IP3 Receptors

110a

552-Pos Board B338

Structural Insights into the Assembly and Function of the IP_3 Receptor Ligand-Binding Module

Zhiguang Yuchi, Filip Van Petegem.

University of British Columbia, Vancouver, BC, Canada.

Inositol 1,4,5-trisphosphate receptors (IP₃Rs) are calcium-releasing channels that are involved in numerous physiological functions such as learning and memory, muscle contraction and cell proliferation. Dysfunction of IP₃Rs and IP₃R-interacting proteins has been implicated in several diseases including neurodegenerative diseases and arrhythmia. The activation of IP₃Rs requires the binding of both IP₃ and Ca²⁺. The IP₃-binding module is composed of two sub-regions: the suppressor domain and the IP₃-binding core. Previous studies showed that the suppressor domain reduces the affinity of the IP₃-binding core for IP₃ and that the isoform-specific IP₃-binding affinity of IP₃R is due to the different interactions between these two domains.

We crystallized and solved the structure of the whole N-terminal ligandbinding module of IP₃R isoform 3 by X-ray crystallography to 3.4 Å. This structure, which represents the closed state of the channel, shows a clear conformational change in the IP₃-binding core compared to previous open state structures. The suppressor domain interacts with IP₃-binding core mainly through a hydrophilic interface. Comparing this interface with the one from IP₃R isoform 1, we identified the structural element that is crucial for the isoform-specific IP₃-binding affinity. Docking into the IP₃R electron microscopy map places the module on the cytoplasmic part of the channel around the four-fold symmetry axis. Four ligand-binding modules form a cluster at the apex of the mushroom-shaped IP₃R protein. The crystal structure and the localization of IP₃R ligand-binding module resemble another type of intracellular Ca²⁺-release channel, ryanodine receptors. We propose a model showing that these two channels share a common allosteric gating mechanism.

553-Pos Board B339

Electron Cryo-Microscopic Study of the Type 1 IP3R

Hui Zheng, Gaya P. Yadav, Brian Borkowski, Qiu-Xing Jiang.

UT Southwestern Medical Center, Dallas, TX, USA.

Inositol 1,4,5-trisphosphate receptors (IP3Rs) play important roles in a battery of cellular activities. Structural study of the receptors is therefore very important for understanding how they are gated by their natural ligands and are modulated by their intracellular partners. In past several years, multiple groups have generated very disparate reconstructions of the type 1 IP3R since the first lowresolution cryoEM structure was published (Jiang, et al EMBO J. 2002). Striking structural variations have been reported for receptors in different detergents and for receptors prepared from native and sf9 cells by the same research groups, suggesting that the biochemical preparations of the receptors have significant variations and that the heterogeneity in the samples could be a limiting factor in reaching accordant results. To help resolve such discrepancies, we are conducting single particle reconstruction of the type 1 IP3Rs from both native tissues and heterogeneous expression systems. We worked out conditions that maintained the stability and biochemical homogeneity of the purified receptors, and introduced site-specific mutations and prepared accessory binding partners to facilitate the mapping of specific locations in the 3D reconstruction. We are currently collecting datasets from the receptors in different conditions in order to examine the consistency among the reconstructed structures.

554-Pos Board B340

A Park/Drive Model for the Inositol-Trisphosphate Receptor (IPR)

Ivo Siekmann¹, Larry E. Wagner, II², David Yule², Edmund J. Crampin^{1,3}, James Sneyd⁴.

¹Auckland Bioengineering Institute, Auckland, New Zealand, ²University of Rochester, Rochester, NY, USA, ³Department of Engineering Science, Auckland, New Zealand, ⁴Department of Mathematics, Auckland, New Zealand.

The inositol-trisphosphate receptor (IPR) is an ion channel that plays a crucial role in the generation of calcium (Ca²⁺) oscillations; it regulates the release of Ca²⁺ ions from internal stores, such as the endoplasmic reticulum (ER), to the cytosol. Recently, it was discovered that the IPR spontaneously jumps between two levels of activity - the nearly inactive "park mode" and the highly active "drive mode" - even at constant concentrations of its ligands inositoltrisphosphate (IP₃), adenosine trisphosphate (ATP) and Ca²⁺.

A new model for the IPR will be presented that takes into account mode regulation and which is based upon a large data set collected from type I and type II of the IPR at various ligand concentrations. It will also be shown how models for ion channels can be generated directly from single channel data sets by Markov chain Monte-Carlo (MCMC).

555-Pos Board B341

Sunday, February 26, 2012

A Data Driven Approach to Learning the Kinetics of Single Molecules: A Case Study of Single Inositol 1,4,5-Trisphosphate Receptor Channel Ghanim Ullah¹, Don-On D. Mak², John E. Pearson¹.

¹Los Alamos National Lab, Los Alamos, NM, USA, ²University of Pennsylvania, Philadelphia, PA, USA.

The inositol 1,4,5-trisphosphate (IP₃) receptor (IP₃R) channel plays a central role in the generation and modulation of intracellular Ca^{2+} signals in animal cells. To gain insight into the crucial intricate ligand regulation of this ubiquitous channel, we constructed the simplest quantitative continuous-time Markov-chain model using a transparent iterative approach, which can be adopted to Markov chain models in general. Our model accounts for all experimentally observed gating behaviors of single native IP3R channels from insect Sf9 cells. Ligand (Ca^{2+} and IP₃) dependencies of channel open probability (P₀) established six main ligand-bound channel complexes, where a complex consists of one or more states with the same ligand stoichiometry and open or closed conformation. Channel gating in three distinct modes added one additional complex and indicated that three of the complexes can gate in two different modes. This also restricted the connectivity between channel complexes. Finally, channel responses to abrupt ligand concentration changes defined a model with 9 closed states and 3 open states, and its network topology. The model with 24 parameters can closely reproduce the equilibrium P_{Ω} and channel gating statistics for all three gating modes for a broad range of ligand concentrations. It also captures the major features of channel response latency distributions. The model can generate falsifiable predictions of IP₃R channel gating behaviors not yet explored, and provide insights to both guide future experiment development and improve IP₃R channel gating analysis.

556-Pos Board B342

Calcium-Flux-Mediated Modulation of InsP₃R Channel Activity by ER Luminal Calcium Concentration

Horia Vais, J. Kevin Foskett, Don-On Daniel Mak.

University of Pennsylvania, Philadelphia, PA, USA.

The ubiquitous, mostly endoplasmic reticulum (ER)-localized InsP₃R channel modulates cytoplasmic free $[Ca^{2+}]$ ($[Ca^{2+}]_i$) to generate complex Ca^{2+} signals by releasing Ca²⁺ stored in the ER lumen. Whereas cytoplasmic InsP₃ activation and biphasic $[Ca^{2+}]_i$ regulation of the channel have been well studied, its regulation by ER luminal free $[Ca^{2+}]_{ER}$ is poorly understood and con-troversial. Here, we used excised luminal-side-out nuclear patch clamping with perfusion solution exchange to study the effects of $[Ca^{2+}]_{ER}$ on homotetrameric rat type 3 InsP₃R (InsP₃R-3) channel activity. In optimal 2 µM [Ca²⁺]_i (buffered by 0.5 mM diBrBAPTA) and sub-saturating 3 μ M InsP₃, jumps of $[Ca^{2+}]_{ER}$ from 70 nM (no Ca^{2+} flux through channel) to 300 μ M (substantial Ca^{2+} flux) reduced channel open probability (P_o) significantly. This inhibition was abrogated when saturating 10 µM InsP3 was used, but was restored when $[Ca^{2+}]_{ER}$ was raised to 2 mM. This $[Ca^{2+}]_{ER}$ effect exhibited a biphasic dependence on $[Ca^{2+}]_i$ because jumps of $[Ca^{2+}]_{ER}$ (70 nM to 300 μ M) in 3 μ M InsP₃ *increased* P_o in sub-optimal 70 nM Ca^{2+}_i . These effects of $[Ca^{2+}]_{ER}$ were attenuated when an electrical potential was applied to oppose Ca^{2+} flux through the channel. Importantly, the effects of $[Ca^{2+}]_{ER}$ on channel activity depended on cytoplasmic Ca^{2+} buffering conditions: it was stronger when $[Ca^{2+}]_i$ was weakly buffered by 0.1 mM HEDTA (a slow Ca²⁺ chelator) but was *completely abolished* with 5 mM diBrBAPTA buffering. These observations are com-pletely accounted for by Ca²⁺ flux driven by $[Ca^{2+}]_{ER}$ through the open InsP₃R channel raising local $[Ca^{2+}]_i$ around the channel to regulate its P_0 through its cytoplasmic activating and inhibitory Ca²⁺-binding sites. These results provide no evidence for a role of $[Ca^{2+}]_{ER}$ in regulating InsP₃R-3 activity by effects mediated directly on the luminal aspect of the channel.

Ligand-gated Channels I

557-Pos Board B343

Characterization the GABAA Channels in Various Cell Expression Formats using a Microfluidic Patch Clamp System

Qin Chen, Cristian Ionescu-Zanetti.

Fluxion Biosciences, South San Francisco, CA, USA.

Ensemble recording and microfluidic perfusion in IonFlux platform are designed to remove the laborious nature of manual patch clamp and improve the recording success rates. Here we present assay characteristics of an important class of ligand gated ion channels, GABA_A channels study. A variety methods and backgrounds expressing GABA_A channels were successfully studied on IonFlux (defined as I_{GABA} > 500pA) including stably transfected HEK cells expressing $\alpha 1\beta 3\gamma 2$ GABA_A channels, frozen "ready to assay" HEK cells expressing $\alpha 1\beta 3\gamma 2$ GABA_A channels, transiently transfected HEK cells expressing $\alpha 1\beta 3\gamma 2$ GABA_A channels and primary and immortalized