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The interrelation between inflationary cosmology and new physics beyond the Standard Model (SM) is
studied in a U (1)B−L extension of the SM embedded in a (4 + 1)-dimensional spacetime. In the scenario
we study, the inflaton arises from the Wilson loop of the U (1)B−L gauge group winding an extra-
dimensional cycle. Particular attention is paid to the coupling between the inflaton and SM particles
that are confined on a brane localized in the extra dimension. We find that the inflaton decay channels
are rather restricted in this scenario and the resulting reheating temperature is relatively low.
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1. Introduction

The precision of the Cosmic Microwave Background (CMB)
anisotropy observations has started to rule out some of the in-
flation models [1]. However, CMB data alone still accommodates a
large class of them. In order to narrow down further likely can-
didates, it is useful to study possible relevance of the inflaton to
physics in other eras. In particular, at the time of reheating, the in-
flaton decays to Standard Model (SM) particles so that the standard
hot big bang can proceed, the nature of the interaction between
the inflaton and the SM is thus crucial.

Large field inflation models had attracted attention because of
the possible detection of tensor modes in CMB polarization in the
near future [2]. It is theoretically challenging to construct natural
large field inflation models, since effective field theory approach
usually breaks down in these models. Extra-natural inflation [3,4],
which is based on a gauge theory in higher-dimensional spacetime,
is one way to circumvent this difficulty by using non-local operator
(Wilson loop) in the extra dimension.

It is an interesting question what should be the gauge group for
extra-natural inflation. As we review in the next section, it turns
out that to explain the CMB data the gauge coupling for extra-
natural inflation must be very small [3,4]. This makes it difficult to
identify the SM gauge groups as that for extra-natural inflation, as
their couplings at the electro-weak scale are orders of magnitudes
larger than that required for extra-natural inflation. Therefore we
shall look for other gauge groups in models beyond the SM (BSM).

Gauged U (1)B−L extension of the SM [5–8] is ubiquitous in sce-
narios of BSM physics. A nice feature of it is that the existence of
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right-handed neutrinos is made natural by the necessity of gauge
anomaly cancellation. It also makes R-parity exact in supersym-
metric versions of the SM, and it appears as an intermediate stage
in the symmetry breaking pattern of grand-unified models down
to the SM, as well as in higher-dimensional embeddings of the SM
in string theory constructions. Apart from the formal theoretical
considerations, phenomenologically, having a new gauge boson and
scalars neutral under the SM gauge group can give rise to novel ef-
fects observable in future collider experiments.

In this Letter, we study extra-natural inflation with U (1)B−L as
the gauge group. In the scenario we study, the bulk spacetime is
(4 + 1)-dimensional with the extra dimension compactified on a
circle, SM is confined on a (3 + 1)-dimensional brane localized in
the extra dimension, and the inflation arises from the Wilson loop
of the U (1)B−L gauge field living in the full (4 + 1)-dimensional
bulk. In the following, we explore the interrelation between infla-
tionary cosmology and particle physics in this setting.1

The rest of the Letter is organized as follows. The relevant
ingredients of extra-natural inflation is reviewed in Section 2.
The details of our U (1)B−L extension of the SM is discussed in
Section 3. The decay of the inflaton to SM particles is studied in
Section 4. We end with a summary and discussions in Section 5.

2. U (1)B−L extra-natural inflation

Extra-natural inflation [3,4] is a version of natural inflation [11]
whose typical potential takes the form

1 For other approaches to connect inflation and new physics beyond SM via extra-
natural inflaton, see [9,10].
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by

https://core.ac.uk/display/82399186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2013.12.054
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.physletb.2013.12.054
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2013.12.054&domain=pdf


K. Furuuchi, J.M.S. Wu / Physics Letters B 729 (2014) 56–61 57
V (φ) = V 0

2

[
1 − cos

(
φ

f

)]
, (2.1)

where φ is the inflaton which, in extra-natural inflation, is the
zero-mode of the fifth component of some bulk gauge field. In
the scenario we study here, it is that of the U (1)B−L gauge group.
From (2.1) the slow-roll parameters are given by

εV (φ) ≡ M2
P

2

(
V ′

V

)2
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P

2 f 2
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f )
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, (2.2)

ηV (φ) ≡ M2
P

V ′′

V
= M2

P

f 2

cos( φ
f )

1 − cos( φ
f )

. (2.3)

Here ′ denotes derivative with respect to φ. The slow-roll condi-
tions amount to

εV , |ηV | � 1. (2.4)

In extra-natural inflation, f and V 0 are estimated as [3]

f = 1

g4(2π L5)
, (2.5)

and

V 0 = c0

π2

1

(2π L5)4
. (2.6)

Here, g4 is the (effective) four-dimensional gauge coupling, and L5
is the radius of the compactified fifth dimension. The constant c0
is determined by the matter content in the bulk, with the relevant
ones being fields charged under the gauge symmetry of interest
and whose masses are below or of the order of 1/L5 [12]; each of
these field makes an O(1) contribution to c0.2

In order for quantum gravity corrections to be small, we need

(L5M5)
3 � 1, (2.7)

where M5 is the five-dimensional (reduced) Planck scale, which
is related to the four-dimensional reduced Planck scale M P �
2.4 × 1018 GeV by

M2
P = M3

5(2π L5). (2.8)

Thus from (2.5)

M5 = (
g4 f M2

P

)1/3
. (2.9)

Since f is directly related to the CMB observations, and g4 is a ba-
sic parameter in the U (1)B−L extension of the SM, we shall take f
and g4 as the independent parameters, and regard L5 and M5 as
functions of them. It is convenient to introduce a dimensionless
parameter

�5 ≡ L5M5 = 1

2π

(
M P

g4 f

)2/3

, (2.10)

which measures the strength of quantum gravity corrections;
(2.7) then amounts to �3

5 � 1. Although �5 is not an independent
parameter, it is sometimes convenient to use �5 instead of g4.
In terms of �5 and f , g4 is expressed as

g4 = M P

f
(2π�5)

−3/2. (2.11)

The number of e-folds as a function of φ is given by

2 More precisely, we assume that contributions from charge one fields dominate,
which gives rise to the periodicity φ ∼ φ + 2π f .
Fig. 1. The scalar-to-tensor ratio, r, as a function of f for different values of N∗ .
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Here, φe is the value of the inflaton field at the end of inflation
defined by εV (φe) = 1, where the slow-roll condition (2.4) breaks
down.3 This gives

φe

f
= cos−1

(
1 − M2

P
2 f 2

1 + M2
P

2 f 2

)
, (2.13)

and plugging (2.13) into (2.12) we obtain

φ

f
= cos−1

(
2e

− M2
P

f 2 N

1 + M2
P

2 f 2

− 1

)
. (2.14)

In slow-roll inflation, the tensor-to-scalar ratio, r, and the spectral
index, ns , are given by

r � 16εV , ns � 1 − 6εV + 2ηV . (2.15)

The scalar-to-tensor ratio and the spectral index estimated from
various combinations of the Planck data and other observations
give at 95% CL: r � 0.12 and 0.94 � ns � 0.98 at the pivot scale
k∗ = 0.002 Mpc−1 [1]. Below, except for r and ns whose value we
take always at the pivot scale, we shall use the subscript ∗ to in-
dicate that the value is taken at the pivot scale.

As can be seen from (2.2), (2.3) and (2.14), r and ns only depend
on f and N∗ in extra-natural inflation, and so constraints on r
and ns constrain f for a given N∗ . We plot the dependence of r
and ns on f at fixed values of N∗ in Figs. 1 and 2, respectively.
We see that for N∗ = 50, we have f � 10M P from r � 0.12 and
f � 5M P from ns � 0.94. We will see later when considering the
inflaton decay that N∗ � 50 is natural for the scenario we study
here.

The power spectrum of the slow-roll inflation is given by

3 Note that εV � |ηV | for f > M P , which is the case in the following.
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Fig. 2. The spectral index, ns , as a function of f for different values of N∗ .

Fig. 3. The energy density, ρ∗ , as a function of f for different values of N∗ .

Pζ � H2

8π2M2
P εV

. (2.16)

This should be compared with the observed value Pζ (k∗) =
2.2 × 10−9 [1]. It determines the Hubble scale, H∗ , when the pivot
scale exited the horizon, and thus the energy density at that time,
ρ∗ � 3M2

P H2∗ , as a function of f and N∗ . Its dependence on f
and N∗ is mild, and we obtain ρ∗ � 1016 GeV, see Fig. 3. On the
other hand, from the Friedman equation for spatially flat Universe
in the slow-roll approximation,

3H2M2
P = ρ � V (φ), (2.17)

we obtain
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24π2M4
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In the last line we have made it explicit that φ and εV are func-
tions of f and N . Thus given �5, f and N∗ , c0 is determined from
the observed value Pζ (k∗) = 2.2 × 10−9 by (2.18). The behavior
of c0 as a function of �5 is plotted in Fig. 4. We observe that c0
grows as �6. Also, c0 grows rapidly with f , as seen in Fig. 5. Since
5
Fig. 4. The behavior of c0 as a function of �5 for N∗ = 50 at different values of f .

Fig. 5. The behavior of c0 as a function of f for N∗ = 50 and �5 = 5.

each field charged under U (1)B−L with mass � L−1
5 makes an O(1)

contribution to c0, if it is much larger than unity it may not be nat-
ural.4 Therefore we regard smaller values of �5 and f , viz. �5 � 5
and f � 5, as preferred in our scenario here. With the independent
parameters fixed, we then have g4 � 10−3 and L−1

5 � 9 × 1016 GeV
from (2.11) and (2.9). The value of the U (1)B−L gauge coupling is
an important input to our U (1)B−L extension of the SM, which we
discuss next.

3. U (1)B−L extension of the Standard Model

There are several possibilities for the U (1)B−L extension of
the SM, particularly with regards to the charge assignment of the
scalar field that would break the U (1)B−L symmetry. Table 1 lists
the particle content and the charge assignments of the particular
U (1)B−L extension of the SM we consider here. In our set-up, we
envisage all the SM particles and the right-handed neutrinos liv-
ing on a four-dimensional brane, while the U (1)B−L gauge fields,
AM , and a complex scalar, Σ , responsible for the eventual U (1)B−L

breaking living in the five-dimensional bulk. In string theory this
set-up may be realized, for example, when the SM fields and the
right-handed neutrinos live on a (3 + 1)-dimensional D-brane lo-
calized in the extra dimension, while the bulk fields arise from
higher dimensional D-branes.

The potential for the scalar sector renormalizable in four di-
mensions is given by

4 One can make large c0 natural by introducing a large number in the model,
e.g. a multiplet with a large multiplicity.
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Table 1
Particle contents and charge assignment. The index i = 1,2,3 labels the generation.

SU (3)c SU (2)L U (1)Y U (1)B−L

qi
L 3 2 +1/6 +1/3

ui
R 3 1 +2/3 +1/3

di
R 3 1 −1/3 +1/3

�i
L 1 2 −1/2 −1

ν i
R 1 1 0 −1

ei
R 1 1 −1 −1

H 1 2 −1/2 0
Σ 1 1 0 +2

V (H,Σ) = μ2
H H† H + μ2

ΣΣ∗
0 Σ0 + λ1

2

(
H† H

)2

+ λ2

2

(
Σ∗

0 Σ0
)2 + λ3 H† HΣ∗

0 Σ0. (3.1)

Here, Σ0 is the zero-mode of Σ in the fifth direction. After spon-
taneous symmetry breaking, the scalar fields acquire vacuum ex-
pectation values (VEVs), and we can write

H = 1√
2

(
0

v H + h

)
, Σ0 = vΣ + s√

2
, (3.2)

where h and s are excitations about the minimum, which is given
by

v2
H

2
= −μ2

Hλ2 + μ2
Σλ3

λ1λ2 − λ2
3

,
v2

Σ

2
= −μ2

Σλ1 + μ2
Hλ3

λ1λ2 − λ2
3

. (3.3)

Note that the W boson mass fixes v H = 246 GeV. In terms of h
and s, the quadratic part of the potential is given by

V (2) = 1

2
ηᵀM2

0η, η =
(

h
s

)
, (3.4)

where

M2
0 =

(
λ1 v2

H λ3 v H vΣ

λ3 v H vΣ λ2 v2
Σ

)
, (3.5)

is the tree-level mass-squared matrix for h and s, and we have
used the minimization condition for the potential. Diagonalizing,
the physical mass eigenstates are defined by(

h
s

)
=

(
cosα sinα

− sinα cosα

)(
h1
h2

)
, (3.6)

with the mixing angle given by

tan 2α = 2λ3 vh vs

λ2 v2
s − λ1 v2

h

. (3.7)

The masses of the physical states are then given by

m2
h1,2

= 1

2

{
λ1 v2

H + λ2 v2
Σ ∓

√(
λ1 v2

H − λ2 v2
Σ

)2 + 4λ2
3 v2

H v2
Σ

}
.

(3.8)

For |λ3| � 1 and |v H/vΣ | � 1, we can expand the square root and
obtain

m2
h1,2

= λ1,2 v2
H,Σ ∓ λ2

3

λ2
v2

H + λ2
3 v2

HO
(

v2
H

v2
Σ

)
. (3.9)

Assuming no coupling between the Higgs H and the scalar Σ0
at tree level, the mixing term H† HΣ∗

0 Σ0 is induced at one-loop
level [13] through interactions with neutrinos responsible for the
seesaw mechanism [14–17]:
Fig. 6. One-loop diagram which contributes to the mixing term H† HΣ∗
0 Σ0 through

the right-handed neutrinos.

L ⊃ −Y ij
Dν i

R H†l j
L − 1

2
Y ij

Nν ic
R ν

j
RΣ0 + h.c. (3.10)

Fig. 6 displays the particular one-loop graph.5 After U (1)B−L sym-
metry breaking, the mixing term contributes to the Higgs mass is
estimated as

δm2
H ∼ Y 2

D Y 2
N

(4π)2

v2
Σ

2
∼ mν M3

N

(4π)2 v2
H

, (3.11)

where we have used the seesaw formula mν ∼ Y 2
D v2

H/MN with
MN = Y N vΣ/

√
2 being the mass of the right-handed neutrino.

Given the observation of the Higgs boson with mass 126 GeV at

the LHC [18–20], we should have
√

|δm2
H | � 100 GeV if naturalness

is a criterion. Thus if we take mν ∼ 0.1 eV, we have MN � 107 GeV
from (3.11) and hence vΣ � 107/Y N GeV. This translates to an up-
per bound on the mixing coupling

|λ3| ∼ Y 2
D Y 2

N

(4π)2
∼ mν MN

(4π)2 v2
H

Y 2
N � 10−10Y 2

N . (3.12)

Assuming Y N � O(1), the mass of the physical U (1)B−L gauge bo-
son is estimated as

mZ ′ ∼ g4 vΣ � O
(
104) GeV. (3.13)

From collider experiments, one has mZ ′ � g4 × (6 TeV) for a
U (1)B−L Z ′ boson [21]. Since g4 � 10−3, there are no stringent
bounds on mZ ′ .

4. The inflaton decay

The coupling between the inflaton and the SM particles is cru-
cial at the time of reheating. Let us first consider the following Z2
transformation:

x5 → −x5, A5 → −A5. (4.1)

We choose the origin of the x5 coordinate to be where the brane
is localized. We assume there are no other fields with Z2-odd
charges under (4.1) that are lighter than A5. Then if this Z2 trans-
formation is an exact symmetry, the inflaton is absolutely stable.
This will be a problem, however, since then the Universe could
not be heated to bring forth the standard hot big bang cosmology.
We therefore introduce a five-dimensional Chern–Simons term,
which breaks the Z2 symmetry:

SCS = k

48π3

∫
AF2, (4.2)

where A = AM dxM , F = 1
2FMN dxM dxN , and k is some integer.

Here, AM is the U (1)B−L gauge field with mass dimension one,
which is related to the canonically normalized fields by

5 Contributions from two-loop diagrams studied in [13] are suppressed in our
model due to the smallness of the U (1)B−L gauge coupling.
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A(5)
M = 1

g5
AM , (4.3)

Aμ = 1

g4
Aμ0, φ = 1

g4
A50, (4.4)

where A(5)
M is the U (1)B−L gauge field canonically normalized in

five dimensions, Aμ that in four dimensions, and AM0 the zero-
mode of AM in five dimensions.

The four-dimensional interaction of the zero-modes following
from (4.2) is

k

48π3

∫
d4x (2π L)

3

4
εμνρσA50Fμν0Fρσ0

= k

16π2

∫
d4x

φ

2π f
Fμν0F̃μν

0

= g2
4

k

16π2

∫
d4x

φ

2π f
Fμν F̃ μν. (4.5)

Here the subscript 0 denotes that they are (made from) zero-
modes in the fifth direction.

The coupling (4.5) gives the dominant contribution to the decay
width at the tree level:

Γφ→A A � g4
4

16π

(
k

32π3

)2 m3
φ

f 2
, (4.6)

where mφ is the mass of the inflaton. As we have seen, c0 is de-
termined by (2.18) once f and g4 are given. This then determines
mφ :

m2
φ

2
= V 0

4 f 2
= 1

4 f 2

c0

π2

1

(2π L5)4
= c0 g4

4 f 2

4π2
. (4.7)

The U (1)B−L gauge bosons decay to SM particles via the min-
imal couplings. As this proceeds much faster than the inflaton
decay, the reheating temperature is governed by the inflaton de-
cay width (4.6). It is estimated as

T R =
(

90

π2 g�(T R)

)1/4√
Γ M P

�
(

90

g�(T R)

)1/4 g2
4

4π

|k|
32π3

√
m3

φ M P

f 2

� |k| × 1 GeV, (4.8)

where in the last line, we have used the preferred values f � 5M P

and �5 � 5, which gives mφ � 1013 GeV. The factor g�(T ) is the
effective relativistic degrees of freedom at temperature T . For
T R � 1 ∼ 10 GeV, g�(T R) � 60 ∼ 90. From (4.8), the reheating tem-
perature is much smaller than the U (1)B−L breaking scale given by
vΣ �O(107) GeV, when k is O(1 − 10). Comparing (4.8) with the
standard estimate of the number of e-folds [22]:

N∗ � 49 + 2

3
ln

(
ρ

1/4∗
1016 GeV

)
+ 1

3
ln

(
T R

1 GeV

)
, (4.9)

we observe that N∗ � 50 is natural in our model, as advertised
earlier.

5. Summary and discussions

In this Letter, we have studied the interrelation between cos-
mology and particle physics in U (1)B−L extra-natural inflation
with a gauged U (1)B−L extension of the SM localized on a brane.
The cosmological observation constrains the value of the U (1)B−L
gauge coupling to g4 � 10−3, which in turn constrains the parti-
cle physics scenario at high energy assuming naturalness. On the
other hand, with SM particles localized on a brane, allowed in-
teraction between the inflaton and the SM particles are restricted.
Together with the value of g4, the decay width of the inflaton and
the reheating temperature are determined.

By tuning of a few parameters or with some slight extension,
our model may also be able to explain other cosmological obser-
vations such as the Baryon number asymmetry of the Universe
and the dark matter abundance. Indeed, the right-handed neutri-
nos could play a role in the former through leptogenesis,6 and they
are also dark matter candidates. Another possible dark matter can-
didate, which may be included in our model, is a light scalar field
odd under the reflection of the extra dimension (4.1). These merit
further investigations.

Our main purpose in this Letter is to present an example in
which the relation between the BSM physics and the inflation
physics are specified, and theoretical and observational constraints
on one side constrains the other. We discussed one example here,
but there can be several other possibilities, even within gauged
U (1)B−L extensions of the SM. For instance, one may put some of
the SM fields in the bulk. It will be interesting to explore those
related scenarios.

Acknowledgements

The authors would like to thank Chong-Sun Chu, Satoshi Iso,
Hiroshi Isono, Yoji Koyama and Chia-Min Lin for stimulating dis-
cussions. K.F. is grateful to his former institutions, National Center
for Theoretical Sciences and the Department of Physics, National
Tsing-Hua University, where part of this work has been done.

References

[1] Planck Collaboration, P. Ade, et al., Planck 2013 results. XXII. Constraints on
inflation, arXiv:1303.5082 [astro-ph.CO].

[2] D.H. Lyth, What would we learn by detecting a gravitational wave signal
in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997)
1861–1863, arXiv:hep-ph/9606387.

[3] N. Arkani-Hamed, H.-C. Cheng, P. Creminelli, L. Randall, Extra natural inflation,
Phys. Rev. Lett. 90 (2003) 221302, arXiv:hep-th/0301218.

[4] D.E. Kaplan, N.J. Weiner, Little inflatons and gauge inflation, J. Cosmol. As-
tropart. Phys. 0402 (2004) 005, arXiv:hep-ph/0302014.

[5] R.N. Mohapatra, R. Marshak, Local B − L symmetry of electroweak interac-
tions, Majorana neutrinos and neutron oscillations, Phys. Rev. Lett. 44 (1980)
1316–1319.

[6] R. Marshak, R.N. Mohapatra, Quark – lepton symmetry and B − L as the U (1)

generator of the electroweak symmetry group, Phys. Lett. B 91 (1980) 222–224.
[7] C. Wetterich, Neutrino masses and the scale of B − L violation, Nucl. Phys. B

187 (1981) 343.
[8] A. Masiero, J. Nieves, T. Yanagida, B − L violating proton decay and late cosmo-

logical Baryon production, Phys. Lett. B 116 (1982) 11.
[9] T. Inami, Y. Koyama, C. Lim, S. Minakami, Higgs-inflaton potential in 5D su-

per Yang–Mills theory, Prog. Theor. Phys. 122 (2009) 543–551, arXiv:0903.3637
[hep-th].

[10] T. Inami, Y. Koyama, C.-M. Lin, S. Minakami, Inflaton versus curvaton in higher
dimensional gauge theories, Prog. Theor. Phys. 125 (2011) 345–358, arXiv:
1004.5477 [hep-ph].

[11] K. Freese, J.A. Frieman, A.V. Olinto, Natural inflation with pseudo-Nambu–
Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233–3236.

[12] H. Hatanaka, T. Inami, C. Lim, The gauge hierarchy problem and higher dimen-
sional gauge theories, Mod. Phys. Lett. A 13 (1998) 2601–2612, arXiv:hep-th/
9805067.

[13] S. Iso, N. Okada, Y. Orikasa, Classically conformal B − L extended Standard
Model, Phys. Lett. B 676 (2009) 81–87, arXiv:0902.4050 [hep-ph].

6 Given that in our model the natural mass for the right-handed neutrino is much
larger than the natural reheating temperature, lepton number would have to be
created through non-thermal decays of right-handed neutrinos [23].

http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4164653A32303133756C6Es1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4164653A32303133756C6Es1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4C7974683A31393936696Ds1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4C7974683A31393936696Ds1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4C7974683A31393936696Ds1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib41726B616E6948616D65643A323030337775s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib41726B616E6948616D65643A323030337775s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4B61706C616E3A32303033616As1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4B61706C616E3A32303033616As1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4D6F686170617472613A313938307165s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4D6F686170617472613A313938307165s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4D6F686170617472613A313938307165s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4D61727368616B3A31393739666Ds1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4D61727368616B3A31393739666Ds1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib5765747465726963683A313938316278s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib5765747465726963683A313938316278s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4D61736965726F3A313938326669s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4D61736965726F3A313938326669s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib496E616D693A323030396273s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib496E616D693A323030396273s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib496E616D693A323030396273s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib496E616D693A323031306B65s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib496E616D693A323031306B65s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib496E616D693A323031306B65s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4672656573653A313939307262s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4672656573653A313939307262s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib486174616E616B613A313939387970s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib486174616E616B613A313939387970s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib486174616E616B613A313939387970s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib49736F3A323030397373s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib49736F3A323030397373s1


K. Furuuchi, J.M.S. Wu / Physics Letters B 729 (2014) 56–61 61
[14] P. Minkowski, mu → e gamma at a rate of one out of 1-billion muon decays?,
Phys. Lett. B 67 (1977) 421.

[15] T. Yanagida, Horizontal symmetry and masses of neutrinos, in: Workshop on
the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan,
13–14 Feb 1979; Conf. Proc. C 7902131 (1979) 95–99.

[16] M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories, in:
Supergravity, North Holland, Amsterdam, 1979; Conf. Proc. C 790927 (1979)
315–321.

[17] S. Glashow, The future of elementary particle physics, NATO Adv. Stud. Inst.
Ser., Ser. B, Phys. 59 (1980) 687.

[18] ATLAS Collaboration, G. Aad, et al., Measurements of Higgs boson production
and couplings in diboson final states with the ATLAS detector at the LHC, Phys.
Lett. B 726 (2013) 88–119, arXiv:1307.1427 [hep-ex].
[19] ATLAS Collaboration, G. Aad, et al., Evidence for the spin-0 nature of the Higgs

boson using ATLAS data, Phys. Lett. B 726 (2013) 120–144, arXiv:1307.1432
[hep-ex].

[20] CMS Collaboration, Properties of the Higgs-like boson in the decay H to ZZ to
4l in pp collisions at sqrt s = 7 and 8 TeV, CMS-PAS-HIG-13-002.

[21] M.S. Carena, A. Daleo, B.A. Dobrescu, T.M. Tait, Z ′ gauge bosons at the Tevatron,
Phys. Rev. D 70 (2004) 093009, arXiv:hep-ph/0408098.

[22] D.H. Lyth, A.R. Liddle, The Primordial Density Perturbation: Cosmology, Infla-
tion and the Origin of Structure, Cambridge Univ. Press, 2009.

[23] T. Asaka, K. Hamaguchi, M. Kawasaki, T. Yanagida, Leptogenesis in inflaton de-
cay, Phys. Lett. B 464 (1999) 12–18, arXiv:hep-ph/9906366.

http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4D696E6B6F77736B693A313937377363s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4D696E6B6F77736B693A313937377363s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib59616E61676964613A313937396173s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib59616E61676964613A313937396173s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib59616E61676964613A313937396173s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib47656C6C4D616E6E3A313938307673s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib47656C6C4D616E6E3A313938307673s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib47656C6C4D616E6E3A313938307673s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib476C6173686F773A313937396E6Ds1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib476C6173686F773A313937396E6Ds1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4161643A32303133777161s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4161643A32303133777161s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4161643A32303133777161s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4161643A32303133787161s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4161643A32303133787161s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4161643A32303133787161s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib436172656E613A323030347873s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib436172656E613A323030347873s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4C7974683A323030397A7As1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4C7974683A323030397A7As1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4173616B613A313939397964s1
http://refhub.elsevier.com/S0370-2693(13)01029-0/bib4173616B613A313939397964s1

	U(1)B-L extra-natural inﬂation with Standard Model on a brane
	1 Introduction
	2 U(1)B-L extra-natural inﬂation
	3 U(1)B-L extension of the Standard Model
	4 The inﬂaton decay
	5 Summary and discussions
	Acknowledgements
	References


