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Abstract

Over the last decade several general-purpose numerical methods for ordinary di�erential equations (ODEs) have been
developed which generate a continuous piecewise polynomial approximation that is de�ned for all values of the inde-
pendent variable in the range of interest. For such methods it is possible to introduce measures of the quality of the
approximate solution based on how well the piecewise polynomial satis�es the ODE. This leads naturally to the notion
of “defect-control”. Numerical methods that adopt error estimation and stepsize selection strategies in order to control
the magnitude of the associated defect can be very e�ective and such methods are now being widely used. In this paper
we will review the advantages of this class of numerical methods and present examples of how they can be e�ectively
applied. We will focus on numerical methods for initial value problems (IVPs) and boundary value problems (BVPs)
where most of the developments have been introduced but we will also discuss the implications and related develop-
ments for other classes of ODEs such as delay di�erential equations (DDEs) and di�erential algebraic equations (DAEs).
c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Consider the ordinary di�erential equation

y′ = f(t; y); (1)

with exact solution denoted by y(t). Traditional discrete numerical methods partition the interval of
interest, [t0; tF ], by introducing a mesh t0¡t1 · · ·¡tN = tF and generate a discrete approximation
yi ≈ y(ti) for each associated meshpoint. The number of meshpoints, N , and the distribution of
these meshpoints is usually determined adaptively by the method in an attempt to deliver acceptable
accuracy at a minimum cost. These methods generally accomplish this objective by keeping N as
small as possible subject to a constraint that an indirect measure of maxi=1; :::;N‖y(ti) − yi‖ be kept
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small (relative to an accuracy parameter TOL). (We use ‖ · ‖ to represent the max–norm for vectors
and the induced matrix norm for matrices.) Di�erent methods implement very di�erent strategies
in an attempt to achieve this indirect error control and this can make it particularly challenging to
interpret the accuracy of a numerical solution.
In recent years, the notion of a continuous extension (of an underlying discrete method) has

received considerable attention. With this approach, one associates with each discrete approximation,
{ti; yi}N

i=1, a piecewise polynomial, u(t), de�ned for all t in the interval [t0; tF ] and satisfying u(ti)=yi

for i=1; 2; : : : ; N . (For a detailed discussion of the advantages and costs of generating such extensions
see [7,13,17,23,26]). For example, consider applying a method based on a standard s-stage, pth-order
Runge–Kutta formula to (1). The corresponding discrete approximations will then satisfy

yi = yi−1 + hi

s∑
j=1

!jkj; (2)

where

kj = f

(
ti−1 + hicj; yi−1 + hi

s∑
r=1

ajrkr

)
;

for j= 1; 2; : : : ; s; i= 1; 2; : : : ; N and hi = ti − ti−1. A continuous extension is derived by introducing
the additional stages, ks+1; ks+2; : : : ; k �s and polynomials bj(�) of degree 6p for j = 1; 2; : : : ; �s such
that the polynomial ui(t) de�ned by

ui(t) = yi−1 + hi

�s∑
j=1

bj

(
t − ti−1

hi

)
kj (3)

satis�es ui(t)=y(t)+O(hp) for t ∈ (ti−1; ti) and h=maxNi=1 hi. Formulas of this type are called contin-
uous Runge–Kutta (CRK) formulas. The polynomials {ui(t)}N

i=1 then de�ne a piecewise polynomial,
u(t), which will be continuous on [t0; tF ] and interpolate the underlying discrete approximation if
bj(1) = wj for j = 1; 2; : : : ; s and bs+1(1) = bs+2(1) · · ·= b �s (1) = 0.
In deriving CRK formulas of order p, several issues arise which can have a signi�cant impact on

the implementation and hence on the performance of the resulting continuous method. If the extra
stages are restricted to be “explicit”, that is if

ks+j = f

(
ti−1 + cs+jhi; yi−1 + hi

s+j−1∑
r=1

as+j; rkr

)

for j=1; 2; : : : ; ( �s−s), then implementation is straightforward and the cost of obtaining the continuous
approximation is only the additional �s − s evaluations of the di�erential equation on each step. It
is, therefore, generally preferable to derive and implement explicit CRK methods although there are
classes of problems where one can only use implicit CRK formulas. Di�erential algebraic problems,
DAEs, are one such class and we will consider them in more detail in Section 5.
Another issue that can be important is the magnitude of the defect or residual that is associated

with the continuous approximation. This quantity can be interpreted as a measure of the quality of
the numerical solution. For a piecewise polynomial approximation u(t) associated with the ODE (1)
one de�nes the defect, �(t), for t ∈ (t0; tF) by

�(t) = u′(t)− f(t; u(t)):
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Note that, in deriving CRK formulas, our assumption that u(t) be order p implies, for su�ciently
smooth problems,

u′(t) = y′(t) + O(hp−1): (4)

Furthermore, since

�(t) = u′(t)− f(t; u(t))− y′(t) + f(t; y(t))

= (u′(t)− y′(t)) + (f(t; y(t))− f(t; u(t))); (5)

then for di�erential equations that are Lipschitz continuous, ‖�(t)‖ will be at worst O(hp−1).
If we let zi(t) be the solution of the local initial value problem

z′i = f(t; zi); zi(ti−1) = yi−1;

for i = 1; 2; : : : ; N ; then the local error, lei(t), associated with the continuous approximation on step
i is de�ned for t ∈ (ti−1; ti) to be

lei(t) = zi(t)− ui(t):

It is well known that the discrete local error of a pth-order Runge–Kutta formula (2) must be
O(hp+1

i ). That is

lei(ti) = zi(ti)− ui(ti)

= zi(ti)− yi

=O(hp+1
i ): (6)

If we derive order p CRK formulas which satisfy the additional constraint that the associated local
error be O(hp+1

i ) for t ∈ (ti−1; ti) then we will have
u′i(t) = z′i (t) + O(h

p
i ) (7)

and therefore, for t ∈ (ti−1; ti),
�(t) = (u′i(t)− z′i (t)) + (f(t; zi(t))− f(t; ui(t)))

=O(hp
i ): (8)

Furthermore, if we derive order p CRK formulas with the stronger additional constraint that, for
t ∈ (ti−1; ti), the local error be O(hp+1

i ) and satisfy

lei(t) =  i(�) D(ti−1)h
p+1
i +O(hp+2

i ); (9)

where �=(t− ti−1)=hi, D(t) is a function depending only on the problem, and  i(�) is a polynomial
in � whose coe�cients are independent of the problem and the stepsize, it can be shown from (8)
(see [3] for details) that

�(t) =  ′
i (�) D(ti−1) hp

i +O(h
p+1
i ): (10)

In this paper we are considering continuous methods which are designed to directly monitor and
control the maximum magnitude of an estimate of the defect of the piecewise polynomial u(t) that is
delivered as the approximate solution. We will focus on methods based on an order p CRK formula
but most of the discussion and analysis will apply to other classes of continuous methods such as
those based on multistep formulas. Note that an order p CRK will always satisfy (5) but, without
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additional constraints, such formulas may be more di�cult to implement in an e�ective and reliable
way (when the objective is to control the magnitude of ‖�(t)‖) since:
• The magnitude of the associated defect will generally only be O(hp−1

i ),
• Although the defect can be sampled at any point in the interval of interest it may not be easy to
justify a rigorous, inexpensive estimate of its maximum magnitude over each step.

The �rst of these di�culties can be overcome by considering only order p CRK formulas with local
error that is O(hp+1

i ) and both di�culties can be overcome by considering only those order p CRK
formulas that satisfy (9). In this latter case as hi → 0, for any t ∈ (ti−1; ti), �(t) will satisfy (10)
and therefore for �t ∈ (ti−1; ti) (corresponding to a local maximum of | ′

i ((t − ti−1)=hi)|), ‖�(�t)‖ will
be an asymptotically correct estimate of the maximum magnitude of the defect on the ith step. Note
that since  ′

i (�) is a polynomial which is independent of the problem and the stepsize, the location
of its local maximum magnitude, �� (for � ∈ (0; 1)), is known and the corresponding value for �t is
�t = ti−1 + ��hi.
In Section 2, we will consider continuous methods for IVPs based on defect-control and in sub-

sequent sections we will consider such methods for BVPs and DDEs. In each of these areas there
are some general purpose software packages available. Finally, we will consider the development of
methods for DAEs based on defect-control. We will discuss some prototype and experimental codes
that implement this approach.

2. Initial value methods

The development of software based on defect-control for the numerical solution of IVPs in ODEs
has a history that goes back several decades and is closely related to the notion of backward error
analysis. Consider the standard IVP

y′ = f(t; y); y(t0) = y0; t ∈ [t0; tF ]: (11)

Hull [18] and Stetter [24] investigated the reliability (or “e�ectiveness”) of various error control
strategies for discrete methods applied to (11) by establishing conditions which would guarantee the
existence of a piecewise approximating function, û(t) ∈ C0[t0; tF ], which interpolates the discrete
approximate solution yi and satis�es a slightly perturbed IVP

û′ = f(t; û) + �̂(t); û(t0) = y0; (12)

where �̂(t) ∈ C0[t0; tF ] and satis�es

‖�̂(t)‖6k̂ TOL; (13)

for some modest value of k̂ (independent of both the problem and the method), and TOL is the
speci�ed error tolerance. In these investigation, û(t) and �̂(t) were generally not computable but one
could use standard results from mathematics, such as the Grobner–Alekseev variation of constants
formula (see [22] for details), to obtain appropriate global error bounds. For example, if (11), (12)
and (13) are satis�ed then it is straightforward to show

y(ti)− yi = y(ti)− û(ti) =
∫ ti

t0
K(t; s)�̂(s) ds; (14)
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Table 1
Cost per step of relaxed and strict defect control for some CRK formulas

Formula p s �s s̃

CRK4 4 4 6 7
CRK5 5 6 9 11
CVSS6B 6 7 11 14
CVSS7 7 9 15 20
CVSS8 8 13 21 28

where K(t; s) is a variational matrix that depends only on the problem, and this implies

‖y(ti)− yi‖6(ti − t0)k̂ Kmax TOL; (15)

where Kmax is a bound on ‖K(s; t)‖. Note that this is an example of backward error analysis where
the computed solution is guaranteed to exactly satisfy a slightly perturbed IVP and one can interpret
Kmax as a type of condition number for the problem (which quanti�es how sensitive the solution can
be to small changes in the problem speci�cation).
Subsequently, several investigators, who were primarily interested in dense output (or o�-

mesh approximations), analysed and developed computable piecewise polynomial interpolants, u(t),
which could be e�ciently implemented with new or existing discrete methods (see, for example,
[7,17,23,25,27]). It was soon recognized that, once u(t) was generated, the corresponding defect
could be sampled and new reliable error and stepsize-control strategies could be developed with the
objective of directly satisfying relationships analogous to (12) and (13).
As we have noted earlier, when one considers CRK formulas, the requirement that ‖�(t)‖ be of

optimal order and easy to bound by an inexpensive error estimate (for t ∈ (ti−1; ti)) will gener-
ally impose additional constraints on what would comprise a suitable local interpolating polynomial,
ui(t). In a series of investigations [1–3,14–16], several order p CRK formulas have been devel-
oped and compared. These investigations have also considered the relative advantages of several
alternative defect-control strategies for 36p68. We will now consider two of the most promising
strategies.
The �rst strategy assumes that the local interpolant ui(t) de�ned by (3) satis�es (7) and that the

estimate of the maximum magnitude of the defect is obtained by the heuristic

esti = ‖�(ti−1 + �̂hi)‖
= ‖u′i(ti−1 + �̂hi)− f(ti−1 + �̂hi; ui(ti−1 + �̂hi))‖; (16)

where �̂ is chosen in a careful way (see [1] for a detailed discussion of how �̂ can be chosen). We
will refer to this strategy as the “relaxed” defect-control strategy. This heuristic for controlling the
maximum magnitude of the defect works well on most problems but the strategy is not asymptotically
justi�ed (as h → 0) and it can severely underestimate the size of the defect for some problems.
Table 1 reports for 46p68 the value of s and �s for some order p CRK which have been found to
be particularly e�ective. The higher-order formulas are members of families of formulas derived in
[26] (the particular coe�cients are identi�ed in [3]). Note that the cost per step of a method using
this error-control strategy for these particular CRKs is �s derivative evaluations. This follows since
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although one must perform an additional derivative evaluation to sample the defect (at ti−1 + �̂hi),
each of the formulas is designed to ensure that u(t) ∈ C1[t0; tF ] by requiring that u′i(ti−1 + hi) =
f(ti−1 + hi; yi). This implies that, on all but the �rst step, k1 will be available (as an internal stage
of the previous step).
A more rigorous error-control strategy (which we will refer to as the “strict” defect-control strat-

egy) for the same set of underlying discrete formulas can be developed by requiring that the cor-
responding continuous extension satisfy (9) as well as (7). With this additional constraint we have
available (as discussed earlier) an asymptotically correct estimate of the maximum magnitude of
the defect (on the ith step) given by esti = ‖�(ti−1 + ��hi)‖ where �� is �xed and independent of
the problem or stepsize. One way to generate such a CRK (although it may not be optimal) is to
begin with an �s-stage order p CRK, ui(t), satisfying (3) and (7) and replace the “extra” stages,
ks+j; j = 1; : : : ; ( �s− s) (whose corresponding cs+j 6= 1) with the more accurate values

k̃ s+j =
{
f(ti−1 + cs+jhi; ui(ti−1 + cs+jhi)) if cs+j 6= 1;
ks+j if cs+j = 1:

(17)

A new, more suitable interpolant, ũ i(t) can then be de�ned by

ũ i(t) = yi−1 + hi

s∑
j=1

bj

(
t − ti−1

hi

)
kj +

�s−s∑
j=1

bj+s

(
t − ti−1

hi

)
k̃ s+j: (18)

It can easily be shown that ũ i(t) will satisfy (7), (9) and, when cj = 1 for one value of j in the
range 16j6( �s− s) (as is the case for each of the CRK formulas identi�ed in Table 1), it will be
an s̃-stage order p CRK with s̃= s+ 2(�s− s)− 1. Table 1 also reports the value of s̃ for this strict
defect-control strategy using the CRK corresponding to (18).
Clearly a trade-o� between e�ciency and reliability needs to be addressed when choosing which

defect-control strategy should be used to solve a particular problem. Fortunately, it is convenient
and straightforward to implement a numerical method which can apply either strategy (using either
(3) with �̂ or (18) with �� to de�ne the respective interpolants and defect estimates) and thus the
choice can be an option which can be selected by the user. From Table 1 we can observe that the
cost per step of using the strict defect-control strategy can be between 20 and 33% more than that
for the relaxed strategy but better control of the size of the defect should be realised.
To illustrate and quantify this trade-o� we have run both versions of a numerical method based

on the CRK formula CVSS6B, on the 25 standard nonsti� problems of the DETEST package [11] at
nine error tolerances and assessed how well the defect was controlled. The performance on a typical
problem, problem B4, is summarised in Table 2.
These results are typical of that observed on all problems. Both methods are robust in that they

are able to deliver, over a wide range of tolerances, a close and consistent relationship between the
size of the defect and the speci�ed error tolerance.
Both versions of CVSS6B required over 13 500 steps to solve all of the problems at all tolerances.

With the strict defect-control strategy the maximum magnitude of the defect rarely (on fewer than
1.8% of the steps) exceeded TOL and never exceeded 7 TOL. With the relaxed defect-control
strategy the maximum magnitude of the defect exceeded TOL on 20% of the steps but it rarely
exceeded 5 TOL (on fewer than 1.2% of the steps) and it never exceeded 18 TOL.
An alternative rigorous defect control strategy based on the use of a di�erent norm has been

proposed and justi�ed in [19]. On each step one introduces a weighted L2-norm (which can be
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Table 2
Performance of CVSS6B on problem B4 of DETEST

Strategy TOLa Timeb FCNc Stepsd GL Erre Max Def f % Succg

Relaxed defect control 10−2 0.010 166 15 4.7 1.9 73
10−3 0.015 254 22 18.0 1.2 91
10−4 0.023 375 32 28.4 1.3 84
10−5 0.031 507 46 34.5 1.7 74
10−6 0.046 749 68 37.6 1.5 62
10−7 0.067 1101 100 39.0 1.5 49
10−8 0.099 1618 147 40.5 1.5 45
10−9 0.145 2377 216 41.1 1.5 45

Strict defect control 10−2 0.014 253 17 1.2 0.88 100
10−3 0.021 379 24 9.5 0.94 100
10−4 0.027 491 35 15.6 0.98 100
10−5 0.041 743 53 16.6 0.76 100
10−6 0.061 1093 78 16.6 0.66 100
10−7 0.090 1625 116 16.5 0.61 100
10−8 0.131 2381 170 16.5 0.58 100
10−9 0.193 3501 250 16.5 0.56 100

aTOL, speci�ed error tolerance.
bTime, computer time required to solve the problem measured in seconds on a SUN Sparc4.
cFCN, number of derivative evaluations required to solve the problem.
dSteps, number of time steps required to solve the problem.
eGL Err, maximum observed global error measured in units of TOL and determined by measuring the global error at

100 equally spaced points per step.
fMax Def, maximum magnitude of the defect measured in units of TOL and determined by sampling the defect at 100

equally spaced points per step.
g% Succ, percentage of steps where the magnitude of the defect is less than TOL.

interpreted as an average magnitude of the defect),

‖�i(t)‖2 = 1=hi

(∫ ti

ti−1

‖�i(s)‖2 ds
)1=2

; (19)

A method can then be developed with an error control strategy that attempts to ensure that

‖�i(t)‖26TOL: (20)

As is pointed out in [19], �i(t) is usually known at the meshpoints and therefore, for su�ciently
smooth problems, one can derive a low cost, asymptotically correct estimate of ‖�i(t)‖22 using a
suitably chosen Lobatto quadrature formula (which would require only a few additional evaluations
of the defect). This approach has been implemented and shown to be very e�ective for a large class
of problems.
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3. Boundary value methods

Numerical methods for BVPs of the form

y′ = f(t; y); t ∈ [t0; tF ]; g(y(t0); y(tF)) = 0 (21)

generally produce a discrete approximation on a mesh t0¡t1¡ · · ·¡tN = tF by solving a large
coupled nonlinear system of equations. If the underlying formula that determines the discrete solution
is a Runge–Kutta or collocation formula then it is straightforward to introduce a continuous extension
u(t) and the associated defect �(t) (as we have done for IV methods). From Table 1 we see that
the cost per step to compute u(t) and estimate the size of the corresponding defect can be as great
as applying the underlying discrete formula. For BV methods the cost per step to determine u(t)
and �(t), after the discrete solution has been computed, remains the same while the cost of solving
for the discrete solution is generally much greater. A consequence of this is that once a converged
discrete solution is determined by a BV method (based on the use of a CRK or collocation formula),
a continuous extension with an optimum O(hp) defect can be computed at very little incremental
cost (see, for example, [10,12]).
When these formulas are used to determine the discrete solution, defect-based error control and

mesh-re�nement strategies can be particularly attractive. This approach has been followed in the
development of the methods MIRKDC [9] and bvp4c [19] which have been found to be e�ective
for solving a wide class of problems.
In the numerical solution of BVPs, one often encounters di�culties with convergence of the

iteration scheme that is used to solve the nonlinear system associated with the discrete mesh. This
can be the result of a poor choice of mesh and=or a poor initial guess for the discrete solution. In
either case, if the method has available a piecewise polynomial approximation �u(t) with an associated
defect ��(t) (as would be the case, for example, if �u(t) were associated with a mesh and previously
computed discrete solution that was judged not to be su�ciently accurate), then these de�ciencies
can often be overcome by using the size of the defect to help guide the mesh re�nement and using
�u(t) to generate the required initial guess. With this approach one can also use the estimates of the
maximum magnitude of the defect to help ensure that the approximate solution that is ultimately
delivered by the method, u(t), satis�es

‖�(t)‖= ‖u′(t)− f(t; u(t))‖6 TOL; (22)

and

g((u(t0); u(tF)) = 0:

Note that, with this approach, one could consider using inexpensive interpolants for the mesh re-
�nement strategies, and the more expensive rigorous interpolants for assessing the accuracy of the
numerical solution.
When such strategies are adopted by a method, one only has to compute the interpolant and defect

estimate on the �nal iteration after the underlying discrete approximation has converged. Intermediate
calculations associated with preliminary coarse meshes or initial iterations (before convergence) either
would not require the determination of any interpolant or would only require the less expensive
relaxed interpolant.
Numerical experience reported in [9,19] shows that BV methods that implement such defect-based

strategies can outperform methods based on more traditional strategies especially when a strongly
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nonuniform mesh is appropriate. Even on problems where asymptotic analysis is not necessarily
relevant, carefully designed defect-based strategies can quickly lead to a suitable mesh and rapid
convergence on that mesh.

4. Delay di�erential equation methods

A class of numerical methods based on CRK formulas with defect control has been analysed [6]
for systems of retarded and neutral DDEs of the form

y′ = f(t; y; y(t − �1(t; y(t))); y′(t − �2(t; y(t)))); t ∈ [t0; tF ]: (23)

y(t) = �(t); t6t0; (24)

where �1(t; y) and �2(t; y) are positive scalar functions. One particular sixth-order formula from this
class (the formula CVSS6B discussed in Section 2) has been implemented in a software package,
DDVERK [4], and shown to be e�ective for these DDEs [5].
For this class of problems a discrete method must be able to approximate the solution at o�-mesh

points in order to evaluate the di�erential equation at an arbitrary point, t ∈ [t0; tF ]. Therefore,
the requirement that the numerical solution be a piecewise polynomial, u(t), does not impose any
extra cost and one can associate an approximation u(t) (with corresponding defect �(t)) with any
numerical method.
To be e�ective for this class of problems a numerical method must be able to detect and e�-

ciently handle the discontinuities that inevitably arise and are propagated as the integration proceeds.
Automatic techniques for detecting and accurately crossing points of discontinuity for standard IVPs
based on monitoring changes in the associated defect have been proposed and justi�ed in [8]. This
technique has been adapted and re�ned for DDEs in the solver DDVERK (see [4] for a discussion
of the details) where it has proved to be very e�ective for a wide class of problems. It is certainly
competitive with the alternative strategy which explicitly checks for discontinuities at all possible
locations where propagation is possible. This is particularly true for systems of equations with mul-
tiple delays where the number of potential points of discontinuity can be quite large relative to the
number of signi�cant or relevant points of discontinuity. The defect based strategy for coping with
discontinuities essentially adjusts the stepsize selection (as well as the error-control mechanism) only
on those steps where the presence of a point of discontinuity has severely reduced the stepsize.

5. Di�erential algebraic equation methods

In recent years, there has been considerable interest and progress made in the development of
numerical methods for special classes of DAEs. Nevertheless, very few methods can be applied
directly to a system of DAEs in the most general form

F(t; y; y′) = 0; y(t0) = y0; t ∈ [t0; tF ]; (25)

with (@F=@y′) known to be singular. Note that if this matrix is nonsingular for all t ∈ [t0; tF ] the
problem is said to have index 0. In this case one can solve the nonlinear system associated with
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(25) to determine y′(t) for any prescribed value of t and y(t). Any initial value method can be
applied and special DAE methods are not necessary.
In general the “index” of a problem of the form (25) refers to the minimum number of times one

has to di�erentiate the equation, F(t; y; y′)=0, in order to derive an equivalent initial value problem
where y′(t) can be determined uniquely in terms of t; y(t); F and various partial derivatives of F .
The higher the index of a problem, the more sensitive the solution can be to perturbations in the
data and the more di�cult it becomes to develop reliable numerical methods. Currently, there are
several reliable general-purpose numerical methods for index 1 problems and other reliable methods
designed for special classes of index 2 and index 3 problems.
The DAEs that arise in application areas, such as the modelling of constrained mechanical systems

or the design of electrical circuits often are of index 2 or index 3 but they possess special structure
and numerical methods which exploit this structure have been developed and have received wide
acceptance. For example, the algebraic constraints can often be explicitly identi�ed and the system
decoupled, y(t) = [y1(t); y2(t)]

T, and written in the semi-explicit form

y′
1(t) = f(t; y1(t); y2(t)); (26)

0 = g(t; y1(t); y2(t)): (27)

When one considers the development of defect-based error control for DAE methods two key ques-
tions must �rst be answered:

(1) How does one de�ne a su�ciently accurate continuous extension, ui(t), of the discrete approx-
imation (for t ∈ [ti−1; ti])?

(2) What measure of the size of the defect is appropriate to control? That is, can one introduce a
measure �i(�) such that for t ∈ [ti−1; ti] the condition that �i(�(t))6TOL will ensure that the
global error will be proportional to TOL and �i(�) will be inexpensive to estimate on each step?

These questions were considered in [21] where defect-based error-control strategies suitable for
important classes of index 2 and index 3, semi-explicit problems were introduced and justi�ed.
The approach that was introduced can be applied with any discrete, order p, implicit Runge–Kutta
formula to generate, on each step, interpolating polynomials ui(t) and vi(t) that approximate y1(t)
and y2(t), respectively. If one de�nes the defect of the resulting vector of piecewise polynomials
associated with u(t) and v(t) we have (from (26) and (27))

�1(t) = u′(t)− f(t; u(t); v(t)); (28)

�2(t) = g(t; u(t); v(t)): (29)

The global errors ‖y1(t) − u(t)‖ and ‖y2(t) − v(t)‖ were analysed and shown to be bounded by
a suitable multiple of TOL provided �1(t); �2(t), and �′2(t) were all suitably bounded in norm.
Corresponding measures �i(�) were proposed and associated estimates introduced which could be
the basis for an e�ective defect-based numerical method for semi-explicit DAEs.
Another approach has been considered in [20] where no assumptions are made on the structure of

the DAE. In order to determine the piecewise polynomial, u(t) which approximates the solution to
(25) one begins with an implicit continuous extension of a discrete, order p, implicit Runge–Kutta
formula. One then introduces an associated overdetermined system of nonlinear equations on each
time step by requiring that the corresponding approximating polynomial, ũ i(t) satisfy (in a least
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squares sense) the de�ning equations of the underlying continuous extension as well as additional
“collocation” equations (which are equivalent to asking that (25) be satis�ed at a prescribed set of
sample points). The defect, �̃(t), associated with the resulting piecewise polynomial, ũ(t), is de�ned
by

�̃(t) = F(t; ũ(t); ũ′(t)): (30)

Conditions on the choice of underlying implicit CRK formulas and on the number and choice of
collocation points are identi�ed which result in ‖�̃(t)‖ being O(hp) for su�ciently di�erentiable
index 1 and index 2 problems. Estimates of ‖�̃(t)‖ are justi�ed and an experimental code introduced
to illustrate the validity of this approach. A general-purpose numerical method based on this approach
is under development.

6. Summary and conclusions

As is clear from our discussion so far there are now several general purpose numerical methods
for important classes of ODEs that produce piecewise polynomial approximate solutions and attempt
to directly control the magnitude of the associated defect. These methods, although more costly than
the classical discrete methods, can be e�ciently implemented and they produce solutions whose
accuracy can be more readily interpreted and compared.
We have also shown that when implementing numerical methods using defect control one must

address a trade-o� between reliability and e�ciency. This trade-o� arises from a choice between
the use of an inexpensive heuristic or a more expensive (but asymptotically correct) estimate of the
maximum magnitude of the defect. This choice can be left to the user but the implications must be
understood when interpreting the numerical results.
There are two di�culties that have not been discussed which limit the applicability of this class

of methods and which should be addressed in future investigations. If the underlying problem is not
su�ciently smooth, then one is restricted to the use of lower-order methods and defect control can
be less competitive with the more classical approach at low orders. Also, at limiting precision, where
the e�ect of round-o� error may dominate the local error, the currently employed defect estimates
are unreliable. More research is required to develop e�ective strategies for detecting and coping with
this situation.
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