
FEBS Letters 580 (2006) 3883–3888
Alg44, a unique protein required for alginate biosynthesis
in Pseudomonas aeruginosa

Uwe Remminghorst, Bernd H.A. Rehm*

Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand

Received 10 April 2006; revised 24 May 2006; accepted 29 May 2006

Available online 16 June 2006

Edited by Gianni Cesareni
Abstract Here the putative alginate biosynthesis gene alg44 of
Pseudomonas aeruginosa was functionally assigned. Non-polar
isogenic alg44 deletion mutants of P. aeruginosa were generated
and did neither produce alginate nor released free uronic acids.
No evidence for alginate enrichment in the periplasm was ob-
tained. Alginate production was restored by introducing only
the gene alg44. PhoA fusion protein analyses suggested that
Alg44 is a soluble protein localized in the periplasm. Hexahisti-
dine-tagged Alg44 was detected by immunoblotting. The corre-
sponding 42.6 kDa protein was purified and identified by
MALDI/TOF-MS analysis. Alg44 might be directly involved
in alginate polymerization presumably by exerting a regulatory
function.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Bacterial alginates consist of b-1,4-linked monomers of

b-DD-mannuronic acid and its C5 epimer a-LL-guluronic acid.

Alginate is an important virulence factor produced by the

opportunistic human pathogen Pseudomonas aeruginosa. Pri-

marily synthesized as polymannuronate from GDP-mannu-

ronic acid, the nascent polymer chain undergoes modification

in the periplasm by acetylation and epimerization [1]. A pro-

tein scaffold might guide the alginate chain through the peri-

plasm towards the outer membrane export channel [2–5].

Although initial alginate polymerization and cytoplasmic

membrane transfer are still not understood, it has been re-

cently shown that Alg8 seems to be a bottleneck in alginate

production. Increased copy number of alg8 resulted in an in-

creased alginate production, suggesting that the putative gly-

cosyltransferase Alg8 is a catalytic subunit of the alginate

polymerase [6]. So far only the isogenic alg8 deletion mutant

did neither produce alginate nor released uronic acids.

In this study, the alg44 gene localized in the alginate biosyn-

thesis gene cluster of P. aeruginosa was functionally assigned

by generation of a non-polar alg44 deletion mutant, functional

expression as well as by subcellular localization, purification

and identification of the Alg44 protein.
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2. Materials and methods

2.1. Bacterial strains and growth conditions
Bacterial strains, plasmids and oligonucleotides used in this study

are listed in Table 1. Escherichia coli and P. aeruginosa strains were cul-
tivated as previously described [6]. All chemicals were purchased from
Sigma–Aldrich (St. Louis, MO, USA).

2.2. Construction of isogenic alg44 deletion mutants
Two regions of the alg44 gene were amplified using Taq polymerase

and primers alg441N-Ec5, alg441N-Ba, alg442C-Ba and alg442C-Ec5
(Table 1). Region alg44N (362 bp) comprises the first 358 nucleotides
of the designated alg44 open reading frame [7] including 4 nucleotides
upstream of the start codon. Region alg44C (332 bp) comprised bases
820–1151 relative to the alg44 coding region [7], respectively. Both
PCR products represented the flanking region for homologous recom-
bination and isogenic mutants were generated and confirmed as previ-
ously described [6].

2.3. Complementation of isogenic alg44 deletion mutants
For complementation of alg44 deletion mutants, the coding region

of the alg44 gene of P. aeruginosa PAO1 was amplified by PCR
using primers alg44N(HiSDNd) and alg44C(Ba) and subcloned into
broad-host-range vector pBBR1MCS-5 [8], resulting in plasmid
pBBR1MCS-5:alg44. Additionally, the 3 0-end primer alg44C(HisBa)
was used to generate an alg44 gene encoding a C-terminally hexahis-
tidine-tagged Alg44, which was inserted into vector pBBR1MCS-5
as described above (Table 1). All inserts cloned into the multiple
cloning site of vector pBBR1MCS-5 are under control of the lac
promoter.

2.4. Subcellular localization of Alg44 using either PhoA or LacZ fusions
The gene alg44 was amplified by PCR using Pfx polymerase and

primers alg44N(HiSDNd) and alg44C(Dstop). The corresponding
1202 bp PCR product was used to construct plasmid pBBR1MCS-
5:alg44(Dstop). XbaI–BamHI fragments of vectors pPHO7 [9] and
pJE608 [10] were inserted into XbaI–BamHI restricted pBBR1MCS-
5:alg44(Dstop) to generate translational fusions with either PhoA or
LacZ. Subcellular fractionation was performed as described
previously [6]. Osmotic shock was used to isolate periplasmic extracts
[11].

2.5. Alkaline phosphatase/b-galactosidase activity assays
Alkaline phosphatase and b-galactosidase enzymatic assays were

performed according to the methods of Miller [12] and Manoil [13],
respectively.

2.6. Heterologous production and purification of Alg44
Plasmid pBBR1MCS-5:alg44His was hydrolyzed with NdeI and

BamHI and the resulting 1.2 kbp fragment was cloned into NdeI and
BamHI hydrolyzed vector pT7-7 [14], creating plasmid pT7-7:al-
g44His. E. coli BL21 (DE3) pLysS was used for heterologous expres-
sion. Crude extracts were subjected to immobilized metal ion
chromatography (Ni-NTA agarose, Qiagen) using denaturing condi-
tions (6 M GuHCl). The hexahistidine-tagged protein was purified
using buffers as described in the manufacturers manual (Qiagen).
blished by Elsevier B.V. All rights reserved.
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Table 1
Bacterial strains, plasmids and oligonucleotides used in this study

Strains, plasmids or oligonucleotides Description Source or reference

Strains
P. aeruginosa

FRD1 Cystic fibrosis isolate; Alg+ [31]
FRDDalg44Gm Dalg44::aacC1; Alg� This study
FRDDalg44 Dalg44; Alg� This study
PAO1 Prototrophic wild-type strain; Alg� [32]
PDO300 DmucA22 variant of PAO1; Alg+ [33]
PDO300Dalg44Gm Dalg44::aacC1; Alg� This study
PDO300Dalg44 Dalg44; Alg� This study

E. coli
TOP10 E. coli cloning strain Invitrogen
S17-1 thi-1; proA, hsdR17 ðr�k ;mþk Þ, recA1, tra-gene of plasmid RP4 integrated in

chromosome
[34]

MC4100 F� araD139 D(argF-lac)U169 rpsL150 (Strr) relA1 flbB5301 deoC1 ptsF25rbsR [35]
DH5a F 0/endA1 hsdR17 ðr�k mþk Þ supE44 thi-1 recA1 gyrA (Nalr) relA1 D(lacIZYAargF)

U169 deoR (U80dlacD(lacZ)M15)
Life Technologies

BL21(DE3) pLysS F� ompT hsdSB ðr�B m�B Þ gal dcm (DE3) pLysS (Cmr) Novagen

Plasmids
pBBR1MCS-5 Gmr; broad-host-range vector; P(lac) [8]
pBBR1MCS-5:alg44 HindIII–BamHI fragment comprising gene alg44 inserted into vector pBBR1MCS-5 This study
pBBR1MCS-5:alg44His HindIII–BamHI fragment encoding C-terminally hexahistidine-tagged Alg44

inserted into vector pBBR1MCS-5
This study

pBBR1MCS-5:alg44(Dstop) HindIII–BamHI fragment encoding Alg44 without stop codon inserted into vector
pBBR1MCS-5

This study

pBBR1MCS-5:alg44lacZ Translational Alg44-LacZ fusion, inserted into vector pBBR1MCS-5 This study
pBBR1MCS-5:alg44phoA Translational Alg44-PhoA fusion, inserted into vector pBBR1MCS-5 This study
pEX100T Apr; Cbr, gene replacement vector containing sacB gene for counterselection [36]
pEX100TDalg44Gm Apr, Cbr, Gmr; vector pEX100T with SmaI inserted alg44 deletion construct This study
pPS856 Apr; Gmr; source of 1100 bp BamHI-fragment comprising aacC1 gene flanked by

FRT signal sequences
[36]

pPFLP2 Apr; Cbr; broad-host-range vector encoding Flp recombinase [36]
pPHO7 Apr; phoA without signal sequence [9]
pJE608 LacZ lacking the first 8 amino acids with promoter P(tac) in pMMB67EH [10]
pT7-7 Apr, T7U10 expression vector [14]
pT7-7:alg44His NdeI–HindIII fragment of pBBR1MCS-5:alg44His inserted into vector pT7-7 This study

Oligonucleotides
alg441N-Ec5 GCGTCGATATCCACCATGAATACAGCCGTCAACG

alg441N-Ba TCACGGATCCCCAGGTAGGAGGTGATCAGGTAG

alg442C-Ba CTACGGATCCCAACTGGTAGCCGACGGGCAATAC

alg442C-Ec5 GTGTCGATATCGTCACGGCCTTGTTCAGCAG

alg44up TGATGGATCCGTTCACCATGCTGGTGCTGTTC

alg44down AACTCTGCAGCAGGCTGACGGTG

alg44N(HiSDNd) CCGCCAAGCTTAGGAGCCCGACCATATGAATACAGCCGTCAACGTCAACG

alg44C(Ba) AACGGATCCTCAGCGAGCGGTGGCCAGGGTCAC

alg44C(HisBa) AACGGATCCTCAATGGTGATGGTGATGGTGACGAGCGGTGGCCAGGGTCAC

alg44C(Dstop) AAAAAGGATCCCGAGCGGTGGCCAGGGTCAC
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2.7. SDS–PAGE and immunoblot analyses
Proteins from P. aeruginosa or E. coli containing plasmids encoding

Alg44His6 were separated by sodium dodecyl sulfate (SDS)–polyacryl-
amide gel electrophoresis (PAGE) [15]. Proteins were electroblotted
onto nitrocellulose membrane (Protran BA 83, Schleicher & Schuell)
and then incubated with HisProbe�-horseradish peroxidase conjugate
(HisProbe�-HRP, Pierce). Immunoblots were developed using a
chemiluminescence protocol according to the manufacturers manual
(SuperSignal� West HisProbe�, Pierce).

2.8. Alginate production and uronic acid assays
Alginate production assays and uronic acid assays were performed

as described previously [6].

2.9. Electron microscopy
Cells were fixed as described elsewhere [16], and electron microscopy

was performed on a Philips CM201c transmission electron microscope
[17].
3. Results

3.1. Construction of an isogenic alg44 knock out mutant

To investigate the function of the alg44 gene in alginate bio-

synthesis by P. aeruginosa, marker-free and non-polar alg44

deletion mutants of alginate-overproducing strains P. aerugin-

osa PDO300 and P. aeruginosa FRD1 were generated, respec-

tively (Fig. 1). Both deletion mutants showed a non-mucoid

and alginate-negative phenotype when cultivated on agar

plates. To investigate whether the non-mucoid phenotype is

caused by alginate lyase (AlgL) mediated degradation of an ex-

posed unprotected alginate chain, culture supernatants of P.

aeruginosa PDO300Dalg44 were analysed with respect to algi-

nate and free uronic acids. Neither alginate nor free uronic

acids were detected (Table 2). Recently, Jain and Ohman

showed that alginate lyase is required for alginate production



Fig. 1. Schematic view of alg44 knock out construct of plasmid pEX100TDalg44Gm used for homologous recombination and the alginate
biosynthesis operon after replacement of native alg44 gene with Dalg44.

Table 2
Alginate and cellular dry mass production by different P. aeruginosa strains harboring various plasmids

Strain Mean ± S.D.

Alginate production (g/g CDM) Cellular dry mass (CDM [g])

PDO300 0.131 ± 0.037 0.171 ± 0.027
PDO300(pBBR1MCS-5) 0.629 ± 0.026 0.196 ± 0.006
PDO300(pBBR1MCS-5:alg44) 0.731 ± 0.122 0.171 ± 0.015
PDO300Dalg44 NDa 0.127 ± 0.006
PDO300Dalg44(pBBR1MCS-5) NDa 0.173 ± 0.003
PDO300Dalg44(pBBR1MCS-5:alg44) 1.187 ± 0.721 0.158 ± 0.034
PDO300Dalg44(pBBR1MCS-5:alg44His) 0.786 ± 0.257 0.159 ± 0.124
PDO300Dalg44(pBBR1MCS-5:alg44lacZ) 0.392 ± 0.031 0.157 ± 0.003
PDO300Dalg44(pBBR1MCS-5:alg44phoA) 1.343 ± 0.914 0.145 ± 0.063

aND, not detectable. P values were determined using Kruskal–Wallis one way analysis of variance on ranks. All mean values and S.D.s were based
on four independent experiments.
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and that AlgL deficient mutants accumulated alginate in the

periplasm [4]. No uronic acids were detected when analyzing

periplasmic extract of the alg44 deletion mutant, and electron

microscopy analysis of cells of P. aeruginosa PDO300 wild-

type and alg44 deletion mutant showed neither swelling of

the periplasm nor differences in cell shape and structure be-

tween wild-type and mutant (data not shown).

3.2. Restoration of alginate biosynthesis using the alg44 open

reading frame

To verify that disruption of alg44 had no downstream effects

on the alginate biosynthesis operon and to functionally assign

the putative alg44 gene, a plasmid containing only the desig-

nated alg44 ORF (pBBR1MCS-5:alg44) was used to comple-

ment the P. aeruginosa PDO300Dalg44 mutant. This plasmid

mediated restoration of alginate production in the alg44 mutant.

Alginate production of complemented alg44 mutants carrying

either the native alg44 gene or a gene encoding C-terminally

tagged Alg44 in vector pBBR1MCS-5, had no statistically

significant influence (P > 0.05) on alginate yield (Table 2). Since,

P. aeruginosa PDO300 harboring gentamycin-resistance medi-
ating vector pBBR1MCS-5 showed already a presumably anti-

biotic stress mediated increased alginate production when

compared with the wild-type strain; this recombinant strain

was used as control (Table 2). The cellular dry mass (CDM) pro-

duced by the various strains showed no significant difference

(P > 0.05) (Table 2).

3.3. Analysis of translational fusion proteins of Alg44

Topology prediction analysis (SMART [18], TMHMM

[19]) of Alg44 suggest one transmembrane domain (amino

acids 159–178) with the N-terminus exposed to the cytosol.

No signal sequence could be predicted [18,19]. To investigate

the localization and topology of Alg44, C-terminal transla-

tional fusions to reporter enzymes LacZ and PhoA were gen-

erated, respectively. Both reporter enzyme fusions had no

impact on Alg44 function, as indicated by complementation

studies (Table 2). Reporter enzyme assays revealed a specific

alkaline phosphatase activity of 5.036 ± 0.648 U/mg of CDM

and a b-galactosidase activity of 0.834 ± 0.215 U/mg, respec-

tively. The reporter enzyme assays were also performed in

strains of E. coli DH5a and MC4100, revealing an alkaline
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phosphatase activity of 2.973 ± 0.282 U/mg CDM and a b-

galactosidase activity of 0.906 ± 0.112 U/mg CDM. Cellular

fractionation experiments were performed with strain P.

aeruginosa PDO300Dalg44 (pBBR1MCS-5:alg44phoA) in or-

der to investigate the subcellular localization of Alg44. Inter-

estingly, higher alkaline phosphatase activity was detected in

the soluble supernatant, but not in the insoluble membrane

fraction. The membrane free supernatant revealed an alka-

line phosphatase activity of 17.577 ± 1.843 U/mg protein,

whereas the membrane fraction showed only an activity of

4.086 ± 0.510 U/mg protein. Isolated periplasmic extract

showed an alkaline phosphatase activity of 8.302 ± 0.720

U/mg protein.

3.4. Immunological detection and purification of Alg44His6

To detect and verify the expression of alg44 and to demon-

strate the presence of Alg44, the production of hexahistidine-

tagged Alg44 protein was investigated in the native host P.

aeruginosa PDO300Dalg44 (pBBR1MCS-5:alg44His) as well

as in E. coli BL21 (pLysS, pT7-7:alg44His). Alg44His6 was de-

tected by immunoblotting using anti-His6-antibodies. The

immunoblot showed specific antibody binding to a protein

with the apparent molecular weight of 42.4 ± 0.4 kDa, which

was consistent with the predicted molecular weight of Al-

g44His6 of 42.6 kDa (Fig. 2A and B). To verify that the de-

tected protein is encoded by the designated alg44 ORF,

crude extracts of E. coli BL21 (pLysS, pT7-7:alg44His) were

subjected to affinity chromatography. SDS–PAGE and MAL-

DI/TOF-MS analysis showed that Alg44His6 could be purified

from crude extracts (Fig. 2C).
Fig. 3. Model of the alginate polymerization, modification and export.
CM, cytoplasmic membrane; OM, outer membrane, 8, Alg8; 44,
Alg44, E, AlgE; X, AlgX; D, MucD; c-di-GMP, bis-(3 0-5 0)-cyclic
dimeric guanosine monophosphate; GDP-ManUA, GDP-mannuronic
acid.
4. Discussion

Here the first marker-free non-polar alg44 deletion mutant

of P. aeruginosa was generated by using homologous recombi-

nation and the loss of alginate production suggested that
Fig. 2. (A) Immunoblot analysis of cell extracts of E. coli BL21 (pLysS) ha
molecular weight standard; lane 2, E. coli BL21 (pLysS) (pT7-7); lane 3,
(B) Immunoblot analysis of cell extracts of P. aeruginosa PDO300Dalg44 harb
standard; lane 2, P. aeruginosa PDO300Dalg44 (pBBR1MCS-5); lane 6, P.
analysis of Alg44His6 purified by affinity chromatography. Lanes 1 and 4, m
(pT7-7); lane 3, crude extract of E. coli BL21 (pLysS) (pT7-7::alg44His); lan
MALDI/TOF-MS analysis.
Alg44 is required for alginate production (Fig. 1, Table 2).

Uronic acid monomer and oligomer analysis suggested that

the alginate-negative phenotype was not due to extensive deg-

radation of alginate by the alginate lyase as reported for algG,

algK and algX mutants [20–22] and that Alg44 is involved in

alginate polymerization. AlgG, AlgK and AlgX are proposed

periplasmic scaffold proteins. AlgX might also interact with a

serine-protease homologue MucD, which is involved in algi-

nate biosynthesis gene regulation [23]. P. aeruginosa PDO300-

Dalg44 did not accumulate alginate in the periplasm, as was

found in algL mutants [4].

Only the 1170 bp ORF of alg44 [24] encoding a putative

41.78 kDa protein mediated restoration of wild-type level algi-

nate production suggesting that alg44 encodes a protein re-

quired for alginate production. Production of Alg44 with the
rboring overexpression plasmids. Lanes 1 and 4, hexahistidine tagged
E. coli BL21 (pLysS) (pT7-7:alg44His); arrow indicates Alg44His6.
oring various plasmids. Lane 1, hexahistidine tagged molecular weight

aeruginosa PDO300Dalg44 (pBBR1MCS-5:alg44His). (C) SDS–PAGE
olecular weight standard; lane 2, crude extract of E. coli BL21 (pLysS)
e 5, partially purified Alg44His6; arrow indicates protein subjected to
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corresponding molecular weight was confirmed by immuno-

blot analysis of the hexahistidine-tagged Alg44, which was also

purified and identified by MALDI-TOF/MS analysis.

C-terminal fusions to Alg44 did not interfere with protein

functionality, suggesting that the C-terminus is not directly in-

volved in Alg44 function (Table 2). The activity of the alkaline

phosphatase and the lack of b-galactosidase activity supported

the constrained topology prediction using HMM-based topol-

ogy tool Phobius [25], which suggested a cytosolic N-terminus,

a transmembrane domain (amino acid 159–178) and a peri-

plasmic localization of the C-terminus. However, the highest

specific alkaline phosphatase activity was not associated with

the insoluble membrane, but with the soluble membrane-free

fraction as well as the periplasmic extract, which suggested a

periplasmic localization of Alg44. This finding did not support

the presence of the predicted transmembrane domain. Protein

export into the periplasm is usually depending on a N-terminal

signal sequence. The detection of 42.6 kDa hexahistidine

tagged protein Alg44 in P. aeruginosa indicated the presence

of an unmodified mature protein (Fig. 2), which is consistent

with the lack of a signal sequence. Other proteins such as,

e.g., the dehalogenases LinA and LinB from pseudomonads/

sphingomonads, have been localized to the periplasm without

N-terminal processing [26].

Homology searches [27] revealed a 16.8% similarity (Jscore:

106.71) of the C-terminal half of Alg44 (aa 202–389) to MexA

(PDB structure 1t5eA/1vf7a). MexA is a periplasmic mem-

brane fusion protein (MFP) component of the multidrug

transporter complex MexAB-OprM in P. aeruginosa, linking

the cytoplasmic membrane component MexB with the outer

membrane export protein OprM [28]. These similarities to-

gether with the periplasmic localization of protein Alg44,

might indicate a role of Alg44 bridging the cytoplasmic-mem-

brane associated polymerase (only protein shown to be in the

cytoplasmic membrane is Alg8) with the outer membrane ex-

port channel AlgE (Fig. 3). The C-terminal part of Alg44

might be involved in connecting or colocalizing Alg8 and

AlgE, but scaffold proteins AlgKGXL might be required to

protect the nascent alginate chain against degradation. Re-

cently, a PilZ domain (PDB structure 1yln/1ywu) in the N-ter-

minal region of Alg44 was identified [29], which might be

involved in binding the novel regulatory molecule bis-(3 0-5 0)-

cyclic dimeric guanosine monophosphate (c-di-GMP) [30].

Thus Alg44 might function as a regulatory membrane fusion

protein (Fig. 3).
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