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We show that any language recognized by an NC’ circuit (fan-in 2, depth O(log n)) can be 
recognized by a width-5 polynomial-size branching program. As any bounded-width 
polynomial-size branching program can be simulated by an NC’ circuit, we have that the 
class of languages recognized by such programs is exactly nonuniform NC’. Further, following 
Ruzzo (J. Compur. System Sri. 22 (1981) 365-383) and Cook (Inform. and Control 64 (1985) 
2 - 22), if the branching programs are restricted to be ATIME(log n)-uniform, they recognize 
the same languages as do ATIME(log n)-uniform NC’ circuits, that is, those languages in 
ATIME(log n). We also extend the method of proof to investigate the complexity of the word 
problem for a fixed permutation group and show that polynomial size circuits of width 4 also 
recognize exactly nonuniform NC’. 6 1989 Academic Press, Inc. 

1. DEFINITIONS 

Let [w] = { 1, . . . . w>. An instruction is a triple (j, f, g) in which j is the index of 
an input variable xi and f and g are maps from [w] to [w]. The meaning of an 
instruction (j,f, g) is “evaluate to f if xj = 1, otherwise evaluate to g.” A width-w 
branching program of length 1 (a w-BP) is a sequence of instructions ( ji,fi, gi) for 
1 <i < 1. Given a t&l assignment x to the input variables x,, . . . . x,, a branching 
program B yields the function B(x) which is the composition of the functions 
produced by each of the instructions. For example, let w = 2, let e be the identity 
function on w, and let (1 2) be the transposition of w’s two elements. Then the 
program consisting of instructions 

(7, (1 21, e)(4, e, (1 2))(8, (1 21, e> 

yields (1 2) if the exclusive OR of x,, X,, and x8 is one and yields e otherwise. 
To recognize a language L E (0, 1 }* we need a family of width-w branching 

programs (B,), where B, for each positive integer n takes n Boolean inputs. 

* This work is supported by NSF Grant MCS-8304769, by U.S. Air Force Grant AFGSR-82-0326, 
and by an NSF Graduate Fellowship. 
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Length and size can then be viewed as functions of n. We say that (B,) recognizes 
L if for each n there is a set F,, of functions from [w], such that for all x E { 0, 1 >“, 
XEL iff B(x)EF,. 

B is a permutation branching program (w-PBP) if each fi and gi is a permutation 
of [w]. In general we will use Greek letters for permutations. 

The traditional notion (e.g., in [lo]) of a width-w branching program is of a 
rectangular w by I array of nodes. Each node in row i is assigned an input variable 
and two out-edges leading to nodes in row i + 1. Our model can be viewed this way 
but further requires that each node in a column be assigned the same variable. This 
requirement may be enforced at a cost of increasing the length polynomially and 
doubling the width. The traditional notion also defines the recognition of a set by a 
branching program in a different way, by fixing a start node (a source) and 
partitioning the sink nodes into accepting and rejecting. This difference may be 
dealt with in a similar manner. Thus both models define the same class BWBP of 
languages recognized by bounded-width polynomial-size branching programs. Our 
main result is that BWBP is equal to (nonuniform) NC’. 

In general we will speak of nonuniform circuits and branching programs, so that 
an NC’ circuit will be simply a Boolean circuit with fan-in 2 and depth O(log n) 
(and hence polynomial size). Uniformity considerations will be postponed until 
Section 6, where we will make the appropriate definitions. 

2. PREVIOUS WORK 

Branching programs were defined by Lee [23] as an alternative to Boolean 
circuits in the description of switching problems-he called them “binary decision 
programs.” They were later studied in the Master’s thesis of Masek [24] under the 
name of “decision graphs.” 

Borodin et al. [lo] and Chandra et al. [ 1 l] raised the question of the power of 
bounded-width branching programs. Borodin et al. noted that the class BWBP con- 
tains AC0 (languages recognized by unbounded fan-in, constant-depth, polynomial- 
size Boolean circuits) as well as the parity function (shown to be outside AC0 in 
[17,2]). They conjectured that the majority function was not in BWBP, in fact 
that for bounded width it requires exponential length. 

Subsequent results appeared which could be interpreted as progress toward 
proving this conjecture. Chandra et al. [ 111 and Pudlak [27] showed superlinear 
length lower bounds for arbitrary constant width. In [lo] the idea was to work 
with width-2 and get exponential bounds. That paper did so for a restricted class of 
BPS, and Yao [34] followed with a superpolynomial lower bound for general 
width-2. Shearer [31] proved an exponential lower bound for the mod-3 function 
with general width-2. 

This lower bound program has continued after the preliminary publication of 
these results in [S]. Ajtai et al. have proved a nearly n log n size lower bound for a 
large class of symmetric functions [ 11, where width is allowed to be polynomial in 
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log n but size is defined to be length times width. Alon and Maass [3] give an 
n log n size lower bound for many natural symmetric functions, where width can be 
as great as n’12. 

Barrington [4] introduced the notion of width used here and considered width-3 
permutation branching programs. Their power was characterized as equal to that of 
certain depth-2 circuits of mod-2 and mod-3 gates, and it was shown that these 
could recognize any set in exponential length and that exponential length was 
required to recognize a singleton set. 

Here we show that since the majority function is in NC’, it is in BWBP, and thus 
the conjecture of [lo] is false. While polynomial-size 3-PBPs have very limited 
power we show that polynomial-size 5-PBPs suffice to simulate NC’ circuits. 

3. THE MAIN RESULT 

We say that a 5-PBP Bfiue-cycle recognizes a set A E [2]” if there exists a five- 
cycle (T (called the output) in the permutation group Ss such that B(x) = o if x E A 
and B(x) = e if x 4 A (e is the identity permutation). For example, using the usual 
cycle notation for elements of S,, the one-instruction program ( 1, (12345), e) five- 
cycle recognizes the set A = {x: x, = 1 } with output (12345). 

THEOREM 1. Let A be recognized by a depth d fan-in 2 Boolean circuit (we will 
assume that the circuit consists of AND and OR gates with a bottom level of inputs 
and negated inputs). Then A is five-cycle recognized by a 5-PBP B of length at 
most 44 

LEMMA 1. Zf B five-cycle recognizes A with output o and T is any Jive-cycle, then 
there exists a 5-PBP B’, of the same length as B, which five-cycle recognizes A with 
output t. 

Proof Since u and r are both five-cycles there exists some permutation 8 with 
r = I%&‘. To get B’, simply change each instruction of B, replacing each (TV and rj 
by tIa,e~’ and Ori@‘. 1 

LEMMA 2. Zf A can be five-cycle recognized in length 1, so can its complement. 

Proof Let B five-cycle recognize A with output cr. Call the last instruction 
of B (i, p, v ). Let B’ be identical to B except for last instruction (i, uo ~ I, vo - ’ ). 
Then B’(x) = e if x E A and B’(x) = c-r if x 4 A. Thus I?’ five-cycle recognizes the 
complement of A. 1 

LEMMA 3. There are two five-cycles o, and o2 in S5 whose commutator is a 
five-cycle. (The commutator of a and b is aba -‘b ~ ‘.) 
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Proof: (12345)(13542)(54321)(24531)= (13254). 1 

EXAMPLE. Consider the 5-PBP 

(1, (12345), e) (2, (13542), e) (1, (54321), e) (2, (24531), e) 

which yields (13254) as calculated above if x1 =x2 = 1. If either x, or x2 is zero, the 
yield is e because of cancellation. So this 5-PBP five-cycle recognizes the set 
{x: x, = x2 = 1 }. We now generalize this construction to prove our theorem. 

Proof of Theorem 1. Let C be a depth d, fan-in 2 circuit of,AND and OR gates, 
with a bottom level of inputs and negated inputs. We will show by induction on d 
that the set recognized by C can be five-cycle recognized by a 5-PBP. If d = 0, C has 
no gates and the set A can easily be recognized by a one-instruction 5-PBP. Assume 
without loss of generality that the output gate of C is an AND gate. If it is an OR 
gate, appeal to Lemma 2. Then the set A recognized by C is an intersection 
A, n A,, where A, and AZ are recognized by circuits of depth d - 1 and thus are 
five-cycle recognized by B1 and B, of length at most 4dp ‘. Let B, and B, have the 
particular outputs cri and rr2 as defined in Lemma 3, and B; and p; have outputs 
o;’ and 02 i (this last is possible by Lemma 1). Let B be the concatenation 
B, Bz B; B;. B yields e unless the input is in both A, and A,, but yields the com- 
mutator of the two outputs if the input is in A. This commutator is a live-cycle, and 
so B live-cycle recognizes A. B has length at most 44 Given a circuit and a desired 
output, this proof gives a deterministic method of constructing the 5-PBP. 1 

The following result is a nonuniform version of the well-known result that regular 
languages can be recognized by NC’ circuits. The proof in the uniform case essen- 
tially appears in [30] and is given explicitly in [22]. 

THEOREM 2. IfAs [Z] * is recognized by a w-BP B of length I, A is recognized 
by a fan-in 2 circuit of depth O(log I), where the constant depends on w. 

Proof: Recall our notion of recognition-we say that B accepts x if B(x) is in 
some arbitrary subset of the functions from [w] to [w]. We can represent such a 
function f by w2 Boolean variables telling whether f (i) =j for each i andaj. The com- 
position of two such functions so represented may be computed by a fixed circuit 
whose size depends only on w. Our circuit for A will have a constant-depth section 
to find the function yielded by a each instruction of B, a binary tree of composition 
circuits, and a constant-depth section at the top to determine acceptance given the 
function yielded by B. 1 

COROLLARY. The classes of languages B WBP and nonuniform NC’ are iden tical. 
They equal the class of languages recognized by polynomial-length 5-PBPs. 



154 DAVID A. BARRINGTON 

4. NONUNIFORM DFAs 

The intuition that the width of a branching program corresponds to the number 
of possible configurations of an automaton appears to be wrong. We can formalize 
this notion to some extent. Define a nonuniform DFA (NUDFA) to be a k-state 
automaton with a two-way, read-only input tape and a one-way program tape. The 
latter contains instructions, where a single instruction is “move right” (on the input 
tape, “move left,” or a state transition function from [k] x (0, 1) to [k], which 
causes the automaton to enter a new state depending on the current state and the 
visible input character. NUDFAs with k states and k-BPS simulate each other-BP 
length corresponds to program tape length up to a multiplicative factor of O(n). 

One can define an NUNFA in the same way, by allowing the state transition 
function in an instruction to be nondeterministic, i.e., an arbitrary subset of 
[k] x (0, 1 } x [k]. Then the familiar subset construction can be carried out show- 
ing that NUNFAs have the same power (for a given length) as NUDFAs (a 
2k-state NUDFA can simulate a k-state NUNFA). This shows, given the 
corresponding definition of nondeterministic branching programs, that nondeter- 
ministic BWBP is also nonunifirm NC’. However, other definitions of nondeter- 
ministic branching programs are possible-see, for example, Meinel [25]. 

Our intuition must accept the fact that a Sstate NUDFA can count in 
polynomial time, as all symmetric functions are in NC’. It can also divide, as by 
[S] integer division is in nonuniform NC’. 

This notion is examined in much more detail by Barrington and Therien in [7], 
where NUDFAs provide a link between well-studied classes of finite automata and 
subclasses of NC’ defined in terms of Boolean circuits. 

5. BOOLEAN CIRCUITS OF CONSTANT WIDTH 

We define width for Boolean circuits so as to allow nodes at any level to access 
the inputs without penalty and examine the consequences of our main result for 
constant-width circuits in this model. It is easy to show [20] that constant width 
for branching programs is equivalent to constant width for circuits, but here we go 
into more detail in an attempt to get the best possible simulations. 

In particular, we show that width w branching programs (using the definitions of 
[S]) can be simulated by circuits of width rlog w] + 1 and length multiplied by a 
constant depending only on w (this is a slight improvement of a result of Hoover 
[20], who simulated width w BPS in the model of [lo] by circuits of width 
rlog w] + 4.) In particular, width 5 branching programs can be simulated by width 
4 circuits (improving the result cited in [21]), so that width 4 polynomial circuits 
can recognize all of NC’ and thus everything recognized by circuits of constant 
width and polynomial size. 

We choose the following definition of a width-w circuit from the many equivalent 
ones. A circuit is a rectangular array of nodes, consisting of E rows of w nodes each. 
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Each node has one or two edges entering it which must be from either inputs or 
nodes on the immediately previous row. Possible node types are EQUALS (unary), 
NOT (unary), AND (binary), and OR (binary). The unary EQUALS node simply 
passes its input through unchanged, like a piece of wire, and is introduced so that 
each row will have the same number of nodes. Edges carry Boolean values, and 
nodes send out the appropriate value calculated from their input or inputs. 

This is equivalent to other definitions which allow wires (edges) to jump over 
inermediate levels but count them as part of the width for those levels. (See, for 
example, [21].) Perhaps the most natural first definition of width would charge for 
access to the inputs, but this woul lead to a class far too restricted to be interesting. 

Note that for defining the class of functions calculable using width w and length 
O(f(n)), we have a lot of latitude in our definitions. We will think of the inputs as 
being accessed by unary AND-x,, AND-xi, OR-xi, or OR-xi gates-any other use 
of xi can be simulated by these in a constant number of rows. We will also assume 
that only one input variable is accessed by a given row of nodes-this can be 
enforced by replacing one row by up to w rows. 

PROPOSITION. A Boolean circuit of width w and length 1 may be simulated by a 
branching program of width 2” and length 1. 

Proof: Use the 2” nodes in each instruction to represent the possible settings of 
the w Boolean variables on each level of the circuit. By our assumption, we access 
only a single input variable and thus the new state depends only on that variable 
and the old state. 1 

The simulation in the other direction is less straightforward. It is easy to simulate 
a w-BP by a 2w-circuit, or even a w + 2-circuit, by storing the branching program 
state in unary, i.e., in w gates exactly one of which will be on. We can improve 
matters by storing the state in binary. 

THEOREM 3. A branching program of width w and length I may be simulated by a 
Boolean circuit of width rlog w] + 1 and length O(l), where the constant depends on 
w. That is, for any such branching program B there is such a circuit C which inputs a 
Boolean vector x and a state SE [w] and outputs B(x)(s). 

Proof. Without loss of generality let w = 2” be a power of two. To simulate an 
instruction (j,f, g), it suffices to simulate one where either f or g is the identity, so 
without loss of generality we will assume that g = e and that the problem is to do f 
if xj is on and the identity otherwise. 

Note that we need only simulate a set of functions which generates under 
composition the entire set of functions from [w] to [w]. (To simplify the proof we 
will renumber the elements of [w] as (0, . . . . w - l}.) 

LEMMA. The functions from [w] to [w] are generated by: (1) the transpositions 
fi, for 0~ i<m, defined by f,(O)= 2’, fi(2i)=0, and fi( j) = j otherwise; (2) the 
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permutations gi for 0 < i < m defined by gi( j) = j + 2’ for j < 2’, gi( j) = j - 2’ ,for 
2'<j<2'+', and g,(j) =j otherwise; and (3) the function h defined by h(0) = 0, 
h( 1) = 0, and h(j) = j otherwise. 

Proof: We will show that the fi and g, generate the permutations of [w], by 
induction on m. This will suffice, as any function which is not one-to-one may easily 
be made up out of permutations and copies of h. For w = 2 the permutations of [w] 
are clearly generated by fO. We must show how to generate any permutation of 
[w] = [2”], assuming that the fi and gi for i < m - 1 generate all permutations of 
[w/2]. By conjugation with g, ._ , , we can make all permutations of the elements 
{w/2, ..., w - 1). Using these permutations as necessary among the high-numbered 
and low-numbered elements as necessary, we can use f, ~ I to swap highs for lows 
as necessary to generate an arbitrary permutation of [w]. 1 

Proof of Theorem 3 (continued). We will encode the state by m bits L,, 
L I, *.., L, _ , with the state encoded being s = xi LiZi. For each of the functions h, 
g;, and h, we must exhibit constant-width circuit sections which perform that 
function on s if x is on and leave s unchanged if x is off. 

In the case of each fi and gi, we want to change Lj if necessary but leave all the 
other Lj unchanged. Lj must be changed to Li@y for an appropriate y which is an 
AND of x and other L,‘s. This is doable in constant width, using one extra node 
along with the first m, as follows. First compute jj using successive ORs, maintain- 
ing all the L;s. Then AND y with Li and save the result. Now, using the space for 
Li, compute Li A y by a NOT and successive ANDs. As Li @y = (Li A J) v 
(Ii A y), we can now get the new Li with one OR step. The width-4 circuit in Fig. 1 
illustrates this method for the transposition fi or (0 4) with m = 3. In this example, 
the bit L, is to be changed iff the input x is on and both L, and L, are off. Here y is 
x A E, A L,, and we calculate the new L, as (L2 A j) v (t, A y). 

FIG. 1. A width 4 circuit calculatingf,. 
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In the case of function h, we want to change Lo by the assignement L,, := Lo A y, 
where y is the OR of 2 and all the other Lls. The other Lis are not changed. This is 
easily doable in width m + 1, by using one extra column to compute y by successive 
ORs and then ANDing it in at the end. 1 

Comparing this result with that of [20], we see that our definition of BP width 
leads to a closer relationship between BP width and circuit width than does the 
model of [lo]. We conclude by summarizing the main consequence of Theorem 3 
for bounded-width circuit complexity. 

COROLLARY. The class of languages recognizable by circuits of constant width and 
polynomial size equals the class of those recognizable with width 4 and polynomial 
size, as both are NC’. 

Proof. Languages recognized by constant-width polynomial-size circuits are 
clearly in NC’ by the proposition above and Theorem 2. Any language in NC’ is 
five-cycle recognized by a family of width-5 polynomial-size branching programs by 
Theorem 1. If we use Theorem 3 to simulate this branching program with any fixed 
input state, membership in L may be determined easily from the output. 

6. UNIFORMITY 

To speak of a uniform version of NC’, it will be necessary to introduce alter- 
nating Turing machines, originally defined by Chandra et al. [12]. Here we will 
define a computation of an alternating Turing machine to be a game played by two 
players on a nondeterministic Turing machine which has two possible state trans- 
itions in every position. States are labelled White or Black as to which player has 
control of the moves from that state. For defining the class ATIME(log n), we 
assume that the machine has a random-access input tape which it can access only 
once, at the end of the computation, a worktape of size c log n for some constant c, 
and a clock which restricts it to running for clog n steps. The players, who are 
assumed to be omniscient, direct the computation of the machine until the end, 
when the machine reads an input bit (specified by an address written in binary on a 
work tape) and then enters a special “White victory” or “Black victory” state based 
on the value of this bit. The alternating Turing machine is said to accept an input x 
if White has a winning strategy for this game with input x. By standard methods 
these assumptions may be shown to be perfectly general. 

The extended connection language of a fan-in 2 Boolean circuit consists of all 
strings of the form (g, h, s), where g and h are names of nodes in the circuit, 
s E {left, right} <log”, and h is the node reached by following the path s from g. 
Ruzzo [29] (see also [ 141) defines NC’ circuits as those fan-in 2 depth O(log n) 
circuits whose extended connection language is in ATIME(log n). This has the con- 
sequence that NC’ = ATIME(log n). We will define ATIME(log n)-uniform 
branching programs in a natural way and show that the class of languages 
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recognized by ATIME(log n)-uniform branching programs of polynomial size and 
constant width is also ATIME(log n). This will show that BWBP = NC’ in the 
uniform as well as in the nonuniform setting. 

THEOREM 4. A language A is in ATIME(log n) ijj” it is recognized by a family of 
polynomial-size bounded-width branching programs B for which the language: 

{(k, i,f; g): the kth instruction of B is (i,f, g)) 

is in ATIME(log n). 

Proof: First we define a game in which White tries to prove that B(x) =f, for 
some acceptingf, and Black tries to refute him. At each stage of the game the log- 
time machine will define a range of instructions in B and a function which White 
claims is yielded by that range. White advances his claim by naming two functions 
g and h, with f = gh, and claiming that the first half of the range yields g and the 
second h. Black must choose one of these two subclaims to challenge, and this 
becomes White’s new claim for the next stage. After O(log n) stages White will be 
making a claim about a single instruction, and this can be verified in ATIME(log n) 
by hypothesis. Each stage takes constant time, as we can let Black’s sequence of 
choices be the index of the instruction to be checked- so each bit of this index 
need only be written down once. 

For the converse, given a log-time machine M and the game rules to make it an 
alternating machine, we can get an NC’ circuit C in a standard way by creating a 
node for each configuration of y. Let B be the 5-PBP with output (12345), say, 
created from C by the method of Theorem 1 above, so that B five-cycle recognizes 
A. We must show that B is ATIME(log n) uniform. We deftne a game with input 
(k, i, (T, z) which White can win iff the input is a correct description of the kth 
instruction. Both players, of course, know the actual circuit C and branching 
program B, as these are uniquely defined from M. 

White at each stage will maintain a claim of the following form: 

meaning “The subcircuit C, of C whose top node is M-configuration s corresponds 
to a section B, of B which five-cycle recognizes the language accepted by C, with 
output p. Further, the kth instruction of B, is (i, a, t).” 

White will begin by claiming (start, (12345), k, i, cr, t) (where k, i, rr, and z are 
taken from the input to the game) and refine this through O(logn) moves, each 
move corresponding to a step of M or to moving down one edge of C. For exam- 
ple, if s is an AND-node B, consists of four sections-White must state in which 
section the kth instruction occurs, what its new number is, and which of s’s children 
the section represents. Eventually s will be a final configuration of A4 and White’s 
claim can be quickly decided. Black’s moves during this process are to challenge 
any White claim which does not follow from his previous claim according to the 
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definition of M and the procedure for creating B. Such a challenge may be decided 
easily in log-time, ending the game. White’s moves are each only a constant number 
of steps if we choose an appropriate representation for the number k and do not 
have to rewrite it every time. 1 

7. EXTENSIONS AND THE FINE STRUCTUREOF NC’ 

What we have really done in Theorem 1 is to show that a certain problem is 
complete for NC’ under certain reductions. The problem is to multiply together a 
series of elements of S,, or equivalently to test whether a given word over Ss is the 
identity. We will call this the wordproblem for Ss. Similarly we may define the word 
problem for any fixed grop G. (We consider only finite groups, and always assume 
a group is represented as a permutation group.) This will correspond to the class of 
G-PBPs, where the permutations in each instruction must belong to G. Thus, for 
example, w-PBPs become S,-PBPs. 

Inside NC’ it is most natural to define AC0 reductions-the function f is 
reducible to g (written f < ae g) if a constant-depth poly-size unbounded fan-in 
circuit, containing orable nodes for g, can computef: This notion was introduced in 
[ 173 under the name of “cp-reducibility.” That paper suggested further study of the 
degree structure (they had only just given the first proof that the structure of NC’ 
was nontrivial) and conjectured that majority was not reducible to parity. 

This study was taken up by Fagin et al. [16], who found many new AC0 
reducibilities among symmetric functions. Modulo the new parity lower bounds of 
Yao [35] and Hastad [19], they characterize those symmetric functions in AC’. 
They show that the degree of the majority function is complete for symmetric 
functions and contains a large class of symmetric functions. Interestingly, no com- 
plete symmetric function exists in the projection-reducibility theory of Skyum and 
Valiant [32], by a recent result of Gereb-Graus and Szemeredi [18]. Chandra et 
al. [ 131 prove several natural functions AC0 equivalent to majority. 

In this section we show that solvability of a group is the key to the applicability 
of the methods used earlier for the group S,. We first give one of the many 
equivalent definitions (For more detail see a group theory text such as [36]). The 
commutator subgroup of G is the subgroup generated by all elements of the form 
aba - ‘b-r for a and b in G. A group is solvable if and only if repeated taking of 
commutator subgroups eventually gives the trivial group. Thus a group is non- 
solvable if and only if it has a nontrivial subgroup whose commutator subgroup is 
itself. (All groups under discussion are finite.) 

We first show that our earlier proof generalizes to any nonsolvable group. 

THEOREM 5. The word problem for any fixed nonsolvable group G is complete for 
NC’ under AC0 reductions. 
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Proof: Without loss of generality, assume that G’s commutator subgroup is 
itself. We show that given a fan-in 2 circuit of depth d and an element a of G not 
equal to the identity, there is a G-PBP of length at most (4g)d which yields a if the 
circuit accepts the input and yields the identity otherwise. Here g is the order of G, 
a constant. Evaluating a G-PBP is easily seen to be in AC’, given oracle nodes for 
the word problem for G. This will suffice to show completeness-the word problem 
is clearly in NC’ as we can multiply two permutations in constant size and depth 
with fan-in two. 

The proof, like that of Theorem 1, is by induction on d. The element a must have 
a representation as a product of at most g commutators. We carry out the proof of 
Theorem 1, except that we use the inductive hypothesis to produce G-PBPs yielding 
arbitrary nonidentity elements of G instead of five-cycles. This multiplies the length 
by at most 4g instead of 4 at each step. Lemma 1 is unnecessary as for each d, we 
simultaneously prove the result for all a in G except the identity. 1 

It would be nice to have a converse to Theorem 5, but unfortunately we do not 
know enough about the AC’-structure of NC’ to prove one. By extending the 
methods of [4], however, we can make a good start. 

THEOREM 6. The word problem for any fixed solvable group G is AC’-reducible 
to the mod g function, where g is the order of G. 

ProoJ: An equivalent definition of a solvable group (see, e.g., [36 J) is one which 
has a series of normal subgroups G = G,,, G,, . . . . G, = (e}, where each quotient 
group GJG,, , is syclic. We prove the theorem by induction on the length of this 
series. So assume that G has a normal subgroup N, where G/N is cyclic and the 
word problem for N is solvable by an AC0 circuit containing mod g gates. Choose 
an element a such that the coset aN generates G/N. 

We are given a product g, . ..g. to evaluate. As N is normal, we can write each gj 
uniquely as aB’ni with niE N. (Converting between any two bit representations of an 
element of G takes constant size and depth.) Now let bi be the product a” ... a”’ and 
note that a% . ..~“~n~=(b~n.b;‘)...(b,n,b,‘)b,. Each b, depends only on the 
sum mod g of ihe appropriate cj, as the order of a in G divides g. Each term b,n,b; ’ 
is in N by normality, and we can calculate it in constant depth using mod g gates to 
get bi. These partial terms may then be multiplied using a circuit for N. 1 

Theorem 6 is interesting only if the converse of Theorem 5 is true. To finish the 
argument, we would need to show that no single mod g function is powerful enough 
to be complete for NC’. We conjecture that this is true, as it seems quite unlikely 
that a circuit of AND, OR, and MOD-g gates could do majority. This extends the 
conjecture of [ 171 that the mod 2 function is not powerful enough to do majority. 
Further consequences of this conjecture are given in [7]. 

Unfortunately, the random restriction method of [17] does not seem to extend 
even to parity (mod 2) gates; as the restriction of a parity gate is still a parity gate. 
However, there has recently been dramatic progress in this area. Razborov [28] 
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has proven the original conjecture of [17] by showing that any constant depth cir- 
cuit of AND and mod 2 gates computing the majority function has exponential size. 
Smolensky [33] has extended this method to show that an AC0 circuit with modp 
gates cannot do the mod q function if p and q are distinct primes, and thus that no 
circuit containing gates for a single prime can do majority. No limitations are yet 
known on the power of AC0 circuits with mod q gates for composite q (except for 
prime powers, which are equivalent to their primes). 

8. OPEN PROBLEMS AND RECENT PROGRESS 

We now know that poly-size bounded-width BPS give NC’ while poly-size 
general BPS give L, the languages recongnized by deterministic log-space Turing 
machines. Certainly this suggests a new attack on the problem of whether NC’ = L 
as this can now be phrased entirely in terms of branching programs. It would be 
useful to develop a lower-bound technology for width-5 PBPs if this is possible. 
Even a superpolynomial lower bound for, say, the clique function would prove NC’ 
different from NP. 

The power of general poly-size permutation BPS (no restriction on width) was 
mentioned as an open problem in [6]. Cook and McKenzie [15] have just shown 
that the word problem for S, is complete for log space under NC’ reductions, even 
if the inputs and outputs are in pointwise notation (i.e., a permutation (r is given as 
the list of integers a( 1 ), . . . . a(n)). (In fact, they show that the easier problem of per- 
mutation powering with the exponent in unary is complete.) A poly-size PBP can 
be constructed to solve this problem, given an appropriate definition of recognition 
of a language by a PBP. As these PBPs can be thought of as reoersible nonuniform 
log-space Turing machine computations, this suggests a comparison with work of 
Bennett [9]. 

The effect of nondeterminism on these classes must be examined as well, 
suggesting possible new attacks on the problem of whether L is equal to NL, the 
class of languages recognized by nondeterministic log-space Turing machines. One 
must be careful with definitions here, as the wrong sort of nondeterminism can can 
turn a very small class into NP. For example, depth-2 poly-size unbounded fan-in 
Boolean circuits can only recognize I7,-TIME(log n). But if we give such a circuit 
both x and y inputs and say that it “accepts” x iff there is some y such that the cir- 
cuit accpts (x, y >, it can recognize any language in NP. This and similar extensions 
of the branching program model have recently been considered by Meinel [25]. 

We know the power of width-3 [4] and width-5 PBPs-what of width4? As S, 
is solvable, they cannot do all of NC’ by the method used here for width-5, but we 
would like to prove they cannot do it at all. The conjecture of Section 8 would 
settle this, but 4-PBPs are a special case which might be more amenable to analysis. 

Width 2 and 3 Boolean circuits are an attractive target for a lower bound 
proof-it would be nice to show that width 4 is necessary to do NC’, if this is true. 
Can one improve Theorem 3 on simulating BPS by circuits? Of course, any 
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bounded width BP can be simulated in width 4 with polynomial size blowup using 
our main result, but can the simulation be improved keeping the blowup linear? 

We know that BPS without the permutation restriction require width-3 to do 
majority in poly-size [34] and we know that width-5 suffices. Does the extra 
freedom to use nonpermutation instructions help at ail? This amounts to extending 
the notion of a PBP over a group to a BP over a monoid, and is taken up in [7]. 
There it is shown, modulo the conjecture of Section 8, that poly-size BPS over a 
monoid which contains only solvable groups cannot recognize all of NC’, so that 
width 5 is necessary here as well. 

The line structure of NC’ is another good subject for further study. Until recently 
we knew only that there are at least two classes under AC0 reductions (from 
[ 17,2]) but this is more than is known about most degree theories in complexity 
theory. The recent work of Razborov [28] and Smolensky [33] has shown that 
there are infinitely many degrees (see the last section) and tends to support the 
conjecture of Section 8, but this conjecture is still open. 

There seems to be no reason to believe that the majority is complete for NC’, but 
we are a long way from proving this. The languages AC0 reducible to majority form 
the analog of AC0 in the threshold gate theory of Parberry and Schitger, and might 
be an interesting proper subclass of NC’. Many natural problems are known to be 
AC0 equivalent to majority, as shown by Fagin et al. [ 161 and Chandra et al. [ 131. 

AC’-reducibility should also be cornparted with the prejection reducibility of 
Skyum and Valiant [32] in this setting. Majority is AC’-complete for symmetric 
functions, but no function is projection-complete for them [lS]. 

It is also interesting that an algebraically defined regular language such as a word 
problem should be complete for NC’. The analysis in [7] sheds some further light 
on this. 

The unexpected power of NUDFA suggests some foundational questions. Placing 
the power to recognize a language in a program to a very simple machine seems 
very different than placing it in, say, the state table of a Turing machine. How 
different is it, and how does it relate to other known models of computation? 
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