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Abstract

We discuss adaptive strategies for choosing regularization parameters in Tikhonov–Phillips regularization
of discretized linear operator equations. Two rules turn out to be based entirely on data from the underlying
regularization scheme. Among them, only the discrepancy principle allows us to search for the optimal
regularization parameter from the easiest problem. This potential advantage cannot be achieved by the
standard projection scheme. We present a modified scheme, in which the discretization level varies with the
successive regularization parameters, which has the advantage, mentioned before.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction, problem formulation

An operator equation

Ax = y (1)

with a compact operator A acting between Hilbert spaces X and Y is essentially ill-posed if the
range R(A) of A is not closed in Y . If A is invertible this non-closed range yields the discontinuity
of the inverse operator A−1. In general, the minimum-norm solution x0 of problem (1) does not
depend continuously on the right-hand side y. Moreover, the data will not be available exactly
in practice, because of measurement errors. One has to be aware of numerical instabilities when
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noisy observations y� ∈ Y with

‖y − y�‖Y �� (2)

are known instead of y. Hence, in order to approximate the unknown true solution x0 in a stable
way, regularization methods should be applied.

One of the most widely used methods for solving ill-posed problems is Tikhonov–Phillips
regularization. Here a regularized approximation x�,� is obtained by minimizing the functional

J�(x) = J�(A, y�; x) = ‖Ax − y�‖2
Y + �‖x‖2

X,

so that the respective regularized solution is given by

x�,� = x�,�(A) = (�I + A∗A)−1A∗y�. (3)

It is well-known that the accuracy of the regularized solution x�,� depends critically on the chosen
regularization parameter � > 0. If � is too small, then the regularization operator (�I +A∗A)−1A∗
is too close to the (unbounded) Moore–Penrose generalized inverse operator (A∗A)−1A∗, i.e., the
procedure for obtaining x�,� is not so stable, and if � is too large, then fine features of the true
solution x0 are smoothed out. Therefore, it is important to have a reliable rule for choosing the
regularization parameter appropriately.

1.1. Parameter-choice strategies

Of course, it would be nice to choose � a priori, because this would allow us to solve the
regularized equation

�x + A∗Ax = A∗y� (4)

for x = x�,�, only once. However, the appropriate regularization parameter reflects smoothness
properties of the underlying true solution, and such a priori parameter choice can rarely be used
in practice.

Therefore rules have been developed, which attempt to determine the regularization parameter
�, depending upon the noise level � and based on the data y�. These include the discrepancy
principle (DP), originally proposed by Phillips [13] and later analyzed in more detail by Morozov
[11] and Marti [8]; a method developed by Gfrerer and Engl [3] and also by Raus [15], which
is sometimes called the minimum-bound (MB) method, see [6]; the monotone error rule (ME),
as proposed by Tautenhahn and Hämarik [16]. One can find a good account of these rules in [4].
Finally we mention a general adaptation strategy (GAS), as presented by the authors in [9].

In principle, all these rules can be combined with Tikhonov–Phillips regularization (3), but a
disadvantage of the MB and ME rules is that they require the knowledge of an additional ap-
proximate solution, obtained by some more sophisticated regularization method. For example,
the ME rule selects the regularization parameter for Tikhonov–Phillips regularization by con-
structing an additional approximate solution using iterated Tikhonov regularization, i.e., another
regularization method. This is not reasonable, since it doubles computational cost.

Both the DP and GAS are free from the drawback of solving additional problems. The intrinsic
difference lies in the direction in which we search for the parameter �. To compare these rules
we restrict ourselves to the situation in which the regularization parameter � is selected from
some finite set, called �M , below. For parameters from �M we compute regularized solutions
x�i ,�, �i ∈ �M , and select the regularization according to some principle among �i ∈ �M .
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Following Tikhonov and Glasko [17], we take this set �M as a geometric sequence �M :={
�i = qi�0, i = 1, 2, . . . , M

}
, with q ∈ (0, 1) and M chosen so that �0q

M ∼ �2, i.e. M ∼
log(1/�).

The DP starts with large �0, and decreases stepwise �i = q�i−1, i = 1, 2, . . ., until �∗ := �j

is the first parameter that obeys

‖Ax�j ,� − y�‖Y ���, (5)

where the design parameter � is at least two.
The GAS operates in the opposite direction. Here we start with the smallest �M ∼ �2 and

increase stepwise �i−1 = �i/q, i = M, M − 1, . . ., until �+ := �k with

‖x�k,� − x�k+1,�‖ >
��√
�k+1

, (6)

for the first time.
Thus, when applying the GAS we start with the hardest regularized problem (4), while the DP

allows us to begin with the easiest one, and move to harder problems only if necessary.
However, it is known that the DP does not provide the best order of accuracy for all ill-posed

problems (1), for which Tikhonov–Phillips regularization allows us to obtain the best order of
reconstruction. Specifically, the best possible error of the Tikhonov–Phillips method is O(�2/3),
while in combination with the DP one can achieve the accuracy O(�1/2), at best. To our knowledge,
the GAS, when applied to Tikhonov–Phillips regularization, is the only rule that allows us to
reach the best order of accuracy for problems that in principle can be treated in an optimal way by
Tikhonov–Phillips regularization. We refer the reader to the discussion in [9] for further details.

In many cases one knows that an order of accuracy better than O(�1/2) cannot be reached for
the problem of interest; for example, this is true for the so called severely ill-posed problems see
[9, Remark 9]. Then the use of the DP within the framework of Tikhonov–Phillips regularization
is reasonable.

1.2. The issue of discretization

When claiming that the regularized problem (4) with smaller � is harder than (4) for larger
one, we still consider the ideal situation, in which the solution to (3) can be computed. In prac-
tice, any numerical realization of the Tikhonov–Phillips scheme requires us to turn to some finite
dimensional approximation B of A. As it has been explained above, for each fixed B the realiza-
tion of DP is easier than GAS, because in the latter case one should treat a linear system with
the largest condition number from the very beginning. At the same time, it should be realized
that any parameter choice strategy applied to the equation with B will lead to the regularization
of this finite dimensional problem. But we are interested in the solution of the original infinite
dimensional problem. To achieve this goal one should relate the level of regularization with the
level of approximation. We argue that standard discretization schemes do not allow to realize
this potential advantage of DP over GAS. It can be achieved within non-standard adaptive dis-
cretization scheme presented below. The outline of this study is as follows. We first introduce
the discretized discrepancy in the way as this is commonly done, see e.g. [7]. Then we analyze
the discretized DP, applied to Tikhonov–Phillips regularization when smoothness is measured in
terms of general source conditions. We end up with some sufficient conditions on the closeness
of the approximating B to the original A, which ensure the optimal order of reconstruction. These



374 P. Mathé, S.V. Pereverzev / Journal of Complexity 22 (2006) 371–381

conditions allow us to establish a non-standard scheme, based on sets of nested projections, orig-
inally introduced by one of the authors in [12]. Based on spars(B), a complexity measure known
as sparsity, we finally discuss the superiority of our new scheme over the usual schemes that are
analyzed in (e.g.) [14,10].

2. The discretized discrepancy principle for Tikhonov regularization

We shall measure the smoothness of the solution x = x0 relative to the operator A in terms of

A�(R) := {
x ∈ X : x = �(A∗A)v for some v ∈ X with ‖v‖�R

}
.

Here � : (0, ‖A∗A‖] → R+ is increasing and �(0+) = 0. Such functions are called index
functions. These give rise to weighted Hilbert spaces X� as follows: the operator A∗A admits a
(monotonic) Schmidt representation for an orthonormal system u1, u1, . . ., given by

A∗Ax =
∞∑

j=1

sj 〈x, uj 〉uj , x ∈ X.

Then X� is the completion of finite expansions x = ∑n
j=1〈x, uj 〉uj with respect to the scalar

product

〈x, y〉� :=
∞∑

j=1

〈x, uj 〉〈y, uj 〉
�2(sj )

.

In this case we have A�(R) = {
x ∈ X : ‖x‖� �R

}
. For details of this construction and conse-

quences with respect to approximation we refer the reader to [9,10].
As discussed above, regularization will be carried out by solving the approximate equation

x�,�(B) = (�I + B∗B)−1B∗y�, (7)

instead of the original one.
Let g�(t) := (�+ t)−1 and r�(t) := 1− tg�(t). Using the spectral calculus, the functions g� and

r� may be extended to non-negative self-adjoint operators in X. In these terms we can see that by
construction (7) of x�,� the discretized discrepancy can be rewritten as ‖Bg�(B

∗B)B∗y� −y�‖ =
‖r�(BB∗)y�‖. The respective (B-discretized) DP reads

�∗ := max
{
� ∈ �M, ‖Bg�(B

∗B)B∗y� − y�‖���
}
. (8)

Our subsequent analysis will be based on the following assumptions on the closeness of A and B.

Basic assumptions. The operators B = B(�) are chosen in such a way that

‖AA∗ − BB∗‖ � �
√

�, (9)

‖A∗A − B∗B‖ � �
√

� (10)

and

‖(A∗ − B∗)A‖��
√

�. (11)

We recall the following facts, see e.g. [7].
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Lemma 1. For any � > 0 we have

‖ (
r�(AA∗) − r�(BB∗)

)
y‖�R

‖AA∗ − BB∗‖
2
√

�
(12)

and

‖ (
r�(A

∗A) − r�(B
∗B)

)
x0‖�R

‖A∗A − B∗B‖
�

. (13)

With these facts at hand we can derive our first bounds.

Lemma 2. Under the DP (8), and using assumptions (9) and (10) it holds true that

q (� − 1 − R/2) ��‖r�∗(AA∗)y‖�(1 + � + R/2)�. (14)

Proof. Using the triangle inequality, we find that

‖r�(AA∗)y‖ � ‖r�(BB∗)y‖ + ‖r�(AA∗)y − r�(BB∗)y‖
� ‖r�(BB∗)(y − y�)‖ + ‖r�(BB∗)y�‖ + ‖r�(AA∗)y − r�(BB∗)y‖.

The first summand is bounded by �. By (8), the middle summand is bounded by �� for � = �∗.
Using (12) the third one is bounded by (R/2

√
�)‖A∗A − B∗B‖, such that using (10) we obtain

the upper bound.
To prove the lower estimate let � := �∗/q ∈ �M . Using the triangle inequality and (8) we find

that

‖r�(AA∗)y‖ � ‖r�(BB∗)y‖ − ‖ (
r�(BB∗) − r�(AA∗)

)
y‖

� ‖r�(BB∗)y�‖ − ‖r�(BB∗)(y − y�)‖ − ‖ (
r�(BB∗) − r�(AA∗)

)
y‖

� (� − 1)� − R
‖AA∗ − BB∗‖

2
√

�
.

By (9), this implies ‖r�(AA∗)y‖�(� − 1 − R/2)�. Next, an easy calculation shows that for
Tikhonov regularization ‖r�∗(AA∗)y‖�q‖r�(AA∗)y‖, from which the proof can be
completed. �

With these preparations we can provide the first impact of the DP; it provides a lower bound
on the parameter �∗. The important function in this context is �(t) = √

t�(t), t > 0.

Proposition 3. Suppose the true solution x0 belongs to A�(R) for some index function � for
which �2 is concave. If �∗ is chosen as in (8) then

�(�∗)�q (� − 1 − R/2) �/R.

Proof. If x0 ∈ A�(R), then there exists v ∈ X satisfying ‖v‖�R with x0 = �(A∗A)v. If �2 is
concave, then �2(t)/t is decreasing and so is

√
t�(t)/t . Then from Remark 5 and Proposition 3

of [9, Remark 5 & Prop. 3] it follows that

‖r�∗(AA∗)y‖ = ‖r�∗(AA∗)A�(A∗A)v‖
= ‖r�∗(AA∗)(A∗A)1/2�(A∗A)v‖�R�(�∗).

Using Lemma 2 the proof can be completed. �
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Next we shall see that we can bound the difference between the exact and the regularized
solutions for pure data.

Corollary 4. Let x = x0 ∈ A�(R). Then

‖r�∗(A
∗A)x‖�(1 + � + R/2)R�(�−1(�/R)). (15)

Proof. For x ∈ A�(R), we have ‖r�(A∗A)x‖� �R. By Lemma 2, we obtain

‖r�∗(A
∗A)x‖1/

√
t = ‖Ar�∗(A

∗A)x‖ = ‖r�∗(AA∗)y‖�(1 + � + R/2)�.

Because �2 is concave, the same holds true for t 
→ �2((�2)−1(t)), see e.g. [9], and we can
apply the interpolation inequality

�−1
(‖r�(A∗A)x‖�/�

‖r�(A∗A)x‖�

)
��−1

(‖r�(A∗A)x‖�/�

‖r�(A∗A)x‖�

)

of [10, Theorem 4]. Using the concavity of t 
→ �(�−1(t)) this leads to the estimate (15). �

Now we are ready to state and prove the main result of this section.

Theorem 5. Suppose x = x0 ∈ A�(R) for an index function � with concave square, and that �∗
is chosen according to the DP. There is a constant C < ∞ for which

‖x − x�∗,�‖�CR�(�−1(�/R)). (16)

Proof. We start with the obvious error decomposition

‖x − x�∗,�‖ � ‖x − g�∗(B
∗B)B∗Ax‖ + �‖g�∗(B

∗B)B∗‖
� ‖ (

I − g�∗(B
∗B)B∗A

)
x‖ + �√

�∗
.

We bound the first summand on the right as

‖ (
I − g�∗(B

∗B)B∗A
)
x‖

�‖ (
I − g�∗(A

∗A)A∗A
)
x‖ + ‖ (

g�∗(B
∗B)B∗ − g�∗(A

∗A)A∗) y‖.

The first summand can be rewritten as ‖r�∗(A
∗A)x‖ and was estimated in Corollary 4. The second

summand can be treated similar to [7, estim. (28)]. Recall that the inequalities (9)–(11) hold for
B = B(�). For � = �∗ we obtain

‖ (
g�∗(B

∗B)B∗ − g�∗(A
∗A)A∗) y‖

�‖ (
�∗I + B∗B

)−1
(B∗B − A∗A)

(
�∗I + A∗A

)−1
A∗Ax)‖

+‖ (
�∗I + B∗B

)−1
(A∗ − B∗)y‖

��∗−1‖A∗A − B∗B‖‖x‖ + �∗−1‖(A∗ − B∗)A‖‖x‖�2R
�√
�∗

.



P. Mathé, S.V. Pereverzev / Journal of Complexity 22 (2006) 371–381 377

Thus from Proposition 3 and Corollary 4, we deduce that for some large enough C < ∞

‖x − x�∗,�‖ � (1 + � + R/2)R�(�−1(�/R)) + (2R + 1)
�√
�∗

� CR�(�−1(�/R)).

The last estimate holds true because �(�−1(2t))�2�(�−1(t)), which follows from concavity.
�

From [9, Corollary 1] one knows that � 
→ �(�−1(�/R)) is the best possible order of accuracy
in the case under consideration. Thus, Theorem 5 tells that under assumptions (9)–(11), the
discretized DP provides us with the order-optimal choice of regularization parameter. Let us stress
that for index functions �(t) = t�, the requirement that �2 is concave restricts the best possible
order of accuracy to

√
�, because necessarily 0 < �� 1

2 , and �(�−1(t)) = t�/(�+1/2) �
√

t, t ∈
[0, 1]. In view of this limitation there is no reason to apply regularization schemes, which are
more sophisticated than Tikhonov–Phillips regularization, because even the latter already allows
to achieve that accuracy.

Remark 6. It is well known (see, e.g. [9, Theorem 4]) that Tikhonov–Phillips regularization
cannot provide an optimal order of accuracy for � > �2/3. Therefore it is reasonable to choose
�0 for �M as �0 = �2/3. Then for � ∈ �M , we have �2 < �

√
�, and hence condition (10) is

weaker than the requirement ‖A∗A − B∗B‖ ∼ �2, a condition presented by Groetsch in [5], i.e.,
the discretization according to (10) can be more efficient.

3. Complexity issues

3.1. Approximation by projections

Several authors have investigated schemes where the approximation B to A is of the form
B = QkAPl and where Qk and Pl are orthogonal projections onto suitable finite dimensional
subspaces R(Qk) ⊂ Y and R(Pl) ⊂ X, respectively. These are called projection schemes.

In the spirit of multi-resolution analysis, see e.g. [1], we will assume that the spaces R(Qk)

and R(Pl) belong to some families {R(Qj )}∞j=0 and {R(Pj )}∞j=0 of nested finite dimensional
subspaces, i.e., we have the inclusions

R(Qj ) ⊂ R(Qj+1) ⊂ Y, R(Pj ) ⊂ R(Pj+1) ⊂ X

and for some s�1 we have

dim R(Qj ) ∼ dim R(Pj ) ∼ 2sj , (17)

where a ∼ b always means that a and b can be bounded by constant multiples of each other.
As it has been observed in [14] and [10], the error bounds of a standard projection scheme

depend on the bounds on ‖A(I − Pl)‖ and on ‖(I − Qk)A‖ and it is natural to assume that there
exist r, cr , dr > 0 such that for k, l = 0, 1, . . . , we have

‖A(I − Pl)‖X→Y �cr2−rl and ‖(I − Qk)A‖X→Y �dr2−rk. (18)
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Example 7. An example to illustrate the assumptions above is given by an integral operator

Ax(t) =
∫
�

a(t, �)x(�) d�, t ∈ �,

with kernel a(t, �) belonging to the Sobolev space Wr(� × �), where � is a (smooth or at least
piecewise smooth) manifold. In this case it is easy to see that both operators, A and

A∗x(t) =
∫
�

a(�, t)x(�) d�

act from L2(�) into the Sobolev space Wr(�). Then nested finite dimensional subspaces meeting
(17), (18) can be constructed using wavelets as presented in [2].

3.2. Sparsity as a measure of complexity

We shall measure the complexity by the amount of discrete information required to compute
B, or (more specifically) by the number of matrix–vector multiplications required to compute
the solution to (7), based on the operator B. Both the quantities mentioned above are determined
by the number of non-zero entries in the matrix representing the finite dimensional operator B

in corresponding bases. This number is known as the sparsity of B, see [7]. We will denote the
sparsity of B by spars(B) and we use this as a complexity measure.

3.3. Sparsity of the standard projection scheme

The DP (8) with x�j ,� = x�j ,�(B) and B = QkAPl instead of A has been studied in detail
in [14]. The authors have shown that a discretized version of the DP provides an order optimal
a posteriori parameter choice for Tikhonov–Phillips regularization (7), in which B = QkAPl ,
whenever

‖A(I − Pl)‖X→Y ∼ ‖(I − Qk)A‖X→Y ∼ �. (19)

Under assumptions (18) this can be guaranteed by letting k = l and 2k = 2l ∼ �−1/r . In view
of (17) such a choice in general leads to the finite dimensional operator B = QkAPl having the
sparsity

spars(QkAPl) ∼ �−2s/r . (20)

Rule (6), applied to the same approximation x�j ,� = x�j ,�(QkAPl), has been studied in [10].
Again, it was shown that under (19), the GAS will provide an order optimal a posteriori parameter
choice for all problems (1), which in principle can be treated by Tikhonov–Phillips regularization
optimally. Moreover, in [10] an adaptive �-dependent discretization strategy has been proposed.
For � > �M ∼ �2 one can use finite dimensional operators B = QkAPl , sparser than (20).

Summarizing the above discussion, we see that these standard projection schemes do not allow
us to utilize the main advantage of the DP, which is that one starts with the easiest regularized
problem. In both cases (the DP, as well as the GAS) we start with some operator B = QkAPl of
the same sparsity (20).
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3.4. Sparsity of nested discretization

It is the goal of the present section to analyze a modified projection scheme under the DP that
will really allow us to start with the easiest problem (in the sense of sparsity of B, as well as in
the sense of condition number of the matrix associated with �I +B∗B), and that will increase the
complexity only if necessary for increasing the accuracy.

The analysis from the previous section does not indicate how to choose the finite dimensional
operators B = B(�) meeting the basic assumptions (9)—(11). Next we are going to present such
a recipe.

Let us consider the discretization

B = Bn =
2n∑

j=1

(Qj − Qj−1)AP2n−j + Q0AP2n. (21)

This was introduced in [12, § 17] for discretizing operator equations of the second kind (well-
posed problems). In [7] this discretization was also applied for linear ill-posed problems (1) under
the assumptions that x0 ∈ A�(R) for �(t) = t�, 0 < �� 1

2 . Our analysis uses the following
result that can be proved similar to [7, Lemma 1].

Lemma 8. Under assumptions (17) and (18) let br := 2r+3drcr .
If n = n(�, �) is the minimal integer number satisfying the inequality

n(�, �)2−2n(�,�)r �b−1
r �

√
�, (22)

then the basic assumptions (9)–(11) are fulfilled.
Moreover, spars(Bn) ∼ 22nsn.

As a consequence we obtain

Corollary 9. Let n := n(�, �) be chosen as in (22). For �∗ chosen according to the DP, we have

spars(Bn(�∗,�))�c(�
√

�−1(�))−s/r log1+s/r (1/(�
√

�−1(�))). (23)

Proof. For such a choice of n(�, �), we obtain

spars(Bn(�,�)) ∼ (�
√

�)−s/r log1+s/r (1/�
√

�).

Recall that the projections are nested as R(Qj ) ⊂ R(Qj+1) and R(Pj ) ⊂ R(Pj+1). Then for
�i < �j (with �i , �j ∈ �M )

R(Bn(�j ,�)) ⊂ R(Bn(�i ,�)) and R(B∗
n(�j ,�)

) ⊂ R(B∗
n(�i ,�)

).

This implies that the matrix representing the operator Bn(�j ,�) in appropriate bases of the subspaces
R(Q2n(�j ,�)), R(P2n(�j ,�)) is part of the matrix representing Bn(�i ,�). Using this sequence of
operators Bn(�i ,�), �i ∈ �M , within the DP (8), one starts with the matrix representing Bn(�0,�)

to finally end up with the matrix representing Bn(�∗,�). This resulting matrix contains all previous
ones. Moreover, Proposition 3 and Lemma 8 allow us to complete the proof. �
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4. Conclusion

It is illuminating to compare the number of non-zero entries (23) of the final matrix obtained
by the nested discretization with the corresponding number, obtained when using a projection
scheme with an �-dependent choice of discretization. The latter scheme was discussed in [10].
From the analysis there, and within the present setup, see (17) and (18), the number of non-zero

entries at the end is of the order
(
�−1(�)

)−s/r
. This number can be seen to be substantially

smaller than the one given in (23). However, this small matrix appears at the end after a sequence
of computations, where already at the beginning a problem has to solved, which is more involved
than the final thus hardest one under nested discretization, which has sparsity (23). Thus, for both
regularization parameter choice rules under discussion the standard discretization strategy, known
also as a Galerkin scheme, leads to the finite dimensional operator having the sparsity (20). The
only difference is that the combination of Galerkin scheme with the DP keeps the same matrix
during the whole search of the final regularization parameter, whereas in the case of GAS the
most populated matrix is used only at the beginning of the search. At the same time, Corollary 9
suggests �-dependent nested discretization scheme (21), which allows to implement the DP in
such a way that the corresponding matrix becomes more populated only if necessary, but even at
the end of the search the final matrix will be much more sparse than a Galerkin matrix.

Specifically, let us assume that the index function � measuring the solution smoothness obeys
�(t) < t� for some � > 0, i.e., the underlying problem is moderately ill-posed. This yields for
any � > 0 the estimate

log−�(1/�)?(�2 log2�(1/�))� > �(�2 log2�(1/�)),

or equivalently, �?�(�2 log2�(1/�)). 1 This in turn yields

�−2s/r?c(�
√

�−1(�))−s/r log1+s/r (1/(�
√

�−1(�))) > spars(Bn(�∗,�)).

Comparing this with (20) we conclude that for moderately ill-posed problems the combination of
the DP with finite dimensional approximation (21) is much more efficient than the DP combined
with the standard projection scheme. To the best of our knowledge the discretization (21) is the
only one which allows to utilize the main advantage of the DP, which is that we start with the
easiest regularized problem.
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