific surface area was determined according to the standard
Brunauer–Emmett–Teller (BET). The microporous area and the
microporous volume were obtained by the Barrett–
Joyner–Halenda (BJH) method.

Scanning electron microscopy (SEM) images of the samples
were taken with a ZEISS model LEO 1430 microscope operating
at 10 kV and 90 mA. The samples were supported on carbon tapes
and coated with gold under vacuum conditions.

The FTIR of adsorbed pyridine was the technique used to con-
firm the presence of Brønsted and Lewis acid centers in the cata-
lysts [4]. A THERMO model IS 10 apparatus was used.The surface
acidity was determined using acid–base titration as described by
Moraes and coworkers [16]. In a typical measurement, 0.5 g of
the solid was dispersed in 50 mL of 0.1 M KCl. The dispersion
was stirred for 20 min and titrated with 0.2 M KOH in the presence
of phenolphthalein.

2.4. Catalyst tests

Before the experiments, the catalysts were activated at 130 �C
for 2 h. The catalyst tests were conducted in a PARR model 4843
reactor. In a typical experiment, the oleic acid was mixed with
methanol and 5% m/m of the acidic solid catalyst was added (com-
pared with the oleic acid mass). The reaction mixture was stirred
(700 rpm) and heated from room temperature to 70, 85, 100 and
115 �C. As soon as the desired temperature was reached, the sys-
tem was maintained for 10, 20, 30 and 40 min This time was con-
sidered as the kinetic contact time. At the end of the reactions, the
catalyst was separated by filtration. The percent conversion of oleic
acid to the corresponding ester was estimated by an acidity mea-
surement of the product by titration with 0.1 M sodium hydroxide.
3. Results and discussion

3.1. Characterization

3.1.1. Chemical compositions
The chemical composition of the flint kaolin and of the leached

metakaolin was determined by the EDX technique (Table 1). The
values obtained were compared with previously published theo-
retical values for kaolin [4,17].

The dehydroxylation of the octahedral layer of the flint kaolin cal-
cined at 950 �C can lead to the combination of the SiO4 groups with
the AlO6 groups, which would form primary mullite (Al2O3.SiO2) and
the Al–Si spinel phase; the latter phase appears at 920 �C and per-
sists until 1150 �C [8,11,18]. With dielectric heating, the efficiency
of this transformation was improved, making the metakaolinite
resistant to leaching acid and presenting a total of 46.1% Al2O3.
Metakaolinite calcined at 850 �C led to an octahedral layer that
was highly susceptible to acid leaching, leading to a much lower per-
centage of Al2O3, 17.05%. Both metakaolins were treated with the
same radiation intensity and for the same time (400 W for
15 min). The mass loss in the fire analysis revealed that the kaolin



Fig. 1. (i) MF8, MF8S4M4W15, MF9 and MF9S4M4W15 X-ray diffractograms. (ii) X-ray diffractograms of the metakaolins activated by dielectric heating. (iii) N2 adsorption–
desorption isotherms of the samples leached by microwaves. (iv) IR spectra in the region 1700–1400 cm�1 of MF8S4M4W15 with adsorbed pyridine.
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treated at 950 �C had a mass loss of 0.45%, whereas the sample cal-
cined at 850 �C presented a mass loss of 11.98%. This result can be
explained by the increased hydrophilicity of the calcined material
at 850 �C, which raises the amount of adsorbed water in the mate-
riaĺs surface, elevating the cation interaction with the water mole-
cules that act as Brønsted acid sites [4].

3.1.2. X-ray diffraction
The XRD for the samples calcined at 850 �C and 950 �C for 2 h

(Fig. 1i) shows the absence of characteristic peaks for kaolinite.
The lack of these characteristic peaks is due to the dehydroxylation
of the external hydroxyl of the Al(O,OH)6 moieties of the octahe-
dral layer as the material becomes more susceptible to acid leach-
ing during the thermal treatment [11,18]. These data also present
evidence of an amorphous SiO2 phase that diffracts in the broad
range 2H = 15–35� [4,6,11]. Additionally, there are three intense
peaks with 2H = 25.5�, 37.9� and 48.2�, which could be due to
the formation of anatase or rutile TiO2, which are frequently found
as accessories to the kaolins in the Capim river region [4,17].

The XRD diffractograms of (c) and (d) in Fig. 1i have peaks at
high angles which could be related to the beginning of particle sin-
tering of the kaolinite at 900 �C; an additional possibility is the
transformation of the kaolinite into primary mullite (or the spinel
phase), although this process normally occurs at temperatures
above 980 �C [8,11]. At 950 �C, after the dehydroxylation of the
octahedral layer, the SiO4 groups combine with the AlO6 groups,
forming an Al–Si spinel phase. This phase emerges at 920 �C and
persists until 1150 �C [18]. The acid treatment by dielectric heating
resulted in almost no changes to the MF9S4M4W15 leached
metakaolin structure, which was confirmed by the similarity be-
tween the (c) and (d) diffractograms (Fig. 1i).

In contrast to MF9S4M4W15 (d), MF8S4M4W15 (b), which was
thermally treated at 850 �C, showed a more amorphous structure
following acid leaching by microwave radiation (Fig. 1i). When
compared with metakaolin (a), the MF8S4M4W15 (b) sample also
did not exhibit significant alterations.

The X-ray diffractograms of the MF8 sample after acid leaching
by microwave radiation at different intensities (300 and 400 W)
and for different times (8 and 15 min) are seen in Fig. 1ii. The dif-
fractograms are practically identical, indicating that the microwave
radiation did not modify the basal spacing of the crystals but nev-
ertheless led to changes in the samples’ structures [15]. Therefore,
the chemical treatment by this procedure caused partial dissolu-
tion of Al3+ cations responsible for the relative increase of the peak
at 2H = 25�. The X-ray diffractograms confirm that microwave
intensities of up to 400 W did not affect the component structure
of the metakaolin to a perceptible extent.

The crystalline properties of the minerals (anatase or rutile) that
compose the samples remained unaltered because they are ther-
mally stable under conditions of microwave radiation conditions
[19]. However, in diffractograms (a) and (b) (Fig. 1ii), in which
the microwave power was 300 and 400 W for 8 min, respectively,
peaks at 2h = 15� due to crystalline Al2(SO4)3 were seen [11]. In dif-
fractograms (c) and (d) (Fig. 1ii) these peaks are absent, indicating
the low crystallinity of the of Al2(SO4)3 in these samples.

3.1.3. N2 adsorption–desorption
The N2 physisorption isotherms of the leached samples are

shown in Fig. 1iii. According to the IUPAC classification, these iso-
therms can be classified as being of Type II, typical of mesoporous
materials. The values for the specific surface area, microporous
area and the pore volume of the leached samples (Table 2) are
superior to the MF8 metakaolin. Of these, the specific surface area
and the microporous area were the values most affected by the
power and time of exposure of the materials to the microwaves.
However, the pore volumes had very similar values for materials



Table 2
Specific surface area, microporous area, microporous volume, acid capacity and conversion values.

SAMPLES SAa (m2 g�1) Alb (m2 g�1) Vlc (cm3g�1) mmol H+ g�1 Conv.d (%)

MF8 17 17 0.09 0.04
MF8S4M3W8 246 114 0.21 0.57 13.5
MF8S4M3W15 284 126 0.22 1.44 83.3
MF8S4M4W8 150 76 0.17 0.84 56.4
MF8S4M4W15 187 130 0.21 4.32 95.2

a SA = BET specific surface area.
b Sl = microporous area calculated by BJH method.
c Vl = microporous volume calculated by BJH method.
d Conv. = Conversion values for esterification of oleic acid and methanol (1:60) after 30 min at 100 �C. Conversion without catalyst = 9.0%.
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exposed to the same treatment conditions. This result is very inter-
esting from the catalyst point of view because the pore volume
facilitates reagent diffusion into the interior of the micropores in
addition to facilitating access to the acidic sites [2,15].

The microwave radiation time was a key factor in determining
the specific surface area of the catalysts. When exposed to an
intensity of 300 W for 8 and 15 min, the specific surface areas
had values of 246 and 284 m2 g�1, respectively. However, with
an increase in microwave radiation intensity to 400 W and using
the same times (8 or 15 min), the surface area values dropped to
150 and 187 m2 g�1, respectively (Table 2). This behavior is similar
to that observed by Toukoniitty et al. [21], who reported specific
surface areas of 233, 248 and 218 m2 g�1 for Pt/Al2O3 when it
was treated with microwave radiation at 100, 300 and 500 W,
respectively. It is observed that, although materials with different
chemical structures were used, the applied microwave radiation
power was a key factor in obtaining higher specific surface area
values. The presence of microwaves influenced the textural proper-
ties of the samples in this manner.
3.1.4. Scanning electron microscopy (SEM)
Fig. 2 shows that the flint kaolin and the leached metakaolin

prepared by conventional heating (activated under reflux) have
particles smaller than 1 lm. As seen in the micrograph, flint kaolin
Fig. 2. SEM micrographs for flint kaolin (upper left), MF9S4 (upper ri
consists of scaled particles of pseudo-hexagonal morphology,
whereas the conventionally leached metakaolin consists of particle
clusters, indicating a rough surface and a characteristic porosity re-
lated to the spaces between these clusters [4].

In the images of the MF8S4M4W8 and MF8S4M4W15 samples
(Fig. 2), it is possible to observe that the particles are smaller than
1 lm, and have even smaller spaces between the clusters. It is also
evident that the morphology of both samples is very different from
the morphology of sample MF9S4, confirming that the structure of
the material was altered as a result of varying the time of dielectric
heating with constant microwave intensity [19,20]. With the use of
microwave radiation, there was a reduction of the spaces between
the particle clusters of the activated metakaolin, possibly due a
surface restructuring of this material [21].
3.1.5. Acidity of activated metakaolin
The results of the acidity analysis of the materials are presented

in Table 2. The amount of cations present in the samples was cor-
related with hydroxyl consumption during titration [16]. Catalysts
prepared from raw materials, such as clays, have a heterogeneous
distribution of active sites (Al3+) in the surface [12]. Thus, it was ex-
pected that the acid activation of the metakaolin provided a better
distribution of these cations in the internal structure, because the
acid treatment of metakaolinite results in the process of exsolving
ght), MF8S4M4W8 (lower left) and MF8S4M4W15 (lower right).



Table 3
Conversion values for esterification of oleic acid with methanol (molar ratio 1:60)
versus time.

T (�C) Catalyst 10 min 20 min 30 min 40 min

70 – 1.4 4.6 6.5 7.5
70 MF8S4M4W15 44.5 53.0 58.0 74.0
85 – 2.3 6.9 8.2 10.7
85 MF8S4M4W15 68.4 78.0 84.2 90.2

100 – 5.6 6.3 9.0 10.8
100 MF8S4M4W15 76.8 88.9 95.2 95.7
115 – 8.5 9.4 11.6 12.6
115 MF8S4M4W15 85.5 90.8 95.5 96.5
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of a large number of Al(III) cations and to a limited extent Fe(III)
cations from the structure and their partial relocation in newly cre-
ated pores, which, in the presence of water, act as Brønsted acid
centers [22] (represented by a SiOH group influenced by the near-
est Al cation, causing an increase in bond length of the OH group,
which enhances acid strength of the proton [23,24]) and as Lewis
acid centers in anhydrous conditions [22].

The nature of the acid sites of the prepared catalysts was proved
by the presence of absorption bands of pyridinium ion at 1533 and
1636 cm�1 according to the experiments of pyridine adsorption
accomplished by FTIR. According to the literature, these bands
are related to the presence of Brønsted sites in the catalysts [4,25].

The infrared spectra in the region from 1700 to 1400 cm�1 sam-
ples with adsorbed pyridine (Fig. 1iv) showed typical bands that
can be assigned to Lewis (at approximately 1448 and 1627 cm�1)
and Brønsted (at 1533 and 1636 cm�1) sites-bonded pyridine.
There is also a band at approximately 1492 cm�1 that can attrib-
uted to the pyridine molecules associated with both Brønsted
and Lewis acidic sites, and this profile agrees with that presented
by other leached metakaolins [4,25]. The MF8S4M4W15A sample
presented a greater quantity of acidic sites (4.32 mmol H+ g�1).
This result must be related directly to the preparation conditions
of the samples; this sample was treated at a higher radiation inten-
sity and for a longer time. The samples with greater specific surface
areas (MF8S4M4W15 with 187 m2 g�1 and MF8S4M3W15 with
284 m2 g�1) were also those that presented the highest concentra-
tions of cations. According to the chemical composition analysis
(Table 1), these characteristics are related to the percentage of
Al2O3 present in the materials.

3.2. Catalyst tests

The catalytic activity of the metakaolin after acid activation by
microwave radiation was assessed in the esterification of oleic acid
with methanol with a molar ratio of acid:alcohol of 1:60.

In a preliminary test at 130 �C and lasting 30 min, catalysts
MF8S4M4W15 and MF9S4M4W15 presented conversion percent-
ages of 96.5% and 14%, respectively.

Flint kaolin calcined at 950 �C and activated under microwave
radiation was observed to be resistant to acid leaching, in contrast
to the results obtained by Do Nascimento et al. [4,6,7]. The differ-
ence between these results could be related to the fact that the
dielectric heating favored the transformation of the metakaolin
into primary mullite or spinel, which both begin to crystallize at
920 �C [11,18]. The possible sintering of the metakaolin into mull-
ite was a determinant in the low catalytic activity of the
MF9S4M4W15 during the reaction.

Therefore, the kaolin calcined at 850 �C was chosen as a starting
point for the preparation of materials by varying both the micro-
wave intensity (300 and 400 W) as well as the exposure time (8
and 15 min). After preparation, the catalytic activity of these mate-
rials was tested in the focus reaction.

Table 2 shows the catalytic performance in the esterification
reaction of oleic acid with methanol at 100 �C for 30 min. The re-
sults obtained show that the catalyst performance was directly re-
lated to its chemical composition and to the number of acidic sites.
For example, the MF8S4M4W15 sample, which presented a 95.2%
conversion, has the highest acidity, efficiently promoting the trans-
formation of the reactants into products at the superficial Al3+

sites.

3.2.1. Influence of temperature
It is known that catalytic yields are significantly increased when

the reaction temperature is raised [4]. For these studies, the perfor-
mance of the MF8S4M4W15 catalyst was assessed in the esterifica-
tion of oleic acid with methanol, using a molar ratio of oleic acid:
methanol of 1:60 at 70, 85, 100 or 115 �C for 30 min. As expected,
the increase in temperature was fundamental toward the conver-
sion of the acid into the methyl ester in the presence of the
MF8S4M4W15 catalyst. When the conversions were performed
at 70 and 100 �C, for example, the percent conversion increased
from 58 to 95.2%. However, it was observed that at reaction tem-
peratures of 100 �C and above, the role of temperature is less sig-
nificant; in reactions wherein the temperature varied from 100
to 115 �C, the conversion values were practically the same (95.7%
and 96.5%, respectively).
3.2.2. Influence of reaction time
The effect of reaction time on conversion values was also stud-

ied. The results in Table 3 show that the reaction occurred more
rapidly in the interval of 10–30 min and between 70 and 85 �C.
The gradual increase in conversion rate with time was expected
for this reaction. Under the experimental conditions used here,
the reaction equilibrium was achieved at 40 min at 115 �C, reveal-
ing the high efficiency of the MF8S4M4W15 catalyst. As the reac-
tion equilibrium is reached, water produced as a byproduct of
the reaction can be adsorbed in the active catalytic sites [25].
The adsorbed water can favor a reaction inversion [4,25], possibly
leading to a reduction in ester content.

On the basis of these results, it is possible to affirm that the use
of MF8S4M4W15 as an esterification catalyst is very attractive be-
cause it showed conversion values equivalent to those obtained by
Do Nascimento et al. [4,6,7] for leached metakaolin prepared under
reflux. However, these materials, which were prepared using
microwaves, achieved these results in much less time and at a
much lower reaction temperature. As an example, using MF9S4,
98.9% of conversion was obtained at 160 �C and 240 min [4],
whereas the MF8S4M4W15 catalyst reached 96.5% conversion at
115 �C and 40 min.

In this work, we have determined the order of the esterification
reaction of oleic acid with methanol using the classical definitions
of chemical kinetics and considering oleic acid as the limiting re-
agent, whose transformation into esters is followed by the acidity
index [3,4]. To determine the order of the reaction by elementary
kinetic theory, we proposed a complete conversion of the acid.
According to the data from Table 3, it is possible to conclude that
there is a first-order dependence between the reaction rate and
the concentration of oleic acid, as the fitting shows a linear relation
between all experimental data (when (-ln(1-conversion)) is plotted
as a function of the reaction time). The regression coefficients of
the straight lines show good fits to first-order kinetics. Using the
esterification conversion data for MF8S4M4W15 catalyst we plot-
ted (-ln(1-conversion)) versus the reaction time (not shown) to cal-
culate the rate constants. The obtained values were of 0.0297 at
70 �C, 0.0534 at 85 �C, 0.0787 at 100 �C and 0.0802 at 115 �C. With
these values we have plotted the Arrhenius of ln(k) versus 1/T and
calculated the activation energy (Ea) and the frequency factor (A)
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from the Arrhenius equation, which were 27.97 kJ mol�1 and
585.4 L mol�1 min�1, respectively.
4. Conclusions

The thermal treatment of kaolin at 850 �C made metakaolin
more susceptible to microwave activation. Metakaolin activated
by microwave radiation presented specific surface areas with
values that varied with the intensity and exposure time to the
radiation. The experimental tests demonstrated that kaolin treated
at 850 �C and activated with 4 M sulfuric acid for 15 min
(MF8S4M4W15) was the most efficient catalyst, reaching a conver-
sion rate of 96.5% for the esterification of oleic acid with methanol
(molar ratio 1:60), at 115 �C and 40 min. The superior performance
of this catalyst was also directly related to the density of the
acidic sites on the surface, 4.32 mmol H+ g�1. When compared with
the preparations employing reflux, the acid activation of flint
metakaolin by microwave radiation achieved a catalytically more
active material for the production of biofuels in less time and at
a lower reaction temperature, making this methodology highly
practical.
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