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a b s t r a c t

The paper at hand presents a combination of optimal control approaches for PDEs
with meshless discretizations. Applying a classical Lagrangian type particle method
to optimization problems with hyperbolic constraints, several adjoint-based strategies
differing in the sequential order of optimization and discretization of the Lagrangian
or Eulerian problem formulation are proposed and compared. The numerical results
confirm the theoretically predicted independence principle of the optimization approaches
and show the expected convergence behavior. Moreover, they exemplify the superiority
of meshless methods over the conventional mesh-based approaches for the numerical
handling and optimization of problems with time-dependent geometries and freely
moving boundaries.
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1. Introduction

An easy numerical handling of time-dependent problems with complicated geometries, freely moving boundaries
and interfaces, or oscillating solutions is of great importance for many applications, e.g., in fluid dynamics (free
surface and multiphase flows, fluid–structure interactions [1–3]), failure mechanics (crack growth and propagation [4]),
magnetohydrodynamics (accretion disks, jets and cloud simulation [5]), biophysics and biochemistry. Appropriate
discretizations, so-called meshless methods, have been developed during the last few decades to meet these challenging
demands and to relieve the burden of remeshing and successive mesh generation being faced by the conventional mesh-
basedmethods [6–8]. The prearrangedmesh is an artificial constraint to ensure compatibility of themesh-based interpolant
schemes, that often conflictswith the real physical conditions of the continuummodel. Then, remeshing becomes inevitable,
which not only requires extreme amounts of time and storage but also is a source for numerical errors and hence the gradual
loss of computational accuracy. Meshless methods overcome this problem as they do not need any mesh structure and
hence it is possible to add and remove points freely, i.e. without computational effort, for adaptation reasons. Apart from
this advantage, meshless methods also lead to fundamentally better approximations as regards aspects such as smoothness,
nonlocal interpolation character, flexible connectivity, refinement and enrichment procedures [6]. The common idea of
meshlessmethods is the discretization of the domain of interest by a finite set of independent, randomly distributed particles
moving with a characteristic velocity of the problem. The location and distribution of the particles then account for the
time-dependent description of the geometry, data and solution. Thereby, the global solution is linearly superposed from
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the local information carried by the particles. In classical particle methods [9,10], the respective weight functions are Dirac
distributions which yield solutions in a distributional sense. In meshless Galerkin or partition of unity methods [8,11], in
contrast, compact patches or volumes are attached to every particle, whose union forms an open covering of the domain.
On the patches, local weight functions are constructed via data fitting. Representing the influence of the particles in their
respective neighborhoods, these functions provide a basis for a Galerkin or collocation discretization process. Depending on
the fitting ansatz, the methods generalize finite element, volume and difference approaches.

Since there is a tremendous and even increasing need of optimization and optimal control in the aforementioned
applications [12,13], the goal of this paper is a first combination of conventional optimization strategies for PDEs with
meshless discretizations. We focus on the application of classical Lagrangian type particle methods to balance laws, in
particular hyperbolic equations, and study the optimization results formally obtained from different strategies using an
adjoint approach [14]. The strategies investigated tackle hereby the question of the numerical effect and computational effort
when varying the sequential order of optimization anddiscretization in Lagrangian aswell as Eulerian problem formulations.

This paper is organized in the following manner. After a brief introduction to particle methods in Section 2, we present
several adjoint-based optimization strategies differing in the sequential order of optimization and discretization (first
optimization, then discretization versus first optimization, then discretization) for tracking type problems with hyperbolic
partial differential constraints in Section 3. In particular, we formally derive the corresponding adjoint systems for a
Lagrangianproblem formulation, discuss their differences and compare themwith the optimization results for the associated
Eulerian formulation in Section 4. In Section 5 we apply the strategies as examples to one-dimensional problems, i.e.,
linear convection and nonlinear Burger equations. The numerical results confirm the theoretically predicted independence
principle of the optimization approaches and show the expected convergence behavior. Moreover, they clearly emphasize
the superiority of meshless methods over mesh-based ones in the case of time-dependent geometry changes and huge
deformations.

2. The Lagrangian type particle method

Particle methods are special types of meshless methods. They originate from the numerical treatment of physics
applications like Boltzmann equations [9,10] (molecular dynamics, direct simulationMonte Carlo; see [6] and the references
within) where the quantities of the conservation problem are approximated on a set of randomly distributed particles.
Classically, they have been truly Lagrangian methods, i.e. the particles move with the convective velocity of the problem.
This ansatz has been extended to mixed Lagrangian–Eulerian considerations such that the dynamics of the particles might
also be prescribed by another characteristic velocity, e.g., the deformation velocity given by a free surface motion. Thus, the
approach provides an easy numerical treatment of freely moving boundaries and interfaces, complicated geometries and
time dependencies, but is also restricted to (nonstationary) conservation problems. Stationary or elliptic problemsmight be
handled by other meshless variants based on data fitting, e.g., Galerkin and partition of unity methods, such as smoothed
particle hydrodynamics (SPH) [15,16], moving least square (MLS) [17,18] and moving least square particle hydrodynamics
(MLSPH) [19], the reproducing kernel particle method (RKPM) [20], the partition of unity finite element method (PUFEM)
[21,22] and the particle partition of unity method [23] or finite point-set method (FPM) [3] (for more details about meshless
(particle) methods see [6–8]).

The approximation idea common to meshless methods can be summarized as follows. Let the quantity of interest
y : Ω × [0, T ] → Rm,Ω ⊂ Rn, be approximated by N particles carrying the information of their position and the specific
local quantity (xi, yi) : [0, T ] → Ω × Rm, i = 1, . . . ,N; then

y(x, t) ≃ yh(x, t) :=

N−
i=1

yi(t)Si(x, t; x⃗(t)), x⃗(t) := {xi(t)}i=1,...,N .

The spatial interpolation functions Si represent the influence of the respective particles in their local neighborhood. In
particle methods they are given by Dirac distributions Si(x, t; x⃗(t)) = δ(x−xi(t)), whereas inmeshless Galerkin or partition
of unitymethods they are constructed via data fitting, satisfying

∑N
i=1 Si = 1. Investigating particlemethods on conservation

laws, Raviart derived convergence results in appropriate function spaces (for details see [24]).
Following Raviart’s approach, we focus on the discretization via a classical Lagrangian type particle method in this paper.

This discretization can be interpreted as a method of characteristics for hyperbolic equations which requires a specific
coordinate transformation between Lagrangian (material) and Eulerian (spatial) coordinates. A coordinate transformation
or motionΦ is given by an invertible, regular mapping

Φ : Rn
× (0, T ) → Rn,

initialized withΦ(X, 0) = X at time t = 0. We denote its derivative with respect to X by J := ∂XΦ and assume J > 0. For
every function ω : R × (0, T ) → R, we define the associated transformed function by

ω̂(X, t) := ω(Φ(X, t), t).
Then, the following relations hold:

∂X ω̂(X, t) = ∂xω(Φ(X, t), t)J(X, t),
∂t ω̂(X, t) = ∂X ω̂(X, t)(J(X, t))−1∂tΦ(X, t)+ ∂tω(Φ(X, t), t).
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3. Optimization strategies

In this section we study the two main adjoint-based approaches for the optimization of conservation problems using
particle methods. In the first approach, we apply the adjoint-based optimization formalism directly to the continuous
(Eulerian or Lagrangian) formulation of the optimization problem and derive the optimality system to be discretized via a
particle method. In the second approach, we proceed from the discrete Lagrange functional to deduce the respective adjoint
system. For convenience, we restrict the following investigations to scalar-valued one-dimensional hyperbolic PDEs in order
to embed the particle method into the method of characteristics using the convective velocity as particle motion. Certainly,
they can be directly extended to vector-valued, higher dimensional as well as parabolic equations.

We consider the following minimization problem:

min J(y, u) subject to e(y, u) = 0 (1)

over (y, u) ∈ Y × U , where the state space Y is a reflexive Banach space and the control space U is a Hilbert space such that
J : Y × U → R is continuous and differentiable. The constraint is given by a mapping e : Y × U → Z∗, where the space of
Lagrange multipliers Z is a reflexive Banach space. Further, we assume the Fréchet differentiability of e.

Throughout this paper we choose U = L2(0, T ) and consider the minimization of the cost functional

J(y, u) :=
1
2

∫
R

|y(x, T )− yd(x)|2dx +
α

2

∫ T

0
|u(t)|2dt

with the hyperbolic constraint

∂ty +
d
dx

f (y, x, t) = b(x)u(t) in R × (0, T )

y(x, 0) = y0(x) in R,
(2)

that is,

e(y, u)p :=

∫ T

0

∫
R
∂typ − f (y, x, t)∂xp − b(x)u(t)p dx dt +

∫
R
(y(0)− y0)p(0)dx.

Here yd denotes the desired state at final time T , b a spatial localization function, α > 0 a regularization parameter in the
tracking type problem and f : R × R × (0, T ) → R the flux function. For more details of the identification of the initial
condition see e.g. [25].

Assumption 3.1. In the following we assume:

(a) The flux function f and localization function b is supposed to be sufficiently regular.
(b) The constraint e(y, u) = 0 has for any given u ∈ U a unique solution y ∈ Y .
(c) The linearization ey(y, u) is surjective.

Remark 3.2. Examples for which the above assumptions are satisfied can be found for instance in [26].

We transform the constraint (2) into a Lagrangian representation by introducing a transformation Φ ∈ V , where V is a
reflexive Banach space, given by

∂tΦ(X, t) = ∂yf (y(Φ(X, t), t),Φ(X, t), t) in R × (0, T )
Φ(X, 0) = X in R.

Since Eq. (2) yields

∂ty + ∂yf (y, x, t)∂xy + ∂xf (y, x, t) = b(x)u(t)

we obtain

∂t ŷ + ∂xf (ŷ,Φ, t) = b(Φ)u(t)

by setting ŷ(X, t) := y(Φ(X, t), t). Note that also ŷ ∈ Y . Hence, the transformed state equation reads

∂t ŷ = b(Φ)u(t)− ∂xf (ŷ,Φ, t) in R × (0, T )

ŷ(X, 0) = y0(X) in R

∂tΦ = ∂yf (ŷ,Φ, t) in R × (0, T )
Φ(X, 0) = X in R.

(3)

Remark 3.3. The above system is just an application of the method of characteristics to (2). Hence, if (2) has a unique
solution, then also (3) is uniquely solvable. For details see [27].
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This system is discretized by a particle method. For this, we randomly distribute N particles at the positions {Xi}i=1,...,N .
Then we obtain the corresponding discrete counterpart to (3) for the particle trajectories Φ⃗ ∈ Vh and the local quantities
carried, y⃗ ∈ Yh:

∂tyi(t) = b(Φi(t))u(t)− ∂xf (yi(t),Φi(t), t)
yi(0) = y0(Xi)

∂tΦi(t) = ∂yf (yi(t),Φi(t), t)
Φi(0) = Xi

(4)

and hence we obtain a system of 2N ODEs. The spaces Yh and Vh denote the spatially discrete counterparts to Y and V ,
respectively. Again, Yh and Vh are supposed to be reflexive Banach spaces.

Remark 3.4. For sufficiently high number of particles also the discrete forward system (4) has a unique solution if the
continuous system (2) has a unique solution (cf. [27]).

3.1. The continuous Euler approach

Dealing with a constrained optimization problem [14], we formulate the Karush–Kuhn–Tucker system with the help of
the Lagrangian functional associated with the minimization problem (1)

L(y, u, p) := J(y, u)+ e(y, u)p (5)

where p ∈ Z denotes the adjoint variable. According to the Lagrange multiplier theorem [14], the variations of the Lagrange
functional with respect to the state and control variable vanish at a critical point, which yields the first-order optimality
system

∂yL(y, u, p)ϕy
= 0 ∂pL(y, u, p)ϕp

= 0 ∂uL(y, u, p)ϕu
= 0

for all test functions ϕy
∈ Y , ϕp

∈ Z and ϕu
∈ U .

Remark 3.5. The existence of a Lagrange multiplier p is guaranteed by Assumption 3.1(c).

The adjoint (or backward) equation, obtained using ∂yL(y, u, p), reads

∂tp + ∂yf (y, x, t)∂xp = 0 in R
p(x, T ) = −(y(x, T )− yd(x)) in R.

This system is also transformed into a Lagrangian representation; in particular,

∂t p̂ = 0 in R × (0, T )
p̂(T ) = −(y(Φ̄(T ), T )− yd(Φ̄(T ))) in R
∂tΦ̄ = ∂yf (y(Φ̄), Φ̄, t) in R × (0, T )

Φ̄(X, 0) = X in R.

Obviously, Φ̄ = Φ as the initial condition and the right hand side of the ordinary differential equation are equal. Hence, the
solution to the adjoint equation is given by

p̂(X, t) = −(ŷ(X, T )− yd(Φ(X, T ))). (6)

Using the same point set {Xi}i=1,...,N as for the discretization of the forward system (4) yields the discrete adjoint system

pi(t) = −(yi(T )− yd(Φi(T ))) (7)

where yi andΦi are obtained by solving (4).
The gradient of the reduced cost functional J̃(u) := J(y(u), u) is obtained by identifying

⟨DJ̃(u), ψu
⟩U∗,U = ⟨∂uL(y, u, p), ψu

⟩U∗,U =

∫ T

0


αu(t)−

∫
R
b(x)p(x, t)dx


ψu(t)dt.

Hence, the gradient reads

∇ J̃(u) = αu(t)−

∫
R
b(x)p(x, t)dx = αu(t)−

∫
R
b(Φ(X, t))p̂(X, t)J(X, t)dX (8)

or, using the discrete values of (7),

∇ J̃h(u) = αu(t)−

N−
i=1

b(Φi(t))pi(t)hi(Φ⃗(t)), (9)
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where the hi(Φ⃗(t)) denote quadrature weights. In particular we choose

hi(Φ⃗(t)) =
1
2
(Φi+1(t)− Φi−1(t)).

Note that we have

J(Xi, t) = ∂XΦ(Xi, t) ≃ hi(Φ⃗)hi(X⃗)−1.

3.2. The continuous Lagrangian approach

This approach is based on a reformulation of the optimization problem (1) itself. In particular, we solve

min Jl(ŷ,Φ, u) subject to el(ŷ,Φ, u, p̂, z) = 0

which are obtained by applying the transformationΦ to the cost functional J and the constraint (2).
First, we transform the cost functional J(y, u) by applying the coordinate transformationΦ , i.e.

Jl(ŷ,Φ, u) =
1
2

∫
R

|ŷ(X, T )− yd(Φ(X, T ))|2J(X, T )dX +
α

2

∫ T

0
|u(t)|2dt.

Then we define the transformed constraint function el : Ŷ × U → Ẑ∗, where Ŷ := Y × V and Ẑ is the space of Lagrange
multipliers, by

el(ŷ,Φ, u)(p̂, z) :=

∫ T

0

∫
R
∂t ŷp̂ + ∂xf (ŷ,Φ, t)p̂ − b(Φ)u(t)p̂ + Φz − ∂yf (ŷ,Φ, t)z dX dt

+

∫
R
(ŷ(0)− y0)p̂(0)+ (Φ(0)− X)z(0)dX .

Assumption 3.6. In the following we assume:

(a) The constraint el(ŷ,Φ, u) = 0 has for each u ∈ U a unique solution (ŷ,Φ) ∈ Ŷ (cf. Remark 3.3).
(b) The linearization ∂yel(ŷ,Φ, u) is surjective.

Finally, we state the transformed Lagrange functional Ll:

Ll(ŷ,Φ, u, p̂, z) = Jl(ŷ,Φ, u)+ el(ŷ,Φ, u)(p̂, z)

and, by analogy to the previous section, the first-order optimality system:

∂ŷLl(ŷ,Φ, u, p̂, z)ψ ŷ
= 0 ∂ΦLl(ŷ,Φ, u, p̂, z)ψΦ

= 0 ∂uLl(ŷ,Φ, u, p̂, z)ψu
= 0

∂p̂Ll(ŷ,Φ, u, p̂, z)ψ p̂
= 0 ∂zLl(ŷ,Φ, u, p̂, z)ψ z

= 0

for all test functions ψ ŷ
∈ Y , ψΦ

∈ V , ψu
∈ U and (ψ p̂, ψ z) ∈ Ẑ .

Remark 3.7. The existence of Lagrange multipliers p̂ and z is guaranteed by Assumption 3.6(b).

The adjoint system, obtained using ∂ŷLl(ŷ,Φ, u, p̂, z) = 0 and ∂ΦLl(ŷ,Φ, u, p̂, z) = 0, reads

∂t p̂ = ∂xyf (ŷ,Φ, t)p̂ − ∂yyf (ŷ,Φ, t)z

p̂(T ) = −(ŷ(T )− yd(Φ(T )))J(T )

∂tz = ∂xxf (ŷ,Φ, t)p̂ − ∂xyf (ŷ,Φ, t)z − ∂xb(Φ)up̂

z(T ) = (ŷ(T )− yd(Φ(T )))∂X ŷ(T ).

(10)

Of course, the adjoint system has the same trajectories as the forward system. Therefore, we discretize it by using the same
particle set as for the forward system:

∂tpi(t) = ∂xyf (yi(t),Φi(t), t)pi(t)− ∂yyf (yi(t),Φi(t), t)zi(t)
pi(T ) = −(yi(T )− yd(Φi(T )))J(Xi, T )
∂tzi(t) = ∂xxf (yi(t),Φi(t), t)pi(t)− ∂xyf (yi(t),Φi(t), t)zi(t)− ∂xb(Φi(t))u(t)pi(t)

zi(T ) = (yi(T )− yd(Φi(T )))(∂X ŷ(T ))i.

(11)
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The gradient of the reduced cost functional J̃l(u) := Jl(ŷ(u),Φ(u), u) is obtained by identifying

⟨DJ̃l(u), ψu
⟩U∗,U = ⟨∂uLl(ŷ,Φ, u, p̂, z), ψu

⟩U∗,U

=

∫ T

0


αu(t)−

∫
R
b(Φ(X, t))p̂(X, t)dX


ψu(t)dt.

Hence, the gradient reads

∇ J̃l(u) = αu(t)−

∫
R
b(Φ(X, t))p̂(X, t)dX (12)

or, using the discrete values of (11),

∇ J̃hl (u) = αu(t)−

N−
i=1

b(Φi(t))pi(t)hi(X⃗) (13)

where the hi(X⃗) denote quadrature weights as defined in the previous section.

3.3. The discrete Lagrangian approach

Here we use the approach of ‘‘first discretize then optimize’’, that is, we perform the optimization on the discretized
system (4). Further, we also discretize the cost functional

Jh(y⃗, Φ⃗, u) =
1
2

N−
i=1

|yi(T )− yd(Φi(T ))|2hi(Φ⃗)+
α

2

∫ T

0
|u(t)|2dt.

The associated discrete constraint function eh : Ŷh×U → Ẑ∗

h , where Ŷh := Yh×Vh and Ẑh is the space of Lagrangemultipliers,
reads

eh(y⃗, Φ⃗, u)(p⃗, z⃗) =

N−
j=1


(yj(0)− y0(Xj))pj(0)+ (Φj(0)− Xj)zj(0)


hj(X⃗)

+

∫ T

0

N−
j=1


(∂tyj − b(Φj)u(t)pj + ∂xf (yj,Φj, t))pj + (∂tΦj − ∂yf (yj,Φj, t))zj


hj(X⃗)dt.

Assumption 3.8. In the following we assume:

(a) The constraint eh(y⃗, Φ⃗, u) = 0 has for each u ∈ U a unique solution (y⃗, Φ⃗) ∈ Ŷ (cf. Remark 3.4).
(b) The Fréchet derivative of eh(y⃗, Φ⃗, u) is surjective.

The discrete Lagrange functional is given by

Lh(y⃗, Φ⃗, u, p⃗, z⃗) = Jh(y⃗, Φ⃗, u)+ eh(y⃗, Φ⃗, u)(p⃗, z⃗)

and, by analogy to the previous section, the first-order optimality system is

∂y⃗Lh(y⃗, Φ⃗, u, p⃗, z⃗)ψy
= 0 ∂Φ⃗Lh(y⃗, Φ⃗, u, p⃗, z⃗)ψ

Φ
= 0 ∂uLh(y⃗, Φ⃗, u, p⃗, z⃗)ψu

= 0

∂p⃗Lh(y⃗, Φ⃗, u, p⃗, z⃗)ψp
= 0 ∂z⃗Lh(y⃗, Φ⃗, u, p⃗, z⃗)ψ z

= 0

for all test functions ψy
∈ Yh, ψ

Φ
∈ Vh, ψ

u
∈ U and (ψp, ψ z) ∈ Ẑh.

Remark 3.9. The existence of Lagrange multipliers p⃗ and z⃗ is guaranteed by Assumption 3.8(b).

The adjoint system, obtained using ∂y⃗Lh(y⃗, Φ⃗, u, p⃗, z⃗) = 0 and ∂Φ⃗Lh(y⃗, Φ⃗, u, p⃗, z⃗) = 0, reads

∂tpi = ∂xyf (yi,Φi, t)pi − ∂yyf (yi,Φi, t)zi

pi(T ) = −(yi(T )− yd(Φi(T )))hi(Φ⃗(T ))hi(X⃗)−1

∂tzi = ∂xxf (yi,Φi, t)pi − ∂xyf (yi,Φi, t)zi − ∂xb(Φi)u(t)pi

zi(T ) = (yi(T )− yd(Φi(T )))∂xyd(Φi(T ))hi(Φ⃗(T ))hi(X⃗)−1

+
1
4


(yi+1(T )− yd(Φi+1(T )))2 − (yi−1(T )− yd(Φi−1(T )))2


hi(X⃗)−1.

(14)
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The gradient of the reduced cost functional J̃h(u) := Jh(y⃗(u), Φ⃗(u), u) is obtained by identifying

⟨DJ̃h(u), ψu
⟩U∗,U = ⟨∂uLh(y⃗, Φ⃗, u, p⃗, z⃗), ψu

⟩U∗,U

=

∫ T

0


αu(t)−

N−
i=1

b(Φi(t))pi(t)hi(X⃗)


ψu(t)dt.

Hence, the gradient reads

∇ J̃h(u) = αu(t)−

N−
i=1

b(Φi(t))pi(t)hi(X⃗).

4. Comparison of the three approaches

In the following we discuss the relation of the three optimization approaches and show that they are either equivalent
or differ by at most an error of the order of the discretization error.

4.1. Comparison of the Lagrangian optimization approaches

The varying sequential order of optimization and discretization does not affect the forward system. It is the same in the
two approaches, in particular for (4). Hence, starting with the same particle distribution {Xi}i=1,...,N , the particle trajectories
Φi and quantities carried yi are identical. Also the forms of the gradients and the right hand sides of the evolution equations
for the adjoints pi and zi in (11) and (14) coincide. The only apparent differences are in the initial conditions pi(T ) and zi(T ).
To estimate their effect, we reintroduce the dependence on X of the particle quantities, i.e., we reinterpretΦi(t) = Φ(Xi, t)
and yi(t) = ŷ(Xi, t). Moreover,

J(Xi, t) = (∂XΦ)i =
Φi+1 − Φi−1

Xi+1 − Xi−1
+ O(h2) = hi(Φ⃗)hi(X⃗)−1

+ O(h2)

holds for h = maxi hi(X⃗). Then, the initial conditions pi(T ) and zi(T ) of (14) can be rewritten as

pi(T ) = −(yi(T )− yd(Φi(T )))J(Xi, t)+ O(h2)

zi(T ) = (yi(T )− yd(Φi(T )))∂xyd(Φi(T ))Ji(T )+
1
2

d
dX


(ŷ(Xi, T )− yd(Φ(Xi, T )))2


+ O(h2)

= (yi(T )− yd(Φi(T )))(∂X ŷ(T ))i + O(h2).

Hence, (14) just differs from (11) in a discretization error of order O(h2), that enters the system through the approximation
of the derivatives. Note that h refers to the initial particle distribution and is thus independent of time. Consequently, the
two strategies yield consistent discretizations of the continuous problem, as expected.

4.2. Comparison of the Lagrangian ansatz and the Eulerian ansatz

The Eulerian and Lagrangian formulations are transformable into each other using the coordinate transformation Φ .
Hence, applying the same Lagrangian particle method, the respective discrete forward systems are identical. The backward
systems (7) and (11) as well as the corresponding gradients (9) and (13), in contrast, seem to differ at first glance, but there
also exists a transformation between the adjoints as we will show in the following.

We consider the continuous formulation of the adjoints and gradients as they only differ by O(h2) from the discrete
formulations. In particular, we compare the continuous adjoints (6) and (10) and the corresponding gradients (8) and (12),
respectively.

We introduce the quantity p̃ = p̂J−1 and apply it to the Lagrangian approach described in Section 3.2. The gradient (12)
becomes

∇Jl(u) = αu(t)−

∫
R
b(Φ)p̂ dX = αu(t)−

∫
R
b(Φ)p̃J dX

which obviously coincides with (8). Rewriting the evolution equation for p̂ of (10), we obtain

∂t p̃ = ∂xyf (ŷ,Φ, t)p̃ − p̃J−1∂tJ − ∂yyf (ŷ,Φ, t)zJ−1

p̃(T ) = −(ŷ(T )− yd(Φ(T )))

as we assume J ≠ 0. With the regularity of the coordinate transformation we obtain

∂tJ = ∂t(∂XΦ) = ∂X (∂tΦ) =
d
dX


∂yf (ŷ,Φ, t)


= ∂yyf (ŷ,Φ, t)∂X ŷ + ∂xyf (ŷ,Φ, t)J.
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Fig. 1. Independence principle: the conformity of optimization strategies.

Inserting this relation yields

∂t p̃ = −∂yyf (ŷ,Φ, t)J−1(p̃∂X ŷ + z)

p̃(T ) = −(ŷ(T )− yd(Φ(T )))
(15)

for an arbitrary flux function f . Obviously, it holds that (p̃∂X ŷ+ z)(T ) = 0 using (10) and (15). To check whether this is true
for all t ∈ [0, T ] we derive

∂t(p̃∂Xy + z) = ∂t p̃∂X ŷ + p̃∂X (∂t ŷ)+ ∂tz
(3)
=


∂xb(Φ)Ju(t)− ∂xyf (ŷ,Φ, t)∂X ŷ − ∂xxf (ŷ,Φ, t)J


p̃ + ∂X ŷ∂t p̃v + ∂tz

(10)
= ∂Xy∂t p̃ − ∂xyf (ŷ,Φ, t)(∂t p̃∂X ŷ + z)
(15)
= −

d
dX


∂yf (ŷ,Φ, t)


J−1(p̃∂Xy + z).

This results in an ordinary differential equation on the compact interval [0, T ], whose right hand side is continuous in t and
Lipschitz continuous in (p̃∂Xy+ z). Hence, it has the unique solution (p̃∂Xy+ z) = 0, due to the initial value. Consequently,
∂t p̃ = 0 which yields

p̃ = −(ŷ(T )− yd(Φ(T ))).

Hence, p̃ = p̂J−1 is the solution to the Eulerian approach and therefore the Lagrangian and Eulerian ansatz coincide, up to
O(h2), as expected.

The results of this section are summarized in Fig. 1 which illustrates the independence principle investigated for the
optimization approaches. The Eulerian formulation (2) can be transformed into the Lagrangian formulation (3) by applying
the coordinate transformation Φ . Discretizing the Lagrangian system yields the desired particle representation (4). For the
optimization process, in particular taking the adjoints and gradients, it makes no difference whether we derive the adjoint
from the Eulerian or from the Lagrangian system, as stated in Section 4.2. Discretizing these adjoints by a particle method
yields, up to O(h2), the same equations as performing the optimization from the discrete forward system (2) directly, as
stated in Section 4.1.

5. Numerical results

After giving a short outline of the gradient algorithmused for the numerical implementation,we study the computational
performance and correlations of the described optimization approaches in this section. Therefore, we apply the strategies,
denoted by giving the section number where they were introduced, to different test cases, i.e. linear advection and the
nonlinear Burgers equation.
Gradient algorithm

(a) Initialize control function u(0), iteration counter k = 0, tolerance ϵ and set desired state yd
(b) Generate particle set {Xi}i=1,...,N
(c) Do

(a) Given u(k) solve forward system (4) for y(k)i ,Φ
(k)
i

(b) Solve backward system (7), (11) or (14) for p(k)i , z
(k)
i

(c) Determine a step size parameter τ > 0, e.g., by Armijo’s rule
(d) Set u(k+1)

= u(k) − τ ∇ J̃h(u(k))
while ‖∇J(u(k))‖/‖∇J(u(0))‖ ≤ ϵ.
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(a) Cost functional. (b) Norm of gradient (relative).

(c) State at final time T . (d) Control function.

(e) Trajectories.

Fig. 2. Linear advection. Flux function f (y, x, t) = 2xy.

Remark 5.1. The hyperbolic constraint can be very difficult to solve, e.g. due to shocks. At least we have to forbid crossing
characteristics. More numerical issues are discussed in e.g. [26].

The following tests are evaluated with an initial point distance h = 0.02 and regularization α = 10−8. The time
integrations are performed with an explicit Euler scheme using 100 time steps with T = 1. Moreover, the state and control
function are initialized by y0 ≡ 0, u(0) ≡ 0. The localization function b is defined by b(x) = exp(−10x2) and the tolerance
parameter ϵ is set to ϵ = 10−3.

As exemplified for linear advection and the nonlinear Burgers equation in Figs. 2–4, respectively, all optimization
strategies yield similar particle trajectories Φi and solutions yi while having comparable computational effort in the
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(a) Cost functional. (b) Norm of gradient (relative).

(c) State at final time T . (d) Control function.

(e) Trajectories.

Fig. 3. Linear advection. Flux function f (y, x, t) = 0.2(sin(5x)+ 1.5)y.

performance of gradient iterations and reductions in step size. Only the evaluation of the adjoints in approach 3.1 is obviously
faster, since no ODEs for pi and zi need to be solved as in the approaches 3.2 and 3.3. Furthermore, the optimizations are
in general independent of the number of particles. Just very big particle sets implying small distances to neighbor particles
could cause an exceptional behavior, since additional reductions in step size might be performed in the gradient algorithm
to exclude the artificial crossing of characteristics; cf. Remark 5.1.

The numerical deviation of the Lagrangian approaches, which vary only in the sequential order of optimization and
discretization, lies in the order of the discretization O(h2) as theoretically predicted. This is illustrated for f (y, x, t) = y4/4
in Fig. 5, where the resulting controls are compared in the L2 sense. Also for the Eulerian approach, compared with the
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(a) Cost functional. (b) Norm of gradient (relative).

(c) State at final time T . (d) Control function.

(e) Trajectories.

Fig. 4. Nonlinear Burgers equation. Flux function f (y, x, t) =
1
4 y

2 .

Lagrangian approaches, we find an agreement in the range of O(h2). The small discrepancy that is finally kept between 3.2/
3.1 and 3.3 for decreasing particle distance h is carried into the simulations by the time discretization. The good agreement of
the approaches is not surprising, but in fact physically desirable since the optimization results should be independent of the
problem formulation and the chosen strategy (Fig. 1). This independence principle is the basis for all black-box optimization
tools applied in mesh-based methods in practice so far.

Apart from the approximation quality, the test cases show clearly the superiority of particle (meshless) methods over the
conventional mesh-based methods. The particles are spread according to the coordinate transformation/convective motion
and yield thus an appropriate discretization that varies over time. In the case of equation-driven oscillations of the solution,
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Fig. 5. Convergence of the approaches to each other.

the resolution of particle methods is automatically adapted to the problem. However, adaptive strategies on themarket that
generate new particles and delete redundant onesmay certainly even improve performance and approximation quality. The
fact that the used Lagrangian type particlemethod yields ordinary differential equations in time hasmoreover the advantage
that no accuracy is lost by the approximation of spatial derivatives of the system variables. But this advantage is annulled
when parabolic equations or hyperbolic systems are considered.

6. Conclusion

In this paper we combined optimal control approaches with meshless discretizations. Applying a classical Lagrangian
type particle method to hyperbolic constrained optimization problems, we have presented several adjoint-based strategies
differing in the sequential order of optimization and discretization of the Lagrangian or Eulerian problem formulation. Their
theoretical investigation and numerical application to linear and nonlinear test cases show their suitability for the handling
of practically relevant and evidentlymore demanding optimization problems arising in the context of fluid dynamics, failure
mechanics, biophysics and biochemistry where time dependencies, complex geometries, freely moving boundaries and
interfaces matter tremendously.
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