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In this study, we investigate a scenario that dark matter (DM) has only gravitational interaction. In the 
framework of effective field theory of gravity, we find that DM is still stable at tree level even if there 
is no symmetry to protect its longevity, but could decay into standard model particles due to gravita-
tional loop corrections. The radiative corrections can lead to both higher- and lower-dimensional effective 
operators. We also first explore how DM can be produced in the early universe. Through gravitational in-
teraction at high temperature, DM is then found to have mass around TeV � mX � 1011 GeV to get the 
right relic abundance. When DM decays, it mostly decays into gravitons, which could be tested by cur-
rent and future CMB experiments. We also estimate the resulting fluxes for cosmic rays, gamma-ray and 
neutrino.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Evidence for the existence of dark matter (DM) is compelling, 
supported from astrophysical length to cosmological scale. Despite 
its convincing inferences in cosmic microwave background (CMB), 
big-bang nucleosynthesis, large scale structure (LSS) and other as-
trophysical observables, DM’s particle identity is still a mystery 
since all the confirmed evidence simply suggests DM should have 
gravitational interaction.

From the current experimental searches for DM, we have al-
ready known that the interaction between DM and the standard 
model particle should be weak. DM is stable or at least has a 
very long lifetime, much longer than the age of our Universe 
tU ∼ 1017 s, otherwise it can give rise to observable signatures in 
CMB, LSS, cosmic rays, gamma-ray and neutrino experiments.

It is a logical possibility that DM might have only gravitational 
interaction. It is usually expected there would be no way to pro-
duce DM since its interaction with standard model (SM) particle 
is super weak, not to mention how to search for it. This is true 
if we only consider classical theory of gravity where DM is stable 
even though there might be no symmetry to protect its longevity. 
However, as we shall show in this paper, if perturbative gravita-
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tional loop corrections are taken into account, effective operators 
are induced and can make DM decay.

To estimate the quantum correction from graviton, a consistent 
quantum theory of gravity is needed. For our purpose in this study, 
we may investigate properties of DM within the framework of ef-
fective field theory of gravity [1,2]. This framework is justified if 
we only consider low-energy processes or weak gravity approxima-
tion which are satisfied in the problem of our interest. Recently, it 
has been shown that the general theory of relativity can be derived 
as an effective field theory of gravitational quantum field theory 
with spin and scaling gauge symmetries [3].

This paper is organized as follows. In Sec. 2 we establish the 
convention and definitions. Then in Sec. 3, we explore a possible 
production mechanism of DM and obtain its viable mass range. 
In Sec. 4, we illustrate how effective operators that induce inter-
actions between DM and SM particles could arise. In Sec. 5 we 
present possible decay channels for DM and its signatures. Finally, 
we give a summary.

2. Gravitational Dark Matter (GDM)

We start with a minimal setup with one scalar dark matter 
(DM) field X and one non-DM scalar φ. Here φ may be denoted 
collectively as any non-DM field. Explicit extensions with fermionic 
and gauge fields will be discussed later. In the flat spacetime, the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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general action S would be an integration over Lagrangian den-
sity L,

L = 1

2
∂μφ∂μφ + 1

2
∂μ X∂μ X − V (φ, X) . (2.1)

We explore our investigation with the following potential,

V (φ, X) = Vφ (φ) + V X (X) , (2.2)

Vφ (φ) = 1

2
m2

φφ2 + 1

4!λφφ4, (2.3)

V X (X) ⊃ 1

2
m2

X X2, (2.4)

where mi and λi are masses and quartic couplings, respectively. 
There is a discrete Z X

2 symmetry, X → −X , which can protect the 
stability of DM X . When there is no direct or indirect interaction
other than gravity between X and φ, we shall refer to X as Gravi-
tational Dark Matter (GDM).

In flat Minkowski spacetime without gravity, φ–X system with 
potential V is renormalizable in the sense that all ultraviolet (UV) 
divergences from loop corrections can be absorbed into fields, 
masses and couplings, and that no other counterterm needs to 
be introduced. So φ and X are completely decoupled at all scale 
even if after renormalization group flow. However, as we shall 
see soon, the above picture will be changed dramatically after 
including perturbative gravitational effects, and non-zero terms, 
such as λXφφ2 X2, can be induced, with Planck scale suppressed 
λXφ ∼ m2

Xm2
φ/M4

P .
Now let us include gravity with standard Hilbert-Einstein ac-

tion. The Lagrangian would be modified to

L = √−g(x)
[ 1

16πG
R + 1

2
gμν∂μφ∂νφ

+ 1

2
gμν∂μ X∂ν X − V (φ, X)

]
, (2.5)

where R is the Ricci scalar, G is the Newton’s constant, g(x) is the 
determinant of spacetime metric tensor gμν and gμν is the inverse 
matrix of gμν with gμρ gρν = δ

μ
ν ,

δ
μ
ν =

{
1, μ = ν
0, μ �= ν

Note that our framework is different from those [4,5] where non-
minimal coupling between R and X is introduced, and also dif-
ferent from Refs. [6,7] which rely on dynamics of quantum field 
theory on curved background spacetime.

We consider the weak gravity case and express the metric field 
around the flat Minkowski background spacetime as follows,

gμν = ημν + κ hμν, ημν = ημν ≡ (1,−1,−1,−1),

where κ = √
16πG ≡ 1/M P and hμν is identified as quantum field 

for spin-2 massless graviton, propagating in flat background space-
time. This expression is useful and justified when we are only in-
terested in environment without strong gravity and in low-energy 
physics if the energy is smaller than Planck scale [1,2].

The above expression of gμν is general, but the expansions 
of inverse metric and determinant are approximate with ignoring 
higher-order terms. For our purpose, it is enough to keep terms up 
to second order in κ only,

gμν = ημν − κhμν + κ2hμ
α hαν + ...,√−g(x) = 1 + 1

2
κh − 1

4
κ2(hμνhμν − 1

2
h2) + ...,

where h ≡ ημνhμν . At this stage, we have already seen that 
there are infinite operators in the expansion series, which partially 
shows the non-renormalizability of gravity. This is not a problem 
in effective field theory where one can only keep terms up to κn

and n is determined by the concerned precision. To quantize hμν , 
we need to fix the gauge. We choose the harmonic gauge-fixing 
condition,

Cμ = ∂νhμν − 1

2
∂μhν

ν = 0, (2.6)

then we have the graviton propagator with a simple form in mo-
mentum space,

Gμνρσ (k) = i

k2

[
ημρηνσ + ηνρημσ − ημνηρσ

]
. (2.7)

Note that the corresponding ghost in this gauge is irrelevant for 
our calculations of one-loop gravitational corrections, which is 
similar to quantum electrodynamics with Feynman gauge. The La-
grangian now can be rewritten as

L = 1

2
∂μφ∂μφ + 1

2
∂μ X∂μ X − V (φ, X)

+ 1

2
h∂2h − 1

4
hμν∂2hμν + δL

(
hμν, X, φ

)
, (2.8)

where δL 
(
hμν, X, φ

)
at order of κ2 is given by

κ

[(
1

2
hημν − hμν

)(
1

2
∂μφ∂νφ + 1

2
∂μ X∂ν X

)
− 1

2
hV

]

− κ2

4

(
hαβhαβ − 1

2
h2

)
V + κ2

(
1

2
∂μφ∂νφ + 1

2
∂μ X∂ν X

)
[

hμ
α hαν − 1

2
hhμν − ημν

4

(
hαβhαβ − 1

2
h2

)]
. (2.9)

The above formulas would be the main Lagrangian or framework 
for discussions in the next section. At this point, it is easy to check 
that X is still stable at tree level. Even if we include a Z X

2 symme-
try breaking term in the potential V X ,

V X ⊃ 1

3!mXμX X3, (2.10)

X is still stable since there is no available interactions to decay 
through. However, as we shall show in Sec. 4, once we take loop 
corrections into account, X shall decay.

The above cubic term can be induced if the discrete Z X
2 sym-

metry is spontaneously broken. For example, if a scalar X has a 
potential

VX = −1

2
μ2X 2 + 1

4!λX
4, (2.11)

with μ > 0. Then X would get a vacuum expectation value, 〈X 〉 =√
6μ2/λ ≡ vX . Substitute X = vX + X , we get the potential for X ,

V X ⊃ 1

6
λv2

X X2 + 1

6
λvX X3 + 1

4!λX4

= 1

2
m2

X X2 + 1

3!μXmX X3 + 1

4!λX4, (2.12)

with mX =
√

λv2
X /3 and μX = √

3λ.

3. Production mechanism for GDM

In this section, we discuss how to produce dark matter particle 
in the early Universe. The dominant contribution to produce gravi-
tational dark matter is through the tree-level s-channel process by 
mediating a graviton, φ + φ → X + X (φ can be any other particle 
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in the thermal bath). The production cross section from interac-
tions in Eq. (2.9) has the following form

〈σ v〉 ∼ κ4T 2, (3.1)

where T is the temperature of thermal bath in the universe. Due 
to the weakness of gravity, the interacting rate nφ〈σ v〉 (nφ � T 3 is 
number density of φ) is much smaller than the expansion rate of 
universe, so X is not in thermal equilibrium with other particle.

Now let us calculate how much X can be produced. The Boltz-
mann equation [8] that describes the changes of number density 
nX is given by

d
(
nX a3

)
a3dt

= dnX

dt
+ 3HnX = 〈σ v〉

[
n2

X − (
neq

)2
]
, (3.2)

where a is the scale factor, H ≡ ȧ/a is the Hubble parameter, 
∼T 2/M P , neq is the equilibrium number neq ∼ T 3. Define the yield 
Y ≡ nX/s, s is the entropy density, we have

dY

dT
= −〈σ v〉s

HT

(
Y 2 − Y 2

eq

)
� neq〈σ v〉

HT
Yeq, (3.3)

where we can ignore Y on the right-hand side of the first equation 
due to Y � Yeq. Therefore Y would be a power-law function of T
with positive index after we put in 〈σ v〉 ∼ κ4T 2 and neq ∼ T 3. We 
also should sum over all particles with gravitational interaction, 
which means we can replace Yeq with ∼1. Integrate Eq. (3.3) over 
T from O (mX ) to the maximal temperature Tmax, then to get the 
right relic abundance of X , we would need

nφ〈σ v〉
H

∣∣∣∣
T =Tmax

� Y X ≡ �Xmp

�bmX
η, (3.4)

where Tmax may refer to as the maximal temperature of our uni-
verse after inflation, or reheating temperature, �b and �X are the 
energy density fractions of baryon and dark matter, respectively, 
�X/�b � 5, mp � 1 GeV is proton mass and η � 6 × 10−10 is 
baryon-to-photon ratio. From Eq. (3.4), we obtain

mX ∼ �X M3
P

�b T 3
max

mpη. (3.5)

We also need check whether the universe can be hot enough to 
produce X , namely Tmax �O (mX ). With Eq. (3.5) we have

Tmax �
(

�X M3
P mpη

�b

)1/4

� 10−7M P , (3.6)

which gives the lower bound for Tmax and can be definitely satis-
fied without violating any experimental limits. The reason why we 
take Tmax �O (mX ) as a constraint is that when the temperature 
is much lower than mX there would be an exponential suppres-
sion of particles that are energetic enough to produce DM X . Only 
particles at the very high energy tail of Bose–Einstein/Fermi–Dirac 
distributions can contribute to the production.

The upper bound for Tmax, on the other hand, depends on the 
details of cosmic evolution. It is reasonable to expect that DM X
is mostly produced after inflation since otherwise it would be ex-
tremely diluted by the exponential expansion. If we take Tmax as 
high as the inflation scale �10−4 M P which is constrained by non-
observation of primordial gravitational wave [9,10], we can have 
an upper bound on Tmax � 10−4 M P .

With the above bound 10−7 � Tmax/M P � 10−4, then from 
Eq. (3.5), we would have a finite range for the mass of gravita-
tional dark matter,

103mp � mX � 10−7M P ,TeV � mX � 1011 GeV. (3.7)
Fig. 1. Some typical Feynman diagrams at loop level. Scalars (gravitons) are dis-
played with dashed (double) lines. Solid lines can be scalar, fermion and gauge 
fields.

This is one of our main results, which predicts the mass range for 
GDM. Note that the above discussions do not depend on whether 
GDM is a scalar, fermion or vector. In later sections, we shall focus 
on scalar case for further investigations.

4. Effective operators out of gravity

In this section, we consider loop contributions and show how 
they induce both lower- and higher-dimensional operators. Some 
typical Feynman diagrams are shown in Fig. 1. Calculations of 
these diagrams are involved with UV divergences which can be 
handled with regularization. To cancel these UV divergences, we 
must introduce counterterms and perform renormalization. This is 
equivalent to saying that, renormalization group flow shall nec-
essarily introduce non-zero coefficients for the operators that are 
allowed by the symmetry. Below we just list some operators with 
explicit mass-dependent coefficients,

m2
φm2

X X2φ2,m4
X X4,m4

φφ4,m2
X X2∂μφ∂μφ,

m2
φφ2∂μ X∂μ X, λφm2

X X2φ4, · · · , (4.1)

with common factor κ4/16π2. The finite coefficients Ci in front of 
these operators are of the following form,

Ci ∼ O
(

ln
μ2

E2

)
+ ..., (4.2)

after we introduced the counterterms to cancel the divergences, 
where μ is the renormalization scale, E is the energy, “...” refers 
to finite O(1) constant.

Note that discrete Z X
2 symmetry is still maintained if μX = 0

in the potential V . Importantly, as seen above, non-zero λXφφ2 X2

term is induced with coupling

λXφ ∼ κ4
m2

φm2
X

16π2
, (4.3)

which is inevitable once we include gravity. In principle, those in-
duced operators would also contribute to the production of GDM 
in the early universe. However, their contributions are further sup-
pressed by κ4m4

X , in comparison with the leading one in Eq. (3.1).
Now let us discuss the case without discrete Z X

2 symmetries 
or μX �= 0 in Eq. (2.10). At two-loop level, as shown in Fig. 1 (e) 
and (f), we have operators as follows,

m2
φ Xφ2, X∂μφ∂μφ, (4.4)

with a common factor, κ4μXm3
X/256π4. Both operators are not 

present in the starting Lagrangian and can lead X to decay into 
two φs if mX > 2mφ . X can also decay into two gravitons due to 
one-loop diagram from Fig. 1 (d) with effective operators like

Xhαβhαβ, Xh2, (4.5)
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with prefactor κ2μXm3
X/16π2. These two operators could arise 

from covariant term 
√−g X R after renormalization and using 

equation of motion for X .
We are now in a position to discuss the connections between 

GDM and SM particles. The Lagrangian can be written collectively 
as

L = √−g

[
R

16πG
+ 1

2
gμν∂μ X∂ν X − V (X)

]
+LSM,

LSM√−g
=

[
ψ̄(i/D − mψ)ψ − 1

4
Fμν F μν − 1√

2
(yψ̄ψφ + h.c.)

+ 1

2
DμφDμφ − V(φ)

]
, (4.6)

where D is the covariant derivative, and in the second line, terms 
in the brackets correspond to fermion, gauge, Yukawa interaction 
and Higgs terms, respectively. φ is the physical Higgs boson mφ �
125 GeV. Similarly, we can get effective operators like

m2
φ X2φ2, X2 Fμν F μν, y X2ψ̄ψφ, X2ψ̄ i/Dψ, ...

with a common factor κ4m2
X/16π2. Again if μX �= 0 operators that 

induce DM decay would also arise,

Xψ̄ i/Dψ, X Fμν F μν, X DμφDμφ, ...,

with a common factor κ4μXm3
X/256π4.

5. Signatures of GDM

Now we discuss the possible signatures of GDM. If Z X
2 symme-

try is not broken, DM X is stable but can pair-annihilate into other 
particles. The differential flux for particle i is given by

d�i

dE
∼ 1

2

〈σ v〉
m2

X

dNi

dE

rc∫
0

drρ2 (r) , (5.1)

where 〈σ v〉 ∼ κ4m2
X is averaged annihilation cross section, dNi/dE

is energy spectrum for particle i, r is the distance to galaxy cen-
ter, rc ∼ 20 kpc for Milky Way and ρ ∼ GeV/cm3 is DM density. 
We estimate the total flux is around 10−42 cm−2 s−1, which is in-
dependent of the DM mass. This flux seems too small to be probed 
by any known techniques. For example, current gamma-ray exper-
iments are only sensitive to flux down to 10−4 cm−2 s−1 for TeV 
photons [11]. It is therefore necessary to look for exotic astrophys-
ical compact objects with high DM density ρ � 1020 GeV/cm3, 
which might not be so surprising since we have already known the 
nucleon density can be as high as 1030 GeV/cm3 in white dwarf 
stars and 1038 GeV/cm3 in neutron stars, respectively.

When Z X
2 symmetry is broken for μX �= 0, DM X can decay. 

The lifetime of X should be longer than the age of Universe, which 
puts a constraint on its dominant decay width �h

X ,

mX

32π

[
μXm2

X

16π2M2
P

]2

� t−1
U or mX � 10−11μ

− 2
5

X M P . (5.2)

If μX � 1, the upper bound for mX is 107 GeV. The resulting flux 
is estimated as [12]

d�i

dE
∼ �i

X

mX

dNi

dE

rc∫
0

drρ (r) . (5.3)

Then the total flux of energetic graviton or high-frequency grav-
itational wave would be around 10−3 cm−2 s−1 × μ2 × (mX/
X
Fig. 2. Effect on CMB temperature anisotropy from decaying DM X , illustrated with 
�X ∼ 0.1t−1

U .

Fig. 3. Illustrations of spectra for p, e±, γ , ν from X ’s decay with mX  TeV. 
A gamma-line component is presented at high end-point.

107 GeV)4. So far no experiment searches for gravitons with such 
high energies.

However, decay of DM can also change the evolution of our 
late Universe by decreasing the matter component and increasing 
radiation part, which can be probed by CMB with enhanced late 
integrated Sachs–Wolfe effect at large scale or low l, as shown in 
Fig. 2. Current bound on decaying DM is �X � 0.1t−1

U [13].
GDM can also decay into SM particles, such as X → φφ, γ γ ,

Z Z , W W , gg, ψψ̄ . The partial decay width can be estimated as

�SM
X � mX

32π

[
μXm4

X

256π4M4
P

]2

∼
[

m2
X

16π2M2
P

]2

�h
X . (5.4)

For mX  TeV, we also calculate the decay branch ratios

Bφφ : Bγ γ /Z Z : BW W : Bgg : Bψ̄ψ � 1 : 1 : 2 : 8 : 16m2
ψ Nc

m2
X

,

where Nc = 1, 3 for leptons and quarks, respectively. We then can 
make predictions for the spectra shapes of p, e±, γ , ν from X de-
cay, as shown in Fig. 3. Gamma line is also produced with energy 
E = mX/2. Unfortunately, the fluxes for SM particles are highly 
suppressed at least by a factor of 10−48 for mX � 107 GeV, com-
pared to graviton flux. These fluxes would be too small for searches 
in near future unless there are exotic astrophysical objects with 
very high density.
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6. Summary

In this paper, we have discussed a scenario that dark matter 
(DM) has only gravitational interactions. We have investigated how 
DM can be produced in the early universe and shown its mass 
range should be around TeV � mX � 1011 GeV to have the correct 
relic abundance. We have also considered DM decay if the discrete 
symmetry that protects DM’s longevity is broken, and calculated 
the resulting graviton flux. Fluxes of other decaying products, like 
cosmic rays, gamma ray and neutrinos, are intrinsically very small, 
which is far below current experiments’ sensitivity unless there 
are exotic astrophysical objects with very high DM density. Still, 
CMB can give indirect probe and constraint on the decay width of 
gravitational DM.
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