
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 38, 15&164 (1989)

Bounded-Width Polynomial-Size Branching Programs
Recognize Exactly Those Languages in NC’

DAVID A. BARRINGTON*

Department of Computer and Information Science, University of Massachusetts,
Amherst, Massachusetts 01003

Received August 22, 1986; revised April 7, 1987

We show that any language recognized by an NC’ circuit (fan-in 2, depth O(log n)) can be
recognized by a width-5 polynomial-size branching program. As any bounded-width
polynomial-size branching program can be simulated by an NC’ circuit, we have that the
class of languages recognized by such programs is exactly nonuniform NC’. Further, following
Ruzzo (J. Compur. System Sri. 22 (1981) 365-383) and Cook (Inform. and Control 64 (1985)
2 - 22), if the branching programs are restricted to be ATIME(log n)-uniform, they recognize
the same languages as do ATIME(log n)-uniform NC’ circuits, that is, those languages in
ATIME(log n). We also extend the method of proof to investigate the complexity of the word
problem for a fixed permutation group and show that polynomial size circuits of width 4 also
recognize exactly nonuniform NC’. 6 1989 Academic Press, Inc.

1. DEFINITIONS

Let [w] = { 1, w>. An instruction is a triple (j, f, g) in which j is the index of
an input variable xi and f and g are maps from [w] to [w]. The meaning of an
instruction (j,f, g) is “evaluate to f if xj = 1, otherwise evaluate to g.” A width-w
branching program of length 1 (a w-BP) is a sequence of instructions (ji,fi, gi) for
1 <i < 1. Given a t&l assignment x to the input variables x,, x,, a branching
program B yields the function B(x) which is the composition of the functions
produced by each of the instructions. For example, let w = 2, let e be the identity
function on w, and let (1 2) be the transposition of w’s two elements. Then the
program consisting of instructions

(7, (1 21, e)(4, e, (1 2))(8, (1 21, e>

yields (1 2) if the exclusive OR of x,, X,, and x8 is one and yields e otherwise.
To recognize a language L E (0, 1 }* we need a family of width-w branching

programs (B,), where B, for each positive integer n takes n Boolean inputs.

* This work is supported by NSF Grant MCS-8304769, by U.S. Air Force Grant AFGSR-82-0326,
and by an NSF Graduate Fellowship.

150
0022-0000/89 $3.00
Copyright 0 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

BOUNDED-WIDTH BRANCHING PROGRAMS 151

Length and size can then be viewed as functions of n. We say that (B,) recognizes
L if for each n there is a set F,, of functions from [w], such that for all x E { 0, 1 >“,
XEL iff B(x)EF,.

B is a permutation branching program (w-PBP) if each fi and gi is a permutation
of [w]. In general we will use Greek letters for permutations.

The traditional notion (e.g., in [lo]) of a width-w branching program is of a
rectangular w by I array of nodes. Each node in row i is assigned an input variable
and two out-edges leading to nodes in row i + 1. Our model can be viewed this way
but further requires that each node in a column be assigned the same variable. This
requirement may be enforced at a cost of increasing the length polynomially and
doubling the width. The traditional notion also defines the recognition of a set by a
branching program in a different way, by fixing a start node (a source) and
partitioning the sink nodes into accepting and rejecting. This difference may be
dealt with in a similar manner. Thus both models define the same class BWBP of
languages recognized by bounded-width polynomial-size branching programs. Our
main result is that BWBP is equal to (nonuniform) NC’.

In general we will speak of nonuniform circuits and branching programs, so that
an NC’ circuit will be simply a Boolean circuit with fan-in 2 and depth O(log n)
(and hence polynomial size). Uniformity considerations will be postponed until
Section 6, where we will make the appropriate definitions.

2. PREVIOUS WORK

Branching programs were defined by Lee [23] as an alternative to Boolean
circuits in the description of switching problems-he called them “binary decision
programs.” They were later studied in the Master’s thesis of Masek [24] under the
name of “decision graphs.”

Borodin et al. [lo] and Chandra et al. [1 l] raised the question of the power of
bounded-width branching programs. Borodin et al. noted that the class BWBP con-
tains AC0 (languages recognized by unbounded fan-in, constant-depth, polynomial-
size Boolean circuits) as well as the parity function (shown to be outside AC0 in
[17,2]). They conjectured that the majority function was not in BWBP, in fact
that for bounded width it requires exponential length.

Subsequent results appeared which could be interpreted as progress toward
proving this conjecture. Chandra et al. [111 and Pudlak [27] showed superlinear
length lower bounds for arbitrary constant width. In [lo] the idea was to work
with width-2 and get exponential bounds. That paper did so for a restricted class of
BPS, and Yao [34] followed with a superpolynomial lower bound for general
width-2. Shearer [31] proved an exponential lower bound for the mod-3 function
with general width-2.

This lower bound program has continued after the preliminary publication of
these results in [S]. Ajtai et al. have proved a nearly n log n size lower bound for a
large class of symmetric functions [11, where width is allowed to be polynomial in

152 DAVID A. BARRINGTON

log n but size is defined to be length times width. Alon and Maass [3] give an
n log n size lower bound for many natural symmetric functions, where width can be
as great as n’12.

Barrington [4] introduced the notion of width used here and considered width-3
permutation branching programs. Their power was characterized as equal to that of
certain depth-2 circuits of mod-2 and mod-3 gates, and it was shown that these
could recognize any set in exponential length and that exponential length was
required to recognize a singleton set.

Here we show that since the majority function is in NC’, it is in BWBP, and thus
the conjecture of [lo] is false. While polynomial-size 3-PBPs have very limited
power we show that polynomial-size 5-PBPs suffice to simulate NC’ circuits.

3. THE MAIN RESULT

We say that a 5-PBP Bfiue-cycle recognizes a set A E [2]” if there exists a five-
cycle (T (called the output) in the permutation group Ss such that B(x) = o if x E A
and B(x) = e if x 4 A (e is the identity permutation). For example, using the usual
cycle notation for elements of S,, the one-instruction program (1, (12345), e) five-
cycle recognizes the set A = {x: x, = 1 } with output (12345).

THEOREM 1. Let A be recognized by a depth d fan-in 2 Boolean circuit (we will
assume that the circuit consists of AND and OR gates with a bottom level of inputs
and negated inputs). Then A is five-cycle recognized by a 5-PBP B of length at
most 44

LEMMA 1. Zf B five-cycle recognizes A with output o and T is any Jive-cycle, then
there exists a 5-PBP B’, of the same length as B, which five-cycle recognizes A with
output t.

Proof Since u and r are both five-cycles there exists some permutation 8 with
r = I%&‘. To get B’, simply change each instruction of B, replacing each (TV and rj
by tIa,e~’ and Ori@‘. 1

LEMMA 2. Zf A can be five-cycle recognized in length 1, so can its complement.

Proof Let B five-cycle recognize A with output cr. Call the last instruction
of B (i, p, v). Let B’ be identical to B except for last instruction (i, uo ~ I, vo - ’).
Then B’(x) = e if x E A and B’(x) = c-r if x 4 A. Thus I?’ five-cycle recognizes the
complement of A. 1

LEMMA 3. There are two five-cycles o, and o2 in S5 whose commutator is a
five-cycle. (The commutator of a and b is aba -‘b ~ ‘.)

BOUNDED-WIDTHBRANCHINGPROGRAMS 153

Proof: (12345)(13542)(54321)(24531)= (13254). 1

EXAMPLE. Consider the 5-PBP

(1, (12345), e) (2, (13542), e) (1, (54321), e) (2, (24531), e)

which yields (13254) as calculated above if x1 =x2 = 1. If either x, or x2 is zero, the
yield is e because of cancellation. So this 5-PBP five-cycle recognizes the set
{x: x, = x2 = 1 }. We now generalize this construction to prove our theorem.

Proof of Theorem 1. Let C be a depth d, fan-in 2 circuit of,AND and OR gates,
with a bottom level of inputs and negated inputs. We will show by induction on d
that the set recognized by C can be five-cycle recognized by a 5-PBP. If d = 0, C has
no gates and the set A can easily be recognized by a one-instruction 5-PBP. Assume
without loss of generality that the output gate of C is an AND gate. If it is an OR
gate, appeal to Lemma 2. Then the set A recognized by C is an intersection
A, n A,, where A, and AZ are recognized by circuits of depth d - 1 and thus are
five-cycle recognized by B1 and B, of length at most 4dp ‘. Let B, and B, have the
particular outputs cri and rr2 as defined in Lemma 3, and B; and p; have outputs
o;’ and 02 i (this last is possible by Lemma 1). Let B be the concatenation
B, Bz B; B;. B yields e unless the input is in both A, and A,, but yields the com-
mutator of the two outputs if the input is in A. This commutator is a live-cycle, and
so B live-cycle recognizes A. B has length at most 44 Given a circuit and a desired
output, this proof gives a deterministic method of constructing the 5-PBP. 1

The following result is a nonuniform version of the well-known result that regular
languages can be recognized by NC’ circuits. The proof in the uniform case essen-
tially appears in [30] and is given explicitly in [22].

THEOREM 2. IfAs [Z] * is recognized by a w-BP B of length I, A is recognized
by a fan-in 2 circuit of depth O(log I), where the constant depends on w.

Proof: Recall our notion of recognition-we say that B accepts x if B(x) is in
some arbitrary subset of the functions from [w] to [w]. We can represent such a
function f by w2 Boolean variables telling whether f (i) =j for each i andaj. The com-
position of two such functions so represented may be computed by a fixed circuit
whose size depends only on w. Our circuit for A will have a constant-depth section
to find the function yielded by a each instruction of B, a binary tree of composition
circuits, and a constant-depth section at the top to determine acceptance given the
function yielded by B. 1

COROLLARY. The classes of languages B WBP and nonuniform NC’ are iden tical.
They equal the class of languages recognized by polynomial-length 5-PBPs.

154 DAVID A. BARRINGTON

4. NONUNIFORM DFAs

The intuition that the width of a branching program corresponds to the number
of possible configurations of an automaton appears to be wrong. We can formalize
this notion to some extent. Define a nonuniform DFA (NUDFA) to be a k-state
automaton with a two-way, read-only input tape and a one-way program tape. The
latter contains instructions, where a single instruction is “move right” (on the input
tape, “move left,” or a state transition function from [k] x (0, 1) to [k], which
causes the automaton to enter a new state depending on the current state and the
visible input character. NUDFAs with k states and k-BPS simulate each other-BP
length corresponds to program tape length up to a multiplicative factor of O(n).

One can define an NUNFA in the same way, by allowing the state transition
function in an instruction to be nondeterministic, i.e., an arbitrary subset of
[k] x (0, 1 } x [k]. Then the familiar subset construction can be carried out show-
ing that NUNFAs have the same power (for a given length) as NUDFAs (a
2k-state NUDFA can simulate a k-state NUNFA). This shows, given the
corresponding definition of nondeterministic branching programs, that nondeter-
ministic BWBP is also nonunifirm NC’. However, other definitions of nondeter-
ministic branching programs are possible-see, for example, Meinel [25].

Our intuition must accept the fact that a Sstate NUDFA can count in
polynomial time, as all symmetric functions are in NC’. It can also divide, as by
[S] integer division is in nonuniform NC’.

This notion is examined in much more detail by Barrington and Therien in [7],
where NUDFAs provide a link between well-studied classes of finite automata and
subclasses of NC’ defined in terms of Boolean circuits.

5. BOOLEAN CIRCUITS OF CONSTANT WIDTH

We define width for Boolean circuits so as to allow nodes at any level to access
the inputs without penalty and examine the consequences of our main result for
constant-width circuits in this model. It is easy to show [20] that constant width
for branching programs is equivalent to constant width for circuits, but here we go
into more detail in an attempt to get the best possible simulations.

In particular, we show that width w branching programs (using the definitions of
[S]) can be simulated by circuits of width rlog w] + 1 and length multiplied by a
constant depending only on w (this is a slight improvement of a result of Hoover
[20], who simulated width w BPS in the model of [lo] by circuits of width
rlog w] + 4.) In particular, width 5 branching programs can be simulated by width
4 circuits (improving the result cited in [21]), so that width 4 polynomial circuits
can recognize all of NC’ and thus everything recognized by circuits of constant
width and polynomial size.

We choose the following definition of a width-w circuit from the many equivalent
ones. A circuit is a rectangular array of nodes, consisting of E rows of w nodes each.

BOUNDED-WIDTHBRANCHINGPROGRAMS 155

Each node has one or two edges entering it which must be from either inputs or
nodes on the immediately previous row. Possible node types are EQUALS (unary),
NOT (unary), AND (binary), and OR (binary). The unary EQUALS node simply
passes its input through unchanged, like a piece of wire, and is introduced so that
each row will have the same number of nodes. Edges carry Boolean values, and
nodes send out the appropriate value calculated from their input or inputs.

This is equivalent to other definitions which allow wires (edges) to jump over
inermediate levels but count them as part of the width for those levels. (See, for
example, [21].) Perhaps the most natural first definition of width would charge for
access to the inputs, but this woul lead to a class far too restricted to be interesting.

Note that for defining the class of functions calculable using width w and length
O(f(n)), we have a lot of latitude in our definitions. We will think of the inputs as
being accessed by unary AND-x,, AND-xi, OR-xi, or OR-xi gates-any other use
of xi can be simulated by these in a constant number of rows. We will also assume
that only one input variable is accessed by a given row of nodes-this can be
enforced by replacing one row by up to w rows.

PROPOSITION. A Boolean circuit of width w and length 1 may be simulated by a
branching program of width 2” and length 1.

Proof: Use the 2” nodes in each instruction to represent the possible settings of
the w Boolean variables on each level of the circuit. By our assumption, we access
only a single input variable and thus the new state depends only on that variable
and the old state. 1

The simulation in the other direction is less straightforward. It is easy to simulate
a w-BP by a 2w-circuit, or even a w + 2-circuit, by storing the branching program
state in unary, i.e., in w gates exactly one of which will be on. We can improve
matters by storing the state in binary.

THEOREM 3. A branching program of width w and length I may be simulated by a
Boolean circuit of width rlog w] + 1 and length O(l), where the constant depends on
w. That is, for any such branching program B there is such a circuit C which inputs a
Boolean vector x and a state SE [w] and outputs B(x)(s).

Proof. Without loss of generality let w = 2” be a power of two. To simulate an
instruction (j,f, g), it suffices to simulate one where either f or g is the identity, so
without loss of generality we will assume that g = e and that the problem is to do f
if xj is on and the identity otherwise.

Note that we need only simulate a set of functions which generates under
composition the entire set of functions from [w] to [w]. (To simplify the proof we
will renumber the elements of [w] as (0, w - l}.)

LEMMA. The functions from [w] to [w] are generated by: (1) the transpositions
fi, for 0~ i<m, defined by f,(O)= 2’, fi(2i)=0, and fi(j) = j otherwise; (2) the

156 DAVID A. BARRINGTON

permutations gi for 0 < i < m defined by gi(j) = j + 2’ for j < 2’, gi(j) = j - 2’ ,for
2'<j<2'+', and g,(j) =j otherwise; and (3) the function h defined by h(0) = 0,
h(1) = 0, and h(j) = j otherwise.

Proof: We will show that the fi and g, generate the permutations of [w], by
induction on m. This will suffice, as any function which is not one-to-one may easily
be made up out of permutations and copies of h. For w = 2 the permutations of [w]
are clearly generated by fO. We must show how to generate any permutation of
[w] = [2”], assuming that the fi and gi for i < m - 1 generate all permutations of
[w/2]. By conjugation with g, ._ , , we can make all permutations of the elements
{w/2, ..., w - 1). Using these permutations as necessary among the high-numbered
and low-numbered elements as necessary, we can use f, ~ I to swap highs for lows
as necessary to generate an arbitrary permutation of [w]. 1

Proof of Theorem 3 (continued). We will encode the state by m bits L,,
L I, *.., L, _ , with the state encoded being s = xi LiZi. For each of the functions h,
g;, and h, we must exhibit constant-width circuit sections which perform that
function on s if x is on and leave s unchanged if x is off.

In the case of each fi and gi, we want to change Lj if necessary but leave all the
other Lj unchanged. Lj must be changed to Li@y for an appropriate y which is an
AND of x and other L,‘s. This is doable in constant width, using one extra node
along with the first m, as follows. First compute jj using successive ORs, maintain-
ing all the L;s. Then AND y with Li and save the result. Now, using the space for
Li, compute Li A y by a NOT and successive ANDs. As Li @y = (Li A J) v
(Ii A y), we can now get the new Li with one OR step. The width-4 circuit in Fig. 1
illustrates this method for the transposition fi or (0 4) with m = 3. In this example,
the bit L, is to be changed iff the input x is on and both L, and L, are off. Here y is
x A E, A L,, and we calculate the new L, as (L2 A j) v (t, A y).

FIG. 1. A width 4 circuit calculatingf,.

BOUNDED-WIDTHBRANCHINGPROGRAMS 157

In the case of function h, we want to change Lo by the assignement L,, := Lo A y,
where y is the OR of 2 and all the other Lls. The other Lis are not changed. This is
easily doable in width m + 1, by using one extra column to compute y by successive
ORs and then ANDing it in at the end. 1

Comparing this result with that of [20], we see that our definition of BP width
leads to a closer relationship between BP width and circuit width than does the
model of [lo]. We conclude by summarizing the main consequence of Theorem 3
for bounded-width circuit complexity.

COROLLARY. The class of languages recognizable by circuits of constant width and
polynomial size equals the class of those recognizable with width 4 and polynomial
size, as both are NC’.

Proof. Languages recognized by constant-width polynomial-size circuits are
clearly in NC’ by the proposition above and Theorem 2. Any language in NC’ is
five-cycle recognized by a family of width-5 polynomial-size branching programs by
Theorem 1. If we use Theorem 3 to simulate this branching program with any fixed
input state, membership in L may be determined easily from the output.

6. UNIFORMITY

To speak of a uniform version of NC’, it will be necessary to introduce alter-
nating Turing machines, originally defined by Chandra et al. [12]. Here we will
define a computation of an alternating Turing machine to be a game played by two
players on a nondeterministic Turing machine which has two possible state trans-
itions in every position. States are labelled White or Black as to which player has
control of the moves from that state. For defining the class ATIME(log n), we
assume that the machine has a random-access input tape which it can access only
once, at the end of the computation, a worktape of size c log n for some constant c,
and a clock which restricts it to running for clog n steps. The players, who are
assumed to be omniscient, direct the computation of the machine until the end,
when the machine reads an input bit (specified by an address written in binary on a
work tape) and then enters a special “White victory” or “Black victory” state based
on the value of this bit. The alternating Turing machine is said to accept an input x
if White has a winning strategy for this game with input x. By standard methods
these assumptions may be shown to be perfectly general.

The extended connection language of a fan-in 2 Boolean circuit consists of all
strings of the form (g, h, s), where g and h are names of nodes in the circuit,
s E {left, right} <log”, and h is the node reached by following the path s from g.
Ruzzo [29] (see also [141) defines NC’ circuits as those fan-in 2 depth O(log n)
circuits whose extended connection language is in ATIME(log n). This has the con-
sequence that NC’ = ATIME(log n). We will define ATIME(log n)-uniform
branching programs in a natural way and show that the class of languages

158 DAVID A. BARRINGTON

recognized by ATIME(log n)-uniform branching programs of polynomial size and
constant width is also ATIME(log n). This will show that BWBP = NC’ in the
uniform as well as in the nonuniform setting.

THEOREM 4. A language A is in ATIME(log n) ijj” it is recognized by a family of
polynomial-size bounded-width branching programs B for which the language:

{(k, i,f; g): the kth instruction of B is (i,f, g))

is in ATIME(log n).

Proof: First we define a game in which White tries to prove that B(x) =f, for
some acceptingf, and Black tries to refute him. At each stage of the game the log-
time machine will define a range of instructions in B and a function which White
claims is yielded by that range. White advances his claim by naming two functions
g and h, with f = gh, and claiming that the first half of the range yields g and the
second h. Black must choose one of these two subclaims to challenge, and this
becomes White’s new claim for the next stage. After O(log n) stages White will be
making a claim about a single instruction, and this can be verified in ATIME(log n)
by hypothesis. Each stage takes constant time, as we can let Black’s sequence of
choices be the index of the instruction to be checked- so each bit of this index
need only be written down once.

For the converse, given a log-time machine M and the game rules to make it an
alternating machine, we can get an NC’ circuit C in a standard way by creating a
node for each configuration of y. Let B be the 5-PBP with output (12345), say,
created from C by the method of Theorem 1 above, so that B five-cycle recognizes
A. We must show that B is ATIME(log n) uniform. We deftne a game with input
(k, i, (T, z) which White can win iff the input is a correct description of the kth
instruction. Both players, of course, know the actual circuit C and branching
program B, as these are uniquely defined from M.

White at each stage will maintain a claim of the following form:

meaning “The subcircuit C, of C whose top node is M-configuration s corresponds
to a section B, of B which five-cycle recognizes the language accepted by C, with
output p. Further, the kth instruction of B, is (i, a, t).”

White will begin by claiming (start, (12345), k, i, cr, t) (where k, i, rr, and z are
taken from the input to the game) and refine this through O(logn) moves, each
move corresponding to a step of M or to moving down one edge of C. For exam-
ple, if s is an AND-node B, consists of four sections-White must state in which
section the kth instruction occurs, what its new number is, and which of s’s children
the section represents. Eventually s will be a final configuration of A4 and White’s
claim can be quickly decided. Black’s moves during this process are to challenge
any White claim which does not follow from his previous claim according to the

BOUNDED-WIDTHBRANCHINGPROGRAMS 159

definition of M and the procedure for creating B. Such a challenge may be decided
easily in log-time, ending the game. White’s moves are each only a constant number
of steps if we choose an appropriate representation for the number k and do not
have to rewrite it every time. 1

7. EXTENSIONS AND THE FINE STRUCTUREOF NC’

What we have really done in Theorem 1 is to show that a certain problem is
complete for NC’ under certain reductions. The problem is to multiply together a
series of elements of S,, or equivalently to test whether a given word over Ss is the
identity. We will call this the wordproblem for Ss. Similarly we may define the word
problem for any fixed grop G. (We consider only finite groups, and always assume
a group is represented as a permutation group.) This will correspond to the class of
G-PBPs, where the permutations in each instruction must belong to G. Thus, for
example, w-PBPs become S,-PBPs.

Inside NC’ it is most natural to define AC0 reductions-the function f is
reducible to g (written f < ae g) if a constant-depth poly-size unbounded fan-in
circuit, containing orable nodes for g, can computef: This notion was introduced in
[173 under the name of “cp-reducibility.” That paper suggested further study of the
degree structure (they had only just given the first proof that the structure of NC’
was nontrivial) and conjectured that majority was not reducible to parity.

This study was taken up by Fagin et al. [16], who found many new AC0
reducibilities among symmetric functions. Modulo the new parity lower bounds of
Yao [35] and Hastad [19], they characterize those symmetric functions in AC’.
They show that the degree of the majority function is complete for symmetric
functions and contains a large class of symmetric functions. Interestingly, no com-
plete symmetric function exists in the projection-reducibility theory of Skyum and
Valiant [32], by a recent result of Gereb-Graus and Szemeredi [18]. Chandra et
al. [131 prove several natural functions AC0 equivalent to majority.

In this section we show that solvability of a group is the key to the applicability
of the methods used earlier for the group S,. We first give one of the many
equivalent definitions (For more detail see a group theory text such as [36]). The
commutator subgroup of G is the subgroup generated by all elements of the form
aba - ‘b-r for a and b in G. A group is solvable if and only if repeated taking of
commutator subgroups eventually gives the trivial group. Thus a group is non-
solvable if and only if it has a nontrivial subgroup whose commutator subgroup is
itself. (All groups under discussion are finite.)

We first show that our earlier proof generalizes to any nonsolvable group.

THEOREM 5. The word problem for any fixed nonsolvable group G is complete for
NC’ under AC0 reductions.

160 DAVID A. BARRINGTON

Proof: Without loss of generality, assume that G’s commutator subgroup is
itself. We show that given a fan-in 2 circuit of depth d and an element a of G not
equal to the identity, there is a G-PBP of length at most (4g)d which yields a if the
circuit accepts the input and yields the identity otherwise. Here g is the order of G,
a constant. Evaluating a G-PBP is easily seen to be in AC’, given oracle nodes for
the word problem for G. This will suffice to show completeness-the word problem
is clearly in NC’ as we can multiply two permutations in constant size and depth
with fan-in two.

The proof, like that of Theorem 1, is by induction on d. The element a must have
a representation as a product of at most g commutators. We carry out the proof of
Theorem 1, except that we use the inductive hypothesis to produce G-PBPs yielding
arbitrary nonidentity elements of G instead of five-cycles. This multiplies the length
by at most 4g instead of 4 at each step. Lemma 1 is unnecessary as for each d, we
simultaneously prove the result for all a in G except the identity. 1

It would be nice to have a converse to Theorem 5, but unfortunately we do not
know enough about the AC’-structure of NC’ to prove one. By extending the
methods of [4], however, we can make a good start.

THEOREM 6. The word problem for any fixed solvable group G is AC’-reducible
to the mod g function, where g is the order of G.

ProoJ: An equivalent definition of a solvable group (see, e.g., [36 J) is one which
has a series of normal subgroups G = G,,, G,, G, = (e}, where each quotient
group GJG,, , is syclic. We prove the theorem by induction on the length of this
series. So assume that G has a normal subgroup N, where G/N is cyclic and the
word problem for N is solvable by an AC0 circuit containing mod g gates. Choose
an element a such that the coset aN generates G/N.

We are given a product g, . ..g. to evaluate. As N is normal, we can write each gj
uniquely as aB’ni with niE N. (Converting between any two bit representations of an
element of G takes constant size and depth.) Now let bi be the product a” ... a”’ and
note that a% . ..~“~n~=(b~n.b;‘)...(b,n,b,‘)b,. Each b, depends only on the
sum mod g of ihe appropriate cj, as the order of a in G divides g. Each term b,n,b; ’
is in N by normality, and we can calculate it in constant depth using mod g gates to
get bi. These partial terms may then be multiplied using a circuit for N. 1

Theorem 6 is interesting only if the converse of Theorem 5 is true. To finish the
argument, we would need to show that no single mod g function is powerful enough
to be complete for NC’. We conjecture that this is true, as it seems quite unlikely
that a circuit of AND, OR, and MOD-g gates could do majority. This extends the
conjecture of [171 that the mod 2 function is not powerful enough to do majority.
Further consequences of this conjecture are given in [7].

Unfortunately, the random restriction method of [17] does not seem to extend
even to parity (mod 2) gates; as the restriction of a parity gate is still a parity gate.
However, there has recently been dramatic progress in this area. Razborov [28]

BOUNDED-WIDTH BRANCHING PROGRAMS 161

has proven the original conjecture of [17] by showing that any constant depth cir-
cuit of AND and mod 2 gates computing the majority function has exponential size.
Smolensky [33] has extended this method to show that an AC0 circuit with modp
gates cannot do the mod q function if p and q are distinct primes, and thus that no
circuit containing gates for a single prime can do majority. No limitations are yet
known on the power of AC0 circuits with mod q gates for composite q (except for
prime powers, which are equivalent to their primes).

8. OPEN PROBLEMS AND RECENT PROGRESS

We now know that poly-size bounded-width BPS give NC’ while poly-size
general BPS give L, the languages recongnized by deterministic log-space Turing
machines. Certainly this suggests a new attack on the problem of whether NC’ = L
as this can now be phrased entirely in terms of branching programs. It would be
useful to develop a lower-bound technology for width-5 PBPs if this is possible.
Even a superpolynomial lower bound for, say, the clique function would prove NC’
different from NP.

The power of general poly-size permutation BPS (no restriction on width) was
mentioned as an open problem in [6]. Cook and McKenzie [15] have just shown
that the word problem for S, is complete for log space under NC’ reductions, even
if the inputs and outputs are in pointwise notation (i.e., a permutation (r is given as
the list of integers a(1), a(n)). (In fact, they show that the easier problem of per-
mutation powering with the exponent in unary is complete.) A poly-size PBP can
be constructed to solve this problem, given an appropriate definition of recognition
of a language by a PBP. As these PBPs can be thought of as reoersible nonuniform
log-space Turing machine computations, this suggests a comparison with work of
Bennett [9].

The effect of nondeterminism on these classes must be examined as well,
suggesting possible new attacks on the problem of whether L is equal to NL, the
class of languages recognized by nondeterministic log-space Turing machines. One
must be careful with definitions here, as the wrong sort of nondeterminism can can
turn a very small class into NP. For example, depth-2 poly-size unbounded fan-in
Boolean circuits can only recognize I7,-TIME(log n). But if we give such a circuit
both x and y inputs and say that it “accepts” x iff there is some y such that the cir-
cuit accpts (x, y >, it can recognize any language in NP. This and similar extensions
of the branching program model have recently been considered by Meinel [25].

We know the power of width-3 [4] and width-5 PBPs-what of width4? As S,
is solvable, they cannot do all of NC’ by the method used here for width-5, but we
would like to prove they cannot do it at all. The conjecture of Section 8 would
settle this, but 4-PBPs are a special case which might be more amenable to analysis.

Width 2 and 3 Boolean circuits are an attractive target for a lower bound
proof-it would be nice to show that width 4 is necessary to do NC’, if this is true.
Can one improve Theorem 3 on simulating BPS by circuits? Of course, any

162 DAVID A. BARRINGTON

bounded width BP can be simulated in width 4 with polynomial size blowup using
our main result, but can the simulation be improved keeping the blowup linear?

We know that BPS without the permutation restriction require width-3 to do
majority in poly-size [34] and we know that width-5 suffices. Does the extra
freedom to use nonpermutation instructions help at ail? This amounts to extending
the notion of a PBP over a group to a BP over a monoid, and is taken up in [7].
There it is shown, modulo the conjecture of Section 8, that poly-size BPS over a
monoid which contains only solvable groups cannot recognize all of NC’, so that
width 5 is necessary here as well.

The line structure of NC’ is another good subject for further study. Until recently
we knew only that there are at least two classes under AC0 reductions (from
[17,2]) but this is more than is known about most degree theories in complexity
theory. The recent work of Razborov [28] and Smolensky [33] has shown that
there are infinitely many degrees (see the last section) and tends to support the
conjecture of Section 8, but this conjecture is still open.

There seems to be no reason to believe that the majority is complete for NC’, but
we are a long way from proving this. The languages AC0 reducible to majority form
the analog of AC0 in the threshold gate theory of Parberry and Schitger, and might
be an interesting proper subclass of NC’. Many natural problems are known to be
AC0 equivalent to majority, as shown by Fagin et al. [161 and Chandra et al. [131.

AC’-reducibility should also be cornparted with the prejection reducibility of
Skyum and Valiant [32] in this setting. Majority is AC’-complete for symmetric
functions, but no function is projection-complete for them [lS].

It is also interesting that an algebraically defined regular language such as a word
problem should be complete for NC’. The analysis in [7] sheds some further light
on this.

The unexpected power of NUDFA suggests some foundational questions. Placing
the power to recognize a language in a program to a very simple machine seems
very different than placing it in, say, the state table of a Turing machine. How
different is it, and how does it relate to other known models of computation?

ACKNOWLEDGMENTS

This work is part of my Ph.D. research under the direction of Mike Sipser, who suggested this topic
and advised me throughout my work on it. I would like to thank him for all his help and also thank
Ravi Boppana, Johan Hastad, David Johnson, Philip Klein, Tom Leighton, and Leslie Valiant for
various helpful discussions. I am also grateful for a number of helpful suggestions made by the
anonymous referees.

This paper is a slightly revised version of [S], which is copyrighted by the Association for Computing
Machinery, and the material of [S J appears with their permission. Most of this material has also
appeared in my Ph.D. thesis [6], which is copyrighted by the Massachusetts Institute of Technology and
used with their permission. I would like to thank the MIT Mathematics Department and Laboratory for
Computer Science for all of their support.

BOUNDED-WIDTH BRANCHING PROGRAMS 163

REFERENCES

1. M. AJTAI, L. BABAI, P. HAJNAL, J. KOML~S, P. P~TDLAK, V. Rii~t, E. SZEMEI&DI, AND G. TURIN,
Two Lower Bounds for Branching Programs, in “Proceedings, 18th ACM STOC, 1986,” pp. 3(X38.

2. M. AJTAI, Ci formulae on finite structures, Ann. Pure Applied Logic 24 (1983), 148.
3. N. ALON AND W. MAASS, Meanders, Ramsey Theory, and lower bounds for branching programs, in

“Proceedings, 27th IEEE FOCS, 1986, pp. 410-417.
4. D. A. BARRINGTON, “Width-3 Permutation Branching Programs,” Technical Memorandum

TM-293, MIT Laboratory for Computer Science.
5. D. A. BARRINGTON, Bounded-width polynomial-size branching programs recognize exactly those

languages in NC’, in “Proceedings, 18th ACM STOC, 1986,” pp. 1-5.
6. D. A. BARRINGTON, “Bounded-Width Branching Programs,” Ph.D. thesis, Dept. of Mathematics,

MIT, May 1986, Technical Report TR-361, MIT Laboratory for Computer Science.
7. D. A. BARRINGTON AND D. T~RIEN, Finite monoids and the fine structure of NC’, in “Proceedings,

19th ACM STOC, 1987.
8. P. W. BEAME, S. A. COOK, AND H. J. HOOVER, Log-depth circuits for division and related problems,

in “Proceedings, 25th IEEE FOCS, 1984,” pp. l-6.
9. C. H. BENNETT, Logical reversibility of computation, IBM J. Res. Develop. 17 (1973), 525-532.

10. A. BORODIN, D. DOLEV, F. E. FICH, AND W. PAUL, Bounds for width two branching programs, in
“Proceedings, 15th ACM STOC, 1983,” pp. 87-93; SIAM J. Compur. 15 (1986), 549-560.

11. A. K. CHANDRA, M. L. FURST, AND R. J. LIPTON, Multiparty protocols, in “Proceedings, 15th ACM
STOC, 1983,” pp. 94-99.

12. A. K. CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER, Alternation, J. Assoc. Comput. Much. 28
(1981), 114-133.

13. A. K. CHANDRA, L. STOCKMEYER, AND U. VISHKIN, Constant-depth reducibility, SIAM J. Cornput.
13 (1984), 423439.

14. S. A. COOK, A taxonomy of problems with fast parallel algorithms, Inform. and Control 64 (1985),
2-22.

15. S. A. CCQK AND P. MCKENZIE, “Problems Complete for Deterministic Logarithmic Space,”
Publication 560 (F&v. 1986), DBpt. d’l.R.O., Universite de MontrBal.

16. R. FAGIN, M. M. KLAWE, N. J. PIPPENGER, AND L. STOCKMEYER, Bounded depth, polynomial-size
circuits for symmetric functions, Theoret. Compur. Sci. 36 (1985), 239-250.

17. M. FURST, J. B. SAXE, AND M. SIPSER, Parity, circuits and the polynomial time hierarchy, in
“Proceedings, 22nd IEEE FOCS, 1981,” pp. 26G270; Mufh. Systems Theory 17 (1984), 13-27.

18. M. GE&B-GRAUS AND E. SZEMERBDI, There are no p-complete families of symmetric Boolean
functions, preprint, 1986.

19. J. HASTAD, Almost optimal lower bounds for small depths circuits, in “Proceedings, 18th ACM
STOC,” 1986, pp. 6-20.

20. H. J. HOOVER, Characterizing bounded width, manuscript, 1983.
21. D. S. JOHNSON, The NP-completeness column: An ongoing guide, J. Algorithms, 7, No. 2 (1986),

289-305.
22. R. E. LADNER AND M. J. FISCHER, Parallel prelix computation, in “Proceedings, 1977 lntl. Conf. on

Parallel Processing,” pp. 218-233; J. Assoc. Comput. Much. 27 (1980), 831-838.
23. C. Y. LEE, Representation of switching functions by binary decision programs, Bell System Tech.

J. 38 (1959), 985-999.
24. W. MASEK, “A Fast Algorithm for the String Editing Problem and Decision Graph Complexity,”

M.Sc. thesis, Dept. of EECS, MIT, May 1976.
25. C. MEINEL, Rudiments of a branching program based complexity theory, preprint, June 1986.
26. I. PARBERRY AND G. SCHITGER, Parallel computation with threshold functions, in “Structure in

Complexity Theory,” Lecture Notes in Computer Science Vol. 223, pp. 272-290, Springer Verlag,
New York, 1986.

27. P. P~~DI.AK, A lower bound on complexity of branching programs, in “Proceedings, Conference on
the Mathematical Foundations of Computer Science, 1984, pp. 48w89.

571/38/l-II

164 DAVID A. BARRINGTON

28. A. A. RAZBOKOV, Lower bounds for the size of circuits of bounded depth with basis {&, @},
preprint [Russian]; Math. Notes, in press.

29. W. L. Ruzzo. On uniform circuit complexity, J. Compuf. System Sci 22, No. 3 (1981), 3655383.
30. J. SAVAGE, Computational work and time on finite machines, J. Assoc. Compuf. Mach. 19 (1972),

66&674.
31. J. B. SHEARER, personal communications, 1985.
32. S. SKYUM AND L. G. VALIANT, A complexity theory based on Boolean algebra, in “Proceeedings,

22nd IEEE FOCS, 1981,” pp. 244253; J. Assoc. Comput. Mach. 32 (1985) 484-504.
33. R. SMOLENSKY, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, in

“Proceedings, 19th ACM STOC, 1987.”
34. A. C. YAO, Lower bounds by probabilistic arguments, in “Proceedings, 24th IEEE FOCS, 1983,”

pp. 42&428.
35. A. C. C. YAO, Separating the polynomial-time hierarchy by oracles, in “Proceedings, ACM STOC,

1985, pp. l-10.
36. H. J. ZASSENHAUS, “The Theory of Groups,” 2nd ed., Chelsea, New York, 1958.

