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Quasigroups of yet another type turn out to be related to Steiner Triple Systems, though the 

connection is rather loose and not as precise as in the various coordinatizing bijections 

described in [3]. However, families of pairs formed by abelian groups of odd order and 

quasigroups defined on the same set of elements have repeatedly been used in the literature to 

construct Large Sets [8] of Steiner Triple Systems. In Section 1, these quasigroups and their 

association with abelian groups are described, while Section 2 is devoted to applications to 

STSs. 

1. Definitions and basic properties 

1.1. Quasigroups and squodds 

A quasigroup on a set X is a mapping (a) from X. X onto X such that of three 

elements of X satisfying a . b = c, any two determine the third uniquely; that is, 

for any x E X, the mapping y +x * y of X into X is one-to-one onto, a 

permutation. The operation (and the quasigroup) is said to be totally symmetric if 

a . b = c implies b . a = c and c - a = b. We shall often write x2 for x - x, although 

this is only customary in the associative case, and call it the square of x. An 

element x of a quasigroup is called idempotent if it equals its own square, 

x=x.x. 

Suppose the totally symmetric quasigroup Q(a) on the set X contains an 

idempotent o, and no other x for which x . x = o, which also excludes o . x =x. 

Then the multiplication by w permutes the elements of X\o in pairs, since 

o . x = m for x # o would imply w . w = x, contrary to the assumption o . w = co. 

Thus the order v of X, if finite, must be odd. If in addition, one requires o to be 

the only idempotent, this order has to be prime to 3, as can be seen by counting 

the r? entries in the standard multiplication table of Q; indeed, an equality such 

as a * b = c, with all threes values distinct, requires six entries, one for each 

ordered pair of factors, while one of the form a . a = b requires 3 entries. Adding 

one for o . w = w, we find v2 = l(mod 3). Write X* for X\ o. The quasigroups 

to be discussed will satisfy some more restrictions. 

Definition 1.1.1. A SQUODD (short for Symmetric Quasigroups of Odd Order) 
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Q(e) on a set X of order v is 

(i) a totally symmetric quasigroup with a unique idempotent o E X, for which 

(ii) the mapping x-x - x is a permutation TC of the set X* = X\ w and 

(iii) every cycle of n is of even length. 

Example 1.1.2. 

wa be d 

ocdab 

c b a wd 

d a c b o*(woo), (oat), (obd), (aab), (bbc), (ccd), (dda). 

a wb dc 

b d oc a 

It is often convenient to list the squodd by enumerating its (V + l)(v + 2)/6 

triples, instead of the full multiplication table. 

Remark 1.1.3. No cycle in the permutation n can be of length less than 4, since 

a cycle of length 2, x *x =y, y -y =n would require x -y =x and x -y =y at the 

same time. 

1.2. Graph notation and direct sums 

Given a squodd Q(.) on a set of order v, form a graph of v vertices, labelled by 

the (unordered) pairs (x, x2), x E X, two vertices being connected by an edge if 

their labels have an entry in common; then the graph will consist of a single loop 

on the vertex (CO, o) and of one or more cycles of even order. It is well known 

that a graph containing no cycles of odd order is bipartite, that is, its vertices may 

be partitioned (eventually in more than one way) into two classes, with no edge 

connecting two vertices of the same class. The whole graph so obtained, which will 

be termed the diagonal graph of the squodd Q(o), will thus consist of one odd 

component, the loop on (w, w), and a bipartite graph with vertices labelled by 

certain pairs of elements of X*, which we will call the main part of the diagonal 

graph. 

Definition 1.2.1. Given two graphs, Gi with vertex set X1 and Gz with vertex set 

X,, the direct sum G, CD G2 will be a graph whose vertices are the ordered pairs 

(xi, x,), xi E X,, in which ((xi, ~9, (yl, ~9) f orm an edge if and only if (x,, yi) is 

an edge of G, and (x2, yz) one of G,. 
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The following lemma will also find application later on: 

Lemma 1.2.2. The direct sum of two graphs is bipartite if and only if at least one 
of the summands is bipartite. 

Proof. Since the only graphs that are not bipartite are the ones containing cycles 
of odd order, it is sufficient to verify the easily checked claim that a cycle of order 
a in the sum can only be generated by a cycle of order b in one summand, and 
one of order c in the other, where a is the least common multiple of b and c. El 

Definition 1.2.3. Let Q1(~) be a squodd on the set X1, with idempotent or, and 
Q2(1) a squodd on the set X,, with idempotent 02; then the direct sum of Q, and 

Q,, denoted by Ql @Q2, is a quasigroup Q(*) on X1 xX,, with (x1, x2) * 
(yl, yJ = (zr, ZJ if and only if x1 ‘-yI = ~1 and ~2 1 yz = ~2, (xi, yi, Zi E Xi). 

Proposition 1.2.4. The direct sum of two squodds is a squodd. Moreover, if the 
direct sum of two quasigroups satisfying conditions (i) and (ii) of Definition 1.1.1 
satisfies condition (iii) as well, so does each summand. 

Proof. It is obviously enough to verify the second statement. 
The diagonal graph of the sum consists of 4 parts: 
(1) the loop with single vertex (w,, w2), 
(2) the part derived from elements of the form (x1, o+), with x1 E X:, which is 

isomorphic to the main part of the diagonal graph of Q,(L), 
(3) the part derived from elements of the form (wr, x.J with x2 E X,*, 

isomorphic to the main part of the diagonal graph of Q2(1), 
(4) the part derived from elements of the form (xi, x2) with x1 E XT and 

x2 E X,* isomorphic to the direct sum (in the sense of Definition 1.2.1) of the main 
parts of the diagonal graphs of the summands, and thus to the direct sum of 
parts (2) and (3). 

By Lemma 1.2.2, the graph consisting of parts (2), (3) and (4) -which is the 
main part of the diagonal graph of Q(*) - will be bipartite if, and only if, parts (2) 
and (3) are bipartite, too. Cl 

1.3. Squodds and abelian groups; The main example 

For some of the constructions in the sequel, the multiplicative order of -2 
modulo an odd prime p is relevant. 

Lemma 1.3.1. 
(a) If p = 3 (mod 8), the multiplicative order of -2 is an odd integer; 
(/3) Zf p = 5 (mod 8), the multiplicative order of -2 is a multiple of 4; 
(y) Zf p = 7 (mod 8), th e multiplicative order of -2 is twice an odd number; 
(6) If p = 1 (mod 8), the multiplicative order of -2 may be either odd, or a 

multiple of 4, or twice an odd number. 
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(In fact, a heuristic consideration, which can be made precise by a zeta-function 

argument, will show that for 6N primes selected at random from the sequence 

8k + 1, with N large, about N will satisfy condition ((Y), another N condition (y), 

and 4N condition @I).) 

Proof. All four statements follow from the fact (see any elementary text on the 

Theory of Numbers) that -2 is a quadratic residue for primes =l or 3 

and a non-residue for prim; =5 or 7 

(mod 8) 

(mod 8). 0 

Definition 1.3.1.1 An odd prime p will be designated as an a-prime, a P-prime, 

or a y-prime, according to the condition in Lemma 1.3.1 satisfied by the 

multiplicative order of -2 (modp). 

Definition 1.3.1.2 Let A be an abelian group, written additively, on a set X of 

order u, (v, 6) = 1, let h E A and Q(e) a Totally Symmetric quasigroup on X. 

Then the quasigroup Q(*), defined by 

(x+h)*(y+h)=(x.y)+h 

(which is obviously isomorphic to Q(o)) will be called an h-shift of Q(m) with 

respect to A. 

Definition 1.3.1.3 Let A be an abelian group, written additively, on a set X of 

order u, (v, 6) = 1, and h EA. Then we shall designate the quasigroup Q(*), 

delined by 

x*y=zex+y+z=3hinA 

as Der, A, and we shall write Der(A) for Der,(A). 

Proposition 1.3.2. For A and h as above, Der,(A) will be a squodd if, and only 
if, no a-prime divides the order v of A. 

Proof. The quasigroup will obviously be totally symmetric, with the unique 
idempotent h; for, with k #h and 3k = 3h we have 3(k - h) = 0 and thus, by the 

hypothesis on v, k = h, a contradiction. Similarly, no diagonal element is 

repeated, for a, + a, + b = a2 + a2 + b = 3h implies 2a2 = 2aI, thus again a2 = aI, 
v being odd. It only remains to check whether all cycles in the diagonal 

permutation of A \(h) are of even length, and for this we may obviously assume 

h =O. 
Given any a # 0 in A, its order will be some w, dividing v. The diagonal cycle 

generated by a in Der,(A) will then be 

(a, (-2)‘a, (-2)2a, . . . , (-2)k-‘a), with (-2)k = 1 (mod w). 
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For w a B-prime or a y-prime, k will be even, by Lemma 1.3.1. If w is some 

power pr of a /I-prime or a y-prime p, k will be the exponent of -2 for p, 
multiplied by some power or of p, thus again even. If w is a product of such 

prime powers, k will again be even, being the 1.c.m. of the exponents for the 

single prime powers. Recall finally that if u is divisible by any a-prime p, A will 

necessarily contain some element b of order p, which, again by Lemma 1.3.1, will 

generate a cycle of odd length. Cl 

As an example we may translate Example 1.1.2 above into Der,(Cs), setting 

w = 2, a = 0, b = 1, c = 4, d = 3; or consider Der,(C,), which gives the triples: 

(005) (014) (023), (066) (113) (122) (156), (246) (255) (336) (345), (444). 

However, if we attempt the same operation on Cl1 with, say, 0 as idempotent, we 

shall find the two odd diagonal cycles (1,9,4,3,5) and (2,7,8,6,10). We shall, 

however, see in a later section that squodds exist of any finite order, prime to 6. 

Whether or not the order Y of A, (v, 6) = 1, satisfies the restriction of 

Proposition 1.3.2, we have: 

Proposition 1.3.2.1 For h, k E A, k #h, Der,JA) and Der,(A) have no triple in 
common. 

Proof. If x + y + z = 3h = 3k, then 3(k - h) = 0. Thus k - h = 0 by the hypothe- 

sis on v. Cl 

This is equivalent to saying that no two triples in Der,(A) are shifts of each 

other, or belong to the same additive A-orbit. It is easy to check that there are 

(v + l)(v + 2)/6 such orbits of triples: one for triples with three equal entries, 

v - 1 for triples with one entry repeated and (v - l)(v - 2)/6 for triples with 3 

distinct entries. 

Definition 1.3.2.2 Given an abelian group A, and a squodd Q(o), on a set X of 

order v, (v, 6) = 1, the pair (A, Q) will be called an Z-pair if all triples of Q(.) 

belong to different A-orbits (or: if no two triples of Q(a) are A-congruent). 
If we consider the diagonal entries of Q(.), (x, x . x) as (unordered) pairs 

rather than as triples with one entry repeated, we certainly cannot require all 

v - 1 of these to fall into different A-orbits, since there are only (v - 1)/2 such 

orbits. We may, however, require: 

Definition 1.3.3. Given an abelian group A, and a squodd Q(e) on a set X of 

order v, (v, 6) = 1; if no two triples of Q(e) with 3 distinct entries are 

A-congruent, and if, in addition, the main part of the diagonal graph of Q(.) 

remains bipartite when one connects by an edge any two vertices representing 

pairs of elements in the same A-orbit, we shall call the pair (A, Q) a D-pair. 
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This condition, incidentally, ensures the appearance of exactly two pairs from 

each A-orbit, covering the u - 1 diagonal entries (x, x’) with x2 #x; for if three 

congruent pairs were to appear, the added edges would form a triangle. 

Example 1.3.3.1 Der(CJ does not form a D-pair with Cg: the diagonal sequence 

is (1,3), (3,4), (4,2), (2, l), the vertices of a quadrangle. But since 4 - 2 = 3 - 1 

and 2 - 1 = 4 - 3, the two additional edges turn this into the Complete Graph on 

4 vertices, Kq, which is certainly not bipartite. 

Example 1.3.3.2 Dera(C7), considered above, forms a D-pair with CT. The 

vertices (0,5), (5,2), (2, l), (1,3), (3,6), (6,O) form a hexagon, in which the 

additional edges ((0,5), (1,3)), ((5,2), (3,6)) and ((2, l), (6,O)) close eve12 cycles. 

We shall see that this is due to 7 being a y-prime. 

Examples 1.3.3.3 and 1.3.3.4. The reader is invited to check in detail that the 

following two squodds form D-pairs with Cil: 

(a) [l]: (000), (016) (023), (048) (057) (0910), (145), (179), 
(18 lo), (267), (289) (24 lo), (3 47), (3 5 lo), (3 69), (5 68); (1 12) (225), 

(559), (994), (446) (66 lo), (10 107), (778), (883) (33 1). 

(P) [4]: (000) (0 1 lo), (026) (035), (047) (089) (134) (15 6) (179), 
(249), (25 lo), (278), (3 67), (39 lo), (45 8), (68 10); (112), (233), (338), 

(8 8 l), (4 4 6), (6 6 9), (9 9 5), (5 5 7) (7 7 lo), (10 10 4). 

Note that these two squodds do ltot form Z-pairs with C1i: thus in the first (7 7 8) 

and (1 12) are C,,-congruent, and so are (6 6 10) and (5 5 9), (8 8 3) and (9 9 4); 

while in the second, we find (2 2 3) and (1 12), (10 10 4) and (3 3 8), (5 5 7) and 

(446), (669) and (77 10). 

Proposition 1.3.3.5 Let A be an abelian group of order v, (v, 6) = 1, h E A, and 
let Der,(A) be a squodd. Then (A, Derh(A)) f orm a D-pair if, and only if, all the 
prime factors of v are y-primes. 

Proof. Note that two pairs of elements of A, (a,, a*) and (b,, b2), are congruent if 

b2 - b, = *(a* - a,), and that the differences between successive elements in the 

diagonal cycle generated by x # h, 

(x,3h-2x, -3h+4x,9h-8.x, -15h+16x ,._., h+(-2)+-h) ,...) 

equal 3(h -x) multiplied by successive powers of -2 modulo w, if w is the 

order of x - h in A. Since Derh(A) is a squodd, the multiplicative order of -2 in 

C,, by Proposition 1.3.2, will be even, say 2k. If w happens to be a P-prime or a 

y-prime p, then (-2)k will equal -1 modulop, and after k steps along the cycle 

we shall encounter a pair whose difference is -3(h -x), congruent to the first, 

and from then onwards, pairs k steps apart will remain congruent to the end of 
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the cycle. If p is a P-prime, k is even and (compare Example 1.3.3.1) the added 

edges will close odd cycles, while if p is a y-prime, k is odd (compare Example 

1.3.3.2) and the added edges will close even cycles, and thus the bipartite 

character of the main part of the diagonal graph will be preserved. 

The rest of the proof follows exactly the same lines as that of Proposition 

1.3.2. 0 

The D-pairs so obtained are automatically Z-pairs, by Proposition 1.3.2.1 and 

Definition 1.3.2.2. 

Following this, and in view of several applications further on, we may introduce 

Definition 1.3.4. The pairs (A, Q) will be called an Z-D-pair if it is both an 

Z-pair and a D-pair. 

By Proposition 1.3.3.5, (Cr3, Der,(CJ) cannot form an Z-D-pair. However, 

not all such pairs are formed by derivation. The reader is invited to examine the 

following example of a squodd forming an Z-D-pair with C13: 

Example 1.3.4.1 [2]. (000),(019), (027), (0311), (046), (058), (01012), 

(123), (145), (17 12), (18 ll), (2412), (26 11) (29 lo), (348) (359) 

(37 lo), (47 ll), (5612), (5 loll), (679), (6810) (89 12); (1 16) (663), 

(3 3 12), (12 12 ll), (11 119), (9 9 4) (44 lo), (10 10 l), (225) (5 5 7) (77 8) 

(882). 

1.3.5. Pairs and direct sum operations 

As both abelian groups and squodds are closed under direct sum operations, 

we may look at what happens to pairs in this context. 

Proposition 1.3.5.1. Z-pairs are closed under Direct Sum operations. Zf both 

(AI, QJ and GL QJ are Z-pairs, so is (A, C3 AZ, Q, @ Q,). 

Proof omitted. 

A similar statement for D-pairs does not hold. In fact: 

Proposition 1.3.5.2. Z-D-pairs are closed under Direct Sum operations. 
Moreover, ifAi, Qi are defined on a set Xi, i = 1, 2, and if (A, CI3 A2, Q, @ QJ is 
a D-pair, then each of (Ai, Q,) is already an Z-D-pair, and so is the sum. 

Proof. Since Lemma 1.2.2 ensures that the bipartite character of the main part of 

the diagonal graph containing the added edges in each summand will not be 

violated by the Direct Sum operation, it is enough to prove the second statement. 
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Let Oi be the zero of Ai, and Oi the idempotent of Qi; then Q1 @ Q2 will 

contain elements of the form (ol, u2) forming a squodd isomorphic to Q2, whose 

pairs and triples are acted on by the shift-operations of the subgroup ((0,) I&)) of 

A1 @A*, so (A,, QJ should be at least a D-pair; and similarly for (A,, Q,). 
Suppose one summand, say (A2, Q2), is root an I-D-pair; then its diagonal 

(compare Examples 1.3.3.3, 1.3.3.4) contains AZ-congruent triples, (a,, u2, b,) 
and (a2 + h2, u2 + h *, b2 + h2). If xl *y, = zl in Q,, and all 3 entries of (xi, y,, z,) 

are distinct, Q, @ Q2 contains the two triples ((x,, u2), (yl, a,), (z,, b2)) and 

((x1, ~2 + h2), (Y,, ~2 + h2h ( z,, b2 + h2)), the second being a shift of the first by 

(01, hJ EAI @AZ, contrary to the first condition in Definition 1.3.3, and so 

(A, @AZ, Q, Cl3 Q2) cannot be a D-pair. 0 

We conclude the first section with the following statement, whose proof will 

be omitted. 

Proposition 1.3.5.3. I-pairs, D-pairs and I-D-pairs are closed under shifting. If 
(A, Q) is an I-pair (D-pair, I-D-pair) and, for some h E A, Q* is an h-shift of Q 
(cf. Definition 1.3.1.2) then (A, Q*) is again an I-pair (D-pair, I-D-pair). 

2. Applications 

2.1. Squodds, coloured graphs and Steiner Triple Systems 

Since this account is intended to appear in the present Volume, Steiner Triple 

Systems are bound to crop up. We shall indeed find that squodds lead to STSs, 

and vice versa, although in nowhere the precise manner is which Ganter and 

Werner use the various algebras in their paper [3] to coordinate these com- 

binatorial structures. We shall therefore not present the reader with any of those 

bijections between definitions, by which these authors illustrate their elegant 

results - in the present case, it would smack of pretence. Anyway. . . 

Proposition 2.1.1. (1) Given a squodd Q(e) on a set X of order u, there is at least 
one way to derive from it a Steiner Triple System B on the v + 2 marks 

(XU (9, 00~ > > , where ml, a2 $ X are two additional marks. 
(2) Given a Steiner Triple System (B) on a set Y, and a Flag - that is, a triple 

(b,); b, , b2) E B in which b,, is marked - there is at least one way to obtain from it a 
squodd Q(e) on Y\(b,, b2), whose idempotent is bo. 

Proof. ((u) Use the elements (w, x, y, . . .) of X to label, firstly, the vertices of the 

complete graph G - K, of order v, and secondly a Store of u colours. For each 

y, z E X, y #z, we now colour the edge (y, z) of G with the colour x if y * z =x 
in Q, and if x is different from both y and z. Note that no two edges of the same 

colour can have a vertex in common, since if both (p, q) and (q, r) were to be 
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coloured s, this would mean q * s =p and q . s = r. This leaves uncoloured only 

the edges (x, x2), x # o, and constitutes the first coloration, or F-coloration, of 

the edges of G. It is readily seen that the uncoloured edges form a two-factor of 

G\o; that is, every vertex of G\ o is the endpoint of 2 such edges. This 

two-factor, forming the main part of the diagonal graph of Q(e) - except that this 

time its vertices are labelled by single elements of X* instead of pairs as in 1.2 - is 

made up of one or more cycles-closed simple polygons - each of some even 

order, by condition (iii) in Definition 1.1.1. 

(p) The edges of even cycles being 2-colourable, that is, one may colour them 

in 2 different colours without edges of a given colour having a vertex in common, 

we now take two more colours, co1 and a2, and colour the edges in each cycle 

alternately 00, and wz. In doing this, it should be noted, we have one arbitrary 

choice when two-colouring the edges of each cycle. Call this the second 

coloration, or S-coloration, of the edges of G. Now we adjoin two vertices, 00, 

and 00~. If (x, y) has been coloured mij we then connect x to the vertex mi by an 

edge coloured y, and y by one coloured x. Finally, we connect o and 00~ by an 

edge coloured m2, and to 00~ by an edge coloured ml, and ml and m2 by an edge 

coloured o. Thus we have obtained a partition of the edges of the complete graph 

on XU (9,w2> into triangles, each edge being coloured with the label of the 

opposite vertex, which partition is obviously a Steiner Triple System on 

XU (?, wz), and this concludes the proof of (1). 

(y) Conversely, if B is a Steiner Triple System on a set Y of order w, we label 

the vertices of a graph H = K, by the elements of Y, and for each (x, y, z) E B we 

colour each edge of the triangle (x, y, z) by a colour bearing the label of the 

opposite vertex. If b,, b2 E Y, let (b,, b,, b2) E B, that is, let 6, be the third 

vertex of the corresponding triangle. Removing vertices b,, b2 and deleting all 

the edges through them from H, we are left with a complete graph G - Kw--2, in 

which the edges coloured b, form a l-factor of G \b,,, and so do the edges 

coloured bz. This is an S-coloration of the edges of G. We note that these two 

l-factors (which we might as well uncolour, obtaining an F-coloration of G) form 

together a two-factor of G\b,,, consisting of one or more cycles of even length. 

(6) We now construct a squodd Q(o) on Y- (b,, &). If (x, y, z) E B\ 

(b,, bl, b,), set x . y = z; set 6, - b. = b,. Next, orient each cycle in the two-factor 

in one of the two possible ways, and note that this again gives us one arbitrary 

choice per cycle. If an edge in this orientation has been directed from x to y, set 

x*x=y. Now the totally symmetric mapping from (Y - (b,, b,)) x (Y - 

(h, b2)) onto Y- (h, b) h as b een defined for the whole domain, and we have 

a squodd. 0 

Remark 2.1.2. Apart from the fact that the resulting G-graph depends on the 

choice Flag in B - or pair of elements bl, b, in Y - the arbitrary choices in @I) 

and (6) above are enough indication that there cannot be much connection 
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between the structures of ST% and those of squodds obtained from them as 

described. 

There are, up to isomorphism, two STSs of order 13; one, the cyclical one, has 

a larger group of automorphisms, of order 39. The other one has only a group of 

order 6, isomorphic to S,. Its 78 possible flags give rise to no less than 17 classes 

of s-coloured G-graphs, and thus to a larger number of non-isomorphic squodds 

(from some of which one may obtain the first, cyclical STS of order 13). It is 

reasonable to assume that as the order increases, squodds proliferate still more 

quickly than STSs, which gives us some excuse not to go further into the question 

of their structure. So far, the only claim to the title of Variety in the algebraic 

sense that squodds have, is closure under Direct Sum operations (Proposition 

1.2.4), but they certainly form a “variety” in the colloquial sense. 

Corollary 2.1.3. Squodds exist of any finite order prime to 6. 

Remark 2.1.4. The converse contribution of directly constructed squodds, say 

from Proposition 1.3.2 (Derivation) and 1.2.4 (Direct Sum) is rather modest, 

because of the absence of a direct construction for prime orders p = 3(mod 8). 

2.2. D-pairs and packings (or: Denriiston Large Systems) 

For (v, 6) = 1, let us imagine u + 2 points in space, no 4 in the same plane, 

forming v(v + l)(v + 2)/6 triangles, u through each edge. If we can use 21 colours 

to colour all these triangles so that no two triangles of the same colour have an 

edge in common, then on labelling the 21 + 2 points, or vertices with different 

marks, each pair of marks will appear just once as an edge of a triangle of a 

given colour, and the triads of vertices of this family of triangles will form an STS. 

Thus such a colouring achieves a partition of all the triads of marks into u 

disjoint STSs, or a Large Triple System on the 21 + 2 marks. 

In particular, the set of labels may consist of the v elements of an abelian group 

A and of two more marks, ml, 00~ $A. If, in this case, the set of triangles of a 

given colour is derived from any other such set by adding a fixed h EA* to each 

vertex label other than ml or w2, we speak of a Denniston Large System, or a 

Packing (with the aid of A) or an A-Packing. 

Proposition 2.2.1. Given an abelian group A on a set X of order v, (v, 6) = 1, and 

an A-Packing BO, B1,. . . , B,_l on Y=:XU (y, m2), the squodd Qi derived 

from the flag (hi, ~1, ~2) E Bi as described in Proposition 2.1.1 above forms a 

D-pair (A, Qi) with A. Conversely, the STSs on X U ( aI, m,) constructed from 

the squodd Qi in a D-pair (A, Qi) as described in Proposition 2.1.1, and from all 

A-shifts of Qi, form an A-Packing on X U (ml, Mu). 
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Proof. The first condition of Definition 1.3.3, on triples with 3 distinct entries, is 
satisfied by hypothesis. Also by hypothesis, no pair (x, y) with (m,, X, y) E Bi can 
be A-congruent to another pair (x’, y’) with (aI, x’, y’) E Bi, and similarly for 03~. 
Thus, after the “orienting” step of stage S) in the proof of 2.1.1, we may relabel 
each vertex in the diagonal graph, this time by a pair of marks, the original mark 
and the following one, and be assured that if (x, y) is congruent in A to (z, u) 
then (wl, X, y) E Bi implies (m2, z, U) E Bi; thus adding an edge between (x, y) 
and (z, U) will not contravene the bipartite character of this graph. 

This completes the proof of the direct claim. The proof of the converse is easy 
and will be omitted. 0 

The first Large Steiner System, found in 1850 by Kirkman and rediscovered by 
Cayley, is actually of this type, derived from the (unique) STS on 9 marks by 
fixing two entries and permuting the other 7 cyclically, one step at a time. The 
subject began to develop around 1973, with Teirlinck [lo] showing how to derive 
a Large System of order 3w from one of order w, by a simple construction 
(“Triplicating”). Rosa [7], using Latin Squares with no subsquare of order 2, 
derived Large Systems of order 2w + 1 from given ones of order w 
(“Duplicating”). Denniston [ 11, concentrating on prime orders, constructed 
D-pairs with the cyclical group C, for p = 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 
67, exploiting for the larger values of p either the full multiplicative groups of z,* 
or large subgroups M, in the sense that if il E M and x . y = z in Q(o), 
(AX). (/%y) = AZ as well. Except for p = 11, 13 and 29, all of these actually form 
Z-D-pairs. Therefore, with the hindsight of Proposition 1.3.5.2, we now know 
that just as there exists a Packing of order 31+ 2 and one of order 67 + 2 there 
exists one of order 31 .67 + 2 = 2079 as well. (A Large System of this order may 
be obtained in yet another way: start with Kirkman’s result of order 9, and 
proceed as indicated: 

where D denotes Rosa’s “duplication”, and T, Teirlinck’s “triplication”.) The 
Z-D-pair of Example 1.3.4.1, used in [2] to form a sequence of 13 resolvable 

STSs thus obtaining a Packing of order 15, may of course serve in such Direct 
Sum operations too. Around the same time, Wilson [ll] and others became 
aware of the results of Proposition 1.3.3.5 above and derived Denniston Large 
Systems from the Z-D-pairs so obtained. Denniston had been unaware of this, 
and his constructions for Cz3, C3i and Ca7 show again that Derivation is not the 
unique source of Z-D-pairs. The excellent summary of the state of the art up to 
around 1980 in [8] already mentions the general belief prevailing at the time that 
Large Systems exist for every feasible order >7; and in a series of papers in 1984, 
Lu [5, 61 covered nearly all the ground, so at the time of his premature death only 
six values were left in doubt (which, I am told, have also been settled since then). 
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2.3. I-D-pairs and Teirlinck’s Second Construction 

Since a computer search has shown that the only two D-pairs with C,, are 

those of Examples 1.3.3.3 and 1.3.3.4, we know from Proposition 1.3.5.2 that the 

Direct Sum of one of those with an Z-D-pair of order u will not lead even to a 

D-pair of order 11~; thus a Large System of order 11~ + 2 cannot be obtained in 

this way. However, we owe to Teirlinck [lo] the following remarkable result 

taken from [8], which seems a fitting note on which to close this account: 

Theorem 2.3.1 (Teirlinck). Given any Large System of order u + 2, and an I-D- 

pair (A, Qd->> f d o or er v, there exists a Large System of order u . v + 2. 

Proof. Not matter what its structure, we may rename the entries in the triples of 

the given Large System to be the elements of 2, U (w,, 03~) numbering the 

respective STSs B,, B,, . . . , B,. For simplicity, let 0 EA be the idempotent of 

Q”(.), and ai that of its ith A-shift. Also, let F,, F2 be a bi-partition of the 

diagonal pairs of Q,(s). W e now construct u . v STSs C, on V=: (A x 2,) U 

h, Co2 ) as follows: 

For each ai E A and j E Z,, C, = C$) U Cp) U Cf), consisting of the following 

triples on V: 

Cg’= (~1, ~2, (ai, +I> ) (CT, ~2, 2,) E Bj) U ((mk, (ai, ~1, (ai, Y))) 

I ((To X, y) E Bj) U (((ai, x>, (ai, Y), (% 2))) 1 ((x9 Y, 2) E Bj), k = 1, 2; 

CF)= (mk, (ai + b, x), (ai + b *b, x)) 1 (b EA*, x E Z,, (b, b * 6) E Fk, k = 1, 2)) 

U (((ai + 6, x), (ai + b, Y), (ai + b . b, (X +YW +i))) 

) (b CA*, X,.YEzL, y#x); 

Cf’=((ai+b,~), (ai+c,y), (ai+b*c, (x+y+j)) 

[(x,y~Z,, b#c#b.c#beA*), 

where in C$), each triple of PO(.) is taken on one fixed order with every pair X, y 

of Z,. Notation might perhaps have been shorter if in Cf) and Cf) we had 

omitted ai and taken the dot operation in Q(e) to be read as taking place in Qi, 

the ith A-shift of Q,,(a), but with the present one it seems easier to verify that any 

triple of V actually appears in some Cij. 0 

It should also be noted that, apart from Proposition 1.3.5.2, this is, so to say, 

the first instance of Z-D-pairs finding “full employment”. With Z-pairs alone, we 

could not have the first term in Cg), since the partition into two one-factors Fk 
would not work and (mk, (ai + b, x), (ai + b . b, x)) would reappear as some 

(mk, (c . c, x), (c, x)); while with D-pairs alone, for a given x and y, we should 

be meeting again triples from the second term of Cr) as (c, x), (c, y), (c . c, 

(x +y)/2 + j). The reader might wish to verify this with the Z-pair (C,, Der(C,)), 

and with the two D-pairs of Examples 1.3.3.3 and 1.3.3.4. 
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