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Muscle development: Reversal of the differentiated state
Simon M. Hughes

Cell fate selection and cell cycle exit are fundamental
features of differentiation during animal development.
Accumulating data suggest that these processes are
more readily reversible than previously supposed and
are beginning to point at the underlying molecular
mechanisms. 
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Dolly the sheep and other cloned animals have taught us
that, in an appropriate cytoplasmic environment, nuclei
of differentiated cells can be reprogrammed to follow
any fate [1,2]. However, the molecules responsible for
such reprogramming are unknown. A recent study [3]
has shown that Msx1, a transcription factor which has a
homeobox DNA-binding motif, has the ability to reverse
both terminal differentiation and commitment to the
muscle cell fate.

Vertebrate muscle development has yielded a paradigm
for thinking about the relationship of growth and differen-
tiation (Figure 1). First, a population of committed, yet
dividing, muscle precursor cells, called myoblasts, arises
from the somitic mesoderm. A separate process then

triggers the myoblasts to stop dividing, start expressing
muscle-specific genes and terminally differentiate into
myocytes. Many other cell types, notably neurons, undergo
analogous steps of commitment and terminal differentia-
tion. Muscle is a particularly dramatic example of terminal
differentiation because myocytes subsequently fuse with
one another to form multinucleate fibres containing thou-
sands of terminally differentiated muscle nuclei.

Twenty years ago, experimental fusions between various
cell types, including neurons, and muscle cells showed
that cytoplasmic components can reprogramme gene
expression in terminally differentiated cells [4,5]. At a
molecular level, members of the MyoD family of basic
helix–loop–helix myogenic transcription factors (MRFs)
are likely to account for the reprogramming of non-
muscle cell nuclei, because forced expression of an MRF
switches cell fate to myogenesis [6]. MRFs are a key to
normal myogenic commitment, as expression of an MRF
is required for the generation of myoblasts in vivo [7].
Moreover, the activity of an MRF is also required for ter-
minal differentiation [8]. Consistent with this, growth
factors, which normally prevent terminal differentiation of
cultured myoblasts, inhibit the function of MRF proteins
[9]. Thus, there appear to be intimate molecular links
between commitment and terminal differentiation of
muscle cells bound up in the activity of MRFs. Strikingly,
families of basic helix–loop–helix proteins also control neu-
rogenesis and haematopoiesis [10,11]. However, until
recently, commitment and terminal differentiation were

Figure 1

The steps in muscle differentiation and their
reversal. Schematic summary of normal
myogenesis from uncommitted mesoderm to
myotube. A generalised indication of some
genes expressed at each stage is given below
each cell type in bold, but is far from precise.
Factors in blue promote myogenesis, those in
red prevent or induce the reversal of
myogenesis, and those in black promote
differentiation towards other lineages.
Uncommitted mesoderm, as well as
myoblasts, can give rise to fat cells and
osteoblasts with appropriate extracellular
signals. Hh, hedgehog proteins; WNT,
wingless/WNT family proteins; BMP, bone
morphogenetic proteins; FFA, nonesterified
(free) fatty acids.
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thought to be irreversible in the absence of experimental
interference with intracellular components.

This view was changed by the seminal work of Brockes
and collaborators [12,13] showing that terminally differen-
tiated multinucleate urodele muscle fibres can dedifferen-
tiate to yield dividing mononucleate cells that contribute
to various cell lineages in a regenerating limb stump.
Further work, however, highlighted a fundamental differ-
ence between urodele and mammalian muscle fibres,
which parallels the inability of mammalian limbs to regen-
erate. The nuclei of urodele muscle fibres can be triggered
to re-enter the cell cycle by a serum-derived extracellular
factor, whereas those of mouse origin cannot [14]. On the
other hand, mammalian myotube nuclei are driven into
S phase by overexpression of the viral oncoproteins E1A
or SV40 large T antigen, showing that myotubes remain
capable of re-entering the cell cycle and suggesting that
mammalian muscle fibres simply lack the signal transduc-
tion machinery found in urodele fibres [14]. What is the
difference in the machinery, and could an extracellular
signal induce it, thereby permitting mammalian muscle
fibres to dedifferentiate in vivo? Hope that this will be
possible is stimulated by the recent report [15] that myo-
severin, a small microtubule-binding purine analogue, can
induce myotube cytokinesis and help trigger reversal of
terminal differentiation of the murine C2C12 myogenic
cell line.

Turning attention from reversal of terminal differentiation
to reversal of commitment, C2C12 cells, and even primary
myoblasts, have also been shown to give rise to fat cells or
osteoblasts when extracellular signals are modified, sug-
gesting that commitment of myogenic cells to myogenesis
is reversible [16–18]. The mechanism involves suppres-
sion of MRF expression or activity. MRF suppression can
be achieved in C2C12 cells and primary myoblasts by a
variety of intracellular manipulations, such as forced expres-
sion of activated E1A, ras or Msx1 [19–21]. Thus, reversal of
the key step of MRF activation seems to be a prerequisite
for reversal of commitment.

In the new work, these various strands have been com-
bined into a single elegant series of experiments. Using
C2C12 cells, Odelberg et al. [3] introduce a retroviral vector
capable of expressing Msx1 under control of tetracycline.
They confirm that Msx1 expression in myoblasts inhibits
terminal differentiation. But they go further and provide
convincing timelapse evidence that induction of Msx1 in
terminally differentiated multinucleate myotubes leads to
cytokinesis, which is accompanied by loss of expression of
three out of the four known MRFs (Myf5 was not
analysed). The newly derived mononucleate cells have lost
the cell cycle inhibitor p21, replicate and are capable of
differentiating along osteogenic, chondrogenic, adipogenic
or myogenic pathways, depending on culture conditions.

The importance of this work is not so much in the demon-
stration of multiple lineages derived from C2C12 cells, as
this was known previously. Rather it is the reversal of ter-
minal differentiation and the focusing of attention on the
molecular mechanism by which Msx1 reverses the entire
process of myogenesis. Msx1 is a member of a family of
known transcriptional inhibitors and probably targets at
least some MRF regulatory elements directly [22]. Strik-
ingly, Msx gene expression is induced in outgrowing limb
or fin bud tips by fibroblast growth factor (FGF) signals
from the adjacent ectoderm [23,24]. Such FGF signals are
capable of suppressing MyoD accumulation in myoblasts
and this correlates with the inhibition of terminal differen-
tiation in vivo [25]. There is an excellent correlation
between the ability of an appendage to regenerate and the
activation of Msx gene expression [24,26,27]. Taken
together, these data suggest the attractive hypothesis that
Msx gene induction in differentiated tissues, elicited by
growth factors such as FGF, leads to reversal of the differ-
entiated state (Figure 2).

As Odelberg et al. [3] themselves point out, the work leaves
a number of issues still to be resolved. One is to determine
whether Msx1 expression can be induced in muscle fibres
in vivo. Equally important is whether Msx1 can cause real
muscle fibres to dedifferentiate, since they are substantially
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Figure 2

Hypothetical scheme for control of limb
blastema dedifferentiation. FGF from wound
epidermis induces Msx gene expression in the
blastema. This could lead to suppression of
MRF expression in adjacent muscle, and
possibly of other differentiation-promoting
genes in tissues such as bone. After
regrowth, these dedifferentiated cells may
re-differentiate into a variety of new cell types.
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different from cultured myotubes. Affirmative answers to
these questions would increase the attraction of skeletal
muscle tissue as a substrate for tissue engineering — the
technology of generating spare body parts. 

A fundamentally interesting question for biologists,
however, is whether Msx genes ever cause muscle dedif-
ferentiation in real life. Since the discovery of the satellite
cell — the quiescent myoblast present in adult muscle —
and the demonstration that muscle fibres are formed by
fusion of myocytes, rather than replication of myoblast
nuclei without cytokinesis, it has been supposed that all
regenerated muscle tissue arises from the satellite cell
pool. Recent data have questioned this in two ways. First
came demonstrations that haematopoietic cells can con-
tribute to muscle fibres (see [28] for example), suggesting
that non-muscle cells may aid muscle regeneration. The
new results [3] resurrect the old question of whether some
muscle, and indeed other tissues, may arise from termi-
nally differentiated muscle fibres. Does activation of Msx
gene expression mediate the dedifferentiation of urodele
myotubes? Is this process ever elicited in amniote muscle?
Given the widespread expression of Msx genes in situa-
tions where cells are kept undifferentiated such as cranial
sutures and early neural tube, how common is this role of
Msx genes? Could they, or other similar genes, return a
nucleus to the basal state required for the creation of Dolly?
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