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1. INTRODUCTION 

The restricted problem of three bodies has been already regularized on 
surfaces of constant Jacobi function by Levi-Civita and Birkhoff. In this paper 
we prove that collisions in the restricted three-body problem are actually 
regularizable by surgery, following Easton’s methods and ideas. Easton [3, 41, 
has proved the corresponding assertions for the two-body problem, and for 
binary collisions in the planar three-body problem. Since regularization by 
surgery is achieved for all Jacobi levels at once, it gives a more global outlook 
of the problem. 

The idea of regularizing vector fields by surgery consists of excising from 
the manifold on which the vector field is defined, some neighborhood “isolating” 
all the integral curves which tend to or come from the singularity. We then 
identify the endpoints of orbits crossing the neighborhood, and show that 
this identification has a continuous unique extension, which pairs the endpoints 
of orbits entering the neighborhood and ending in the singularity, with the 
endpoints of orbits leaving the neighborhood coming from the singularity. 

We will first recall the general ideas about regularization by surgery, define 
an isolating block for the restricted three-body problem, showing the collisions 
are regularizable. In the final section we check how the topology of the regularized 
levels by surgery agrees with the one obtained by direct methods. Birkhoff [l] 
first described the topology of the regularized levels in this problem. 

At the end of this work we also give some properties of the set of initial 
conditions leading to collision. For example, it is an embedded cylinder on 
each level surface. 

2. ISOLATING BLOCKS AND REGULARIZATION 

The kind of neighborhoods which can be conveniently excised to achieve 
regularization of a vector field by surgery are called isolating blocks, and were 
first studied by Conley and Easton [2]. They are usually constructed by means 
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of some suitable differentiable function generalizing the classical Lyapunov 
functions, in that its first and second derivates along integral curves must have 
certain properties (see [7]). 

Let M be a Cm manifold of dimension n, let S be a closed subset of M, and 
let X be a Cat vector field defined on M - S. 

If p E M - S and y is an integral curve of X satisfying y(O) = p, we denote 
r(t)bp .t. 

Letfi M - S--+ R be a smooth function and definef = u”(X): M - S--f R, 
the function obtained by taking directional derivatives along integral curves 
of X. Also define J’ = 8, where g = j. 

DEFINITION 1. We say that f is a (hyperbolic) Lyapunov function for X, if 
wheneverf(p) = 0 and f(p) = 0, it is the case thatf(p) > 0. 

This means, roughly speaking, that the only critical points off along integral 
curves are minima. 

Let B be an n-dimensional smooth submanifold with boundary of ‘M, that is, 
B is the union of an open subset of M and its boundary b = aB, where b is a 
smooth (n - 1) submanifold of M. Assume S n b = ,@. Define the sets: 

bf = {p E b : integral curve p * t is ingressing to B}; 

b- = {pub : integral curve p * t is egressing from B}; 

7 = (p E b : X(p) is tangent to b); 

a+ = (p E b+ : p * t never exits B again}; 

a- = {p E b- : p * t exits from B for the first time). 

Notice that in general b+ u b- u T = b. 

DEFINITION 2. We say that B as above is an isolating block (for X) if 
bf n b- = T, and T is a codimension 1 submanifold of b. In particular, b+ and b- 
must be submanifolds of b with common boundary 7. 

The following property connects the two objects, above: 

PROPOSITION 1. If f is a Lyapunov function for X such that 0 is a regular 
value for f and (0, 0) is a regular value for G = (f, f) : M - S --+ R2, then 
B = (p E M - S; f (p) < 0) is an tiolating block for X. 

Proof. From the definition of Lyapunov functions, it is clear that 

b = {P :f(p) = 01, 

b’ = (P :f (PI = O>~(P) < O>> 

b- = (P : f (p> = 0, f’(p) > 01, 

7 = {P : f(P) = 0, f(P) = 01, 
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so that b+ n b- = 7. The fact that b and T are submanifolds of the right dimension 
is clear from the hypothesis on f and G. Q.E.D. 

The property bf n b- = 7 can be interpreted by saying that any trajectory 
which becomes tangent to b = 8B must “bounce off” b from outside the block. 
This is implicit in the definition of Lyapunov function, as Proposition 1 shows. 

Define the map II: b+ - a+ --f b- - a- by setting 17 (p) = p . u, where 
a=sup{t>O:$.t~B}. 

It is known [2], that n is a diffeomorphism. 

DEFINITION 3. The singularity S is regularizable [4] if there exists an 
isolating block B of X such that B C M - S, with the properties: (a) Any 
integral curve approaching S as time goes to some (right or left) limiting value, 
must eventually enter and stay in B. (b) The map 17 admits a unique extension 
as a diffeomorphism l7z b+ + b-. 

DEFINITION 4. Suppose the singularity S is regularizable. We define the 
regularized mun$old M’ as follows: 

Let - be the equivalence relation in M - S - int B such that x my if 
x = y, or if x = 17(y), or if y =n(x), and then define M’ = (M- S- int B)/- 
as a topological space with the standard quotient topology. In fact, M’ can be 
given a Cm manifold structure. 

DEFINITION 5. Suppose the singularity S is regularizable. Then we define 
in M’ the regularized (continuous) sector field x’, induced from X in M - S. 
Roughly speaking, its integral curves coincide with those of X for points in 
M - S - B, they cross B in zero time via the map I7 when hitting points of b, 
and continue as before along the appropriate integral curves of X. 

3. THE RESTRICTED THREE-BODY PROBLEM 

As it is well known, the restricted three-body problem consists in studying 
the motion of a particle of zero mass (planetoid) subject to gravitational attraction 
from two masses of positive mass (primaries) revolving in circles around each 
other in the same plane [6]. 

Using complex coordinates z = x + iy for the plane, the differential equations 
governing the motion can be written in the form 

I + 2ik = grad, U = grad, @, (1) 
where 

U(z) = CD(z) - (C/2), 

q.4 = t I z I2 + h41 - f-4 + w4, O</.L<l, 
(2) 
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and 

v-4 == w - Phi + WfA7 Pl=Iz+PIY P2 = I x + I-L - 1 I? (3) 

and the grad, indicates gradient with respect to the variables X, y interpreted 
as a complex number, keeping C constant. The C denotes a fixed value of the 
Jacobi integral of motion, defined by 

J(z, 22) = 2@(z) - 1 i: 12. (4) 

Comparing (2) and (4), we see that 

/ f 12 = 2U(z) (5) 

is satisfied on integral curves where J = C. 
There are exactly two singularities, corresponding to collision with each one 

of the primaries: pr = 0, and pz = 0. Since the situation is symmetrical, we 
will just describe the case p2 = 0. 

In what follows it will be convenient to use freely the complex and the vector 
structure of the plane, with its inner and cross product. 

To define our isolating block, we start by defining a Lyapunov function: 

f(? 3 = b22 - (P2i50) 4(Cj2, (6) 

where C = J(z, 2) was found convenient to consider as constant for the purposes 
of computingf,j;along integral curves. The4 is a sufficiently close Cm, smoothing 
out of the following function at the corners: 

i I t I-l, I tl > 8, 
(brw = (7) 

-I- 
40r ItI<% 

in such a way that 0 < $ < & . Finally, the constant 40 has been chosen to 
satisfy the estimates of Lemma 2 and Proposition 6, below. 

Let B = {(z, 2): z # -p, 1 - TV &f(z, .i;) < 0). That B is an isolating 
block will be immediate after the following two lemmas. 

LEMMA 2. The f dejined by (6) is a Lyapunov function for the system (1). 

Proof. Some computation shows that 

f(z, 2) = 2 . (z + p - l), 

f(z, 2) = I . (z + p - 1) + f . i: (8) 
= I f I2 + 2(z + p - 1) x i: + grad, @ . (z + p - l), 

where we used (1) and the fact that (ia) . b = a x b for a, b, i E C = 082. 
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From (3) and considering pi = (pi2)1/2 for i = 1, 2, we easily get 

grad, @ = z - I(1 - ELYP~~I(~ + 1-4 - bh3)(~ + P - I>, 
so that 

f(z, 2) = 1 112 + 2(2 + p - 1) 

x 2 - V(x) + I z I2 + (1 - P”)X + [(I - p)/f131(x + p). 

On the other hand, from (5), (2), and (3) we have 

+I Fi 12 = V(z) + 4 I 2 12 + $/A(1 - CL) - (C/2), 

from which we can eliminate V(Z) into the above equation, giving 

(9) 

f(z, 5) = & 1 s 12 - (C/2) + 2(2 + p. - 1) 

x 2 - (1 - tL)x + 8 I z I2 + [(l - p)/p17@ + p). (10) 

To check that f is Lyapunov function, it will be enough to prove that if 
f = 0, thenf> 0. 

Indeed, in Eq. (10) when p2 = (d/5) (f = 0) the last two terms are greater 
than zero, (1 - p) I x / < 1, and if we can find positive bounds 

such that 

4 1 z j2 - (C/2) 3 K, 

2Pzl5l <L 

K-L-120 (11) 

it will follow j> 0 as required. 
Since p2 = &5, and therefore p1 > 1 - (&/5) > 1 - (.L, we have 

w G I7 = (5/f+) + m - PYPII d (5M) + 1. (12) 

Using (9) with the remark I z / < 1, ~(1 - CL) < 1, we get 

(5/4) - (C/2) < + I 1 I2 < (5/R + 2 - (C/2), (13) 
(5/$) - c G 3 I f I2 - (C/Z) < (5/& - c + 2. (14) 

We consider now two cases, according to the values of C: 

(a) If / C / 3 8, then (b(C) = l/(5 / C I) and inequalities (13), (14) give 

4 / f I2 - (C/2) > 24 / C I = K, 

I f I2 < 52 I C I> 
2p2 1 f 1 < 2(52)‘/“&25 1 C j1l2) < l/j C j1/2 = L, 

and clearly condition (11) is satisfied in this range. 
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(b) If ] C 1 < 8, then 4 (C) = & and in this case 

+ 1 i I2 - (C/2) > 200 - C >, 192 = K, 

j d I2 < 404 - C < 412, 

2pz 1 1 1 < (412)1/2~/100 < 1 = L, 

with condition (11) satisfied again. 
This completes our proof. Q.E.D. 

In the notation of Section 2, we have b = {f = O> and T = {f = 0, f = O}. 

LEMMA 3. The sets b, 7 are submanifolds of the four-dimensional phase space, 
with codimensions 1 and 2, respectively. 

Proof. It is enough to prove that f does not have critical points on b, and 
G = (f, f) does not have critical points on r, by Proposition 1. 

We first remark that i: is bounded away from zero in b, since (13) shows 
i i: I2 3 392 for any C. In fact, we can slightly modify the argument to see that 
the same lower bound holds in B, so that there are no critical points of (1) 
inside the block, as it should be. 

We find grad f = (z + p - 1 - (2p2/25) # grad, @, -(2p2/25)#‘i;) and 

gradf = (2, x + TV - l), 

where 4’ denotes derivative of 4 with respect to its argument. 
By examining the two cases 4’ = 0 and $’ # 0 we see that grad f # 0 since 

p2 > 0. Considering the same two cases and recalling that f = 0 is equivalent 
to 2 orthogonal to z + TV - I, we check that grad f and grad f are linearly 
independent on 7 as required. Q.E.D. 

Our two lemmas above and Proposition 1 immediately imply the following 
result. 

THEOREM 4. The set B is an isolating block for the singularity p2 = 0. 

We can now characterize topologically the block: 

PROPOSITION 5. There is a difeomorphism 8: B -+ (- 1, 0] x R x S x 9, 
such that 

B(b) = 0 x R x s x 9, 

B(b+) = 0 x R x {(eie, ei”) : eie . ei* < 0}, 

B(b-) = 0 X R X i(eis, eid) : eis . eim > 0}, 

O(T) = 0 X II% X {(eie, ei6) : eie . ei* = 01, 

R5 0 x Iw x so x 9. 
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‘4z, 4 = (50f/W2), J, (z + CL - l)/pz 9 41 f I). 

This map is one to one, since a value for J and a value for f determine p2 . 
The direction of the third coordinate function determines z, and (5) together 
with the last direction determine z?. Moreover, 0 is a diffeomorphism, since its 
Jacobian matrix is equivalent to the following nonsingular matrix: 

The other assertions are easily verified with the characterization of the sets 
in Proposition 1. Q.E.D. 

4. REGULARIZATION OF THE PROBLEM 

The flow in C2 - (-cl + i0) x C -( 1 - TV + i0) x C for the restricted 
three body defines a map I7 across the block B (Section 2). We want to show 
that the singularity S, = (1 - p + i0) x C is regularizable by surgery, which 
requires the proof that I7 has a unique extension from bf onto b-. We will 
perform the Levi-Civita regularizing transformation of the flow on Jacobi 
level surfaces [6j to obtain a nice vector field. We extend I7 to all of b+ by using 
this vector field. 

The transformation consists of the map 

F(w, w’) = (1 - p + w2, ww’/(2 1 w I”)) = (z, .i;) 

and a new time variable s satisfying the condition 

(15) 

dt/ds = 4 1 w j2. 

The system (1) becomes 

w” + 82’ / w j2w’ = grad,(4 
where 

I w I”9 (16) 

w2+ 1 I--2C]I w 12+4/A (17) 

and grad, is interpreted as before, keeping C constant. Notice that the right-hand 
side of (16) now does depend on C. 

Equation (5) now becomes 

j w’ I2 = 8 1 w 12U. 
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If we denote by X, the vector field in phase space corresponding to (I), and 
by X, the one corresponding to (16), they are related by the derivative of F 
on each C Jacobi surface, 

DF(X,) =4/wj2Xz. (1% 

From (16), X, is explicitly defined by the equations: 

dwlds = w’, 

dw’lds = 4wKl - 4~12 + (2 - p)p221 + 841 - p)[(l + w")h"] (20) 

- 8wC - 8ip2w’ + 8w(l - P)pz , 

where p1 = 1 1 + w2 I, pa = / w 12. Notice that pz = 0 is not a singularity any 
more, as expected. 

Denote by f) and 8, the isolation block in w coordinates and its intersection 
with the C Jacobi level {JO F = C}, respectively, i.e., 

B = ((w, w’) : 0 < 1 w I2 < ,u#/5} = F-‘(B), 

8, = ((w, w’) : 0 < 1 w I2 < &(C)/S, j w’ I2 = 8 j w I2 U). 

Notice that the collision singularity S, has been removed, and Eqs. (17) and 
(18) show that it has been transformed under regularization into the circle 

s2 = {(w, w’) : w = 0, / w’ 1 = (8p)‘/“} (21) 

for each fixed C. 
In fact, 8, is an isolating block for X, on the C Jacobi level, isolating S, . 

Let ff be the map across B, defined by X, . 
Before going to our main theorem, we need the following proposition, which 

roughly speaking states that any orbit in 8, must eventually leave it out at 
its boundary in finite time. 

PROPOSITION 6. Given (w,, , wo’) E 8, we can jnd a time 2 > 0 such that 
;f y(s) = (w(s), w’(s)) is the integral curve through (w, , wO’), then it is de$ned 
in [0, L’] and I w(Z)l” > A(C)/S. 

For its proof, we need the following technical lemma, giving estimates 
from (18) and (20). 

LEMMA 7. The velocity and acceleration have the bounds. 

7.5p < 1 w’ j2 < 8.5& 

I wn I < (20 + 8 I C I) (P$(C)/~)~/~, in & . 

505124!2-7 
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Proof. For the first estimate, (17) and (18) show that it will be enough to 
show that 

lu = 4Kl - P)P12 + PPz2 + 31 - CLYPI - WP, 

is bounded in absolute value by CL/~. Since p2 < p$(C)/S, clearly 4 < p1 < 2 
and using (7) we get 

8 I C I ~2 G 8~ I C I +(C)/5 < 81*/25, 

0 G U - CL) p12 + ~JP~’ + 2U - 1-4~~1 4p2 G CL/~. 

Combining them, we have -8~125 < M < ~14 + 8~125, as required. 
The estimate on w” = dw’lds is easy to get using the above one, and estimating 

the right-hand side in the second equation of (20). Q.E.D. 

Proof of Proposition. In the regularized system integral curves are defined 
even beyond collision, so that they are continued for any time t, at least as long 
as they do not reach the other collision outside 8, . 

It will be enough to prove that if (w,, , ~0’) E 8, and u = 2p-lj2 j w0 1, then 
1 w(u)1 > 2 / w,, 1. Iterating the procedure as many times as necessary shows the 
proposition. To prove this equivalent claim estimate in absolute value the 
integral of w” from 0 to ~(0 < s < u) and apply the Fundamental Theorem of 
calculus. We get 

I w’(s) - w; j < g/2 for 0 <s < 0, (22) 

using j w,, I2 < &/5 and (20 + 8 1 C 1)4(C)/5 < 21/50 for all C. 
We may assume wa’ is real and positive by rotating the axis in the w’ plane, 

if necessary, so that (22) implies that w’ must be bounded away from the 
imaginary axis; i.e., Re(w’) > 3$12/2 to meet the lemma estimate / w’ I 3 
(7.5p)V. Estimating the integral of w’ from below and using the fundamental 
theorem again, we get I w(u)1 + 1 w,, 1 3 3 1 w,, /, as required. Q.E.D. 

THEOREM 8. The singularity S, of the restricted three-body problem is reg- 
ularizable by surgery. 

Proof. It is enough to work on the Jacobi levels of regularized coordinates 
and to check for B, conditions (a) and (b) of Definition 3. We denote by 
6*, 7, a”* and bi, ‘T, a* the subsets of 8, defined by X, , and of F(B,) C B defined 
by X, , respectively. 

From the definition of 8, , it is clear that any orbit going to collision must 
eventually enter the block and remain in it until collision occurs. The same 
is true when we get back to unregularized coordinates. This shows (a). 

Now, the map n is in fact a diffeomorphism from 6+ to 6-, since x, defines a 
flow in the whole submanifold with boundary 8, u 3, , which actually crosses 
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it because of Proposition 6 and the fact that any integral curve starting at & 
must immediately leave it (see (20)). 

Define fi: b+ -+ b- by If = F ofl o F-l. Since (19) holds, it follows that 
fr = Ii’ in b+ -a+, so that rf is a diffeomorphic extension of I7 to b+. This 
extension If is unique since ii+ is in the closure of 6+ - cif, which implies that a+ 
is in the closure of b+ - a-+. This completes (b). Q.E.D. 

Since we can change roles of the two collisions in the problem by interchanging 
TV and 1 - p everywhere, as already remarked, our same arguments show how to 
construct an isolating block B’ disjoint from B, which regularizes the other 
collision. So, the problem is globally regularized. 

5. REGULARIZED TOPOLOGY BY SURGERY 

Rather than defining the regularized phase as in Definition 4, it turns out 
to be more interesting to consider the same definition applied to the noncritical 
Jacobi levels, getting the so called regularized levels. Since the essential point 
here is a variation of the topological arguments in [3], we will just give an 
informal discussion. 

We finish this section by describing the cylinders of orbits leading to collision. 
Fix C once and for all. Consider the Jacobi level 

Jc = {(z, 4 : 15 I2 = 2U(z), z # -/L, 1 - ,.L}, 

and the isolating blocks in Jc for each collision: 

B, =B’n Jc, B,=BnJ,. 

The regularized Jacobi level JG may be obtained as 

lc = [Jc - iWl u B,)l/-, (23) 

where - identifies points at b, = aB, via II, according to Definition 4, and 
likewise for 6, = aB, . 

We will now describe, by way of illustration, the p, in two cases. It is a 
simple task to check that they agree with the regularized lG obtained via Levi- 
Civita regularization in the author’s forthcoming article [5]. Most of the following 
topological discussion is more detailed in said paper. 

The space Jc - (B, u B,) is topologically the same as Jc , and from Eq. (4) 
it is a pinched circle bundle over @5(z) 3 C/2 in C - (-p, 1 - pL), using 
Smale’s terminology, the pinching occurring over the bounding zero velocity 
curve Q(z) = C/2. 
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Case I. Assume C > 3. By looking at Eqs. (1) (2), and (3), we would expect 
that close to either primary the system behaves as a planar two-body problem 
with negative energy. Here @.>, C/2 consists of the three connected regions 
A, , A, , A, shown in Fig. 1, where the crosses mark collision points. Cor- 
respondingly, JG has three connected components 

where & = P(A,) d enotes pinched circle bundle over Ai . 

FIGURE 1 

Since I, is not close to collision, it remains unaffected by regularization, and 
we easily check it is topologically a solid torus without boundary. Therefore (23) 
can be written as 

yc = 4 ” 4 ” IO , 

where fi = (Ii - int BJ/-. 
On the other hand, li - int Bi is a solid torus with boundary bi for i = 1, 2, 

and it is shown in Fig. 2 (see Proposition 5), where the mapping II is as in 
Easton [3], so that the quotient gives projective 3 space P3, as described there. 
This topology is indeed as in central force problems. 

Figure 2 without boundary is a topological representation of 1i before regular- 
izing, and the whole effect of regularization may be thought of as a transformation 
of the boundary from a torus bi into projective space P2, represented as a sphere 

FIGURE 2 
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Ss with antipodal points identified. Essentially this consideration helps to find 
the regularized topology in any other case. 

Case II. Assume now C < 3. In this case @ 3 C/2 gives no restriction, 
the region in the plane looks like Fig. 3, and Jc has one connected component, 
which in fact is topologically the Cartesian product of the circle 9, times the 
open region shown in Fig. 4 (no pinching in this case). 

FIGURE 3 

FIGURE 4 

The inner tori correspond to points approaching collision, and for surgery 
regularization we have to replace their boundary tori b, , b, , and make the 
convenient identification on each one, as above. 

Before identifying, we can give a homeomorphism inverting the inner torus b, 
with the outer one, by cutting and pasting. This gives something like Fig. 2, 
except that we have to drill the two concentric tori in it. By the remark at the 
end of Case I, surgery identification produces a closed 3 ball minus two unlinked 
solid tori. Finally, another inversion takes the S2 boundary to the inside, and 
the torus b, to the outside, where we can proceed as before. The resulting j’c is 
described in Fig. 5, where the S2 components of the “boundary” must be 
antipodally identified as P2. 
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FIGURE 5 

This sort of topological inversion [5, Sect. 31, would allow us to find the 
regularized topology for any other noncritical level, by considerations as above. 

We will restrict the following final discussion to one collision, but the same 
applies to the other one. 

Le us consider integral curves passing through collision on Jc . We have 
already seen that in regularized coordinates, collisions correspond to the circle 
3, defined by (22). Equations (20) show that the flow is transversal to 3, , 
hence its image under the flow for any time t will keep being transversal to the 
flow itself, thereby moving it diffeomorphically and generating an embedded 
cylinder E == S1 x E-X. By Proposition 6 and the definition of isolating block, 
the integral curves contained in E do leave B, in 6- - 7 and do enter in bi- - T 
as two disjoint circles. Also, E projects to configuration plane into a neighbor- 
hood of the collision. 

It might be interesting to investigate how E is globally embedded into the 
level surface, and whether for varying C we generate something like S1 x [w x [w, 
with C appearing as a parameter in the third coordinate. 
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