
Physics Letters B 677 (2009) 157–159

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Direct CP violation in K-decay and minimal left–right symmetry scale

Panying Chen a,∗, Hongwei Ke a,b, Xiangdong Ji a,c

a Department of Physics, University of Maryland, College Park, MD 20742, USA
b Department of Physics, Nankai University, Tianjin, 300071, PR China
c Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing 100080, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 March 2009
Accepted 3 April 2009
Available online 10 April 2009
Editor: M. Cvetič

We calculate the new contribution to the direct CP-violation parameter ε′ in K → ππ decay in the
minimal left–right symmetric model with the recently-obtained right-handed quark Cabibbo–Kobayashi–
Maskawa mixing. We pay particular attention to the uncertainty in the hadronic matrix element of a
leading four-quark operator O LR− . We find that it can be related to the standard model electromagnetic
penguin operator O 8 through SU(3)L × SU(3)R chiral symmetry. Using the lattice and large Nc calcula-
tions, we obtain a robust constraint on the minimal left–right symmetric scale MW R > 5 TeV from the
experimental data on ε ′.

© 2009 Published by Elsevier B.V. Open access under CC BY license. 
One of the much studied themes for particle physics beyond
the standard model (SM) is left–right symmetry at high-energy,
introduced many years ago by Mohapatra and Pati [1]. In a recent
work, it has been shown that supersymmetric left–right theory
arises naturally from duality cascade of a quiver in the context
of intersecting D-branes [2]. The twin-Higgs model, introduced to
explain the disparity between the new physics scale and the elec-
troweak scale [3], also utilizes the idea of left–right symmetry.
However, the direct collider search for the signatory right-handed
W gauge boson shows that it is at least 10 times heavier than its
left-handed counterpart [4]. The most stringent limit on the right-
handed scale has been obtained from low-energy data, with the
most well-known example being the neutral kaon mass difference
[5], which gives a lower bound of at least 2.0–2.5 TeV.

More recently, a general solution for the right-handed Cabibbo–
Kobayashi–Maskawa (CKM) quark mixing in the minimal left–right
symmetric model (LRSM) has been found [6]. Particularly interest-
ing is the CP(charge-conjugation-parity)-violating mechanisms in
the model: Apart from the usual Dirac CP phase appearing in the
left-handed CKM mixing, there is also a spontaneous symmetry-
breaking phase α that contributes to CP-violating observables. Us-
ing the neutral kaon mixing parameter ε , α can be constrained ac-
curately. Therefore, one can make predictions on other CP-violating
observables including the neutron electrical dipole moment (EDM)
and direct CP-violating parameter ε′ in kaon decay; the experi-
mental data can then provide new constraints on the left–right
symmetric scale [7]. Unfortunately, the intermediate steps involve
unknown hadronic matrix elements, and the simple factoriza-
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tion or large Nc (number of quark colors) assumption is usually
adopted to make estimations in previous studies [7,8]. As a conse-
quence, the bounds suffer from unknown hadronic physics uncer-
tainties, as exemplified in reproducing the �I = 1/2 rule for the K
to ππ decay.

In this Letter, we focus on a better estimation of the uncer-
tainty associated with the leading hadronic matrix element, and
hence a more accurate bound on the minimal left–right symmetry
scale. In particular, we have found a relation between the domi-
nating four-quark operator O LR− in the new contribution and the
SM electromagnetic penguin operator O 8 through SU(3)L × SU(3)R

chiral symmetry. We use the existing knowledge on the matrix el-
ement of the latter to get information on the former [9]. With a
reasonable estimate of the O LR− matrix element, we find the lower
bound for the right-handed scale in the range of 5–9 TeV, consis-
tent with that from the neutron EDM data [7].

The direct CP-violation parameter in the neutral kaon to ππ
decay is calculated via

ε′ = i√
2
ω

(
q

p

)(
Im A2

Re A2
− Im A0

Re A0

)
ei(δ2−δ0), (1)

where the decay amplitudes A0 and A2 are defined as the matrix
elements of the �S = 1 effective Hamiltonian between the neu-
tral-K meson and the isospin I = 0 and 2 ππ states,
〈
(2π)I

∣∣(−i)H�S=1
∣∣K 0〉 = AI e

iδI . (2)

δI is the strong phase for ππ scattering at the kaon mass, ω ≡
A2/A0, and p, q are the mixing parameters for K 0–K̄ 0. To an
excellent approximation, ω can be taken as real and q/p = 1.
We use the experimental value for the real parts of A0 and A2:
Re A0 � 3.33 × 10−7 GeV and ω � 1/22. We focus on calculating
the imaginary part of the decay amplitudes.
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Fig. 1. New tree-level contributions to the �S = 1 interaction from LRSM.

In the SM, the contributions to ε′ come from both QCD and
electromagnetic penguin diagrams [10]. The QCD penguin con-
tributes exclusively to the imaginary part of �I = 1/2 decay,
whereas the electromagnetic penguin is mainly responsible for the
imaginary part of �I = 3/2 decay. Both contributions are impor-
tant but have opposite signs. Therefore, the final result depends on
delicate cancelations of hadronic matrix elements. The state-of-art
chiral perturbation theory [11–14] and lattice QCD calculations [15,
16] have not yet been sufficiently accurate to reproduce the exper-
imental result [17]. On the other hand, a large-Nc approach with
final-state rescattering effect taken into account seems to be able
to reproduce the experimental result [18]. A nice review of the SM
calculation can be found in Refs. [9,19].

In LRSM, every element in the right-handed CKM matrix has a
substantial CP phase. As a consequence, there are tree-level con-
tributions to the phases of A2 and A0. Following closely the work
by Ecker and Grimus [8], the tree-level Feynman diagrams in Fig. 1
generate
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where we have taken into account the leading-logarithm QCD cor-
rections with renormalization scale μ taken to be around the
charm quark mass mc ∼ 1.3 GeV, and b = 11 − 2N f /3 with N f the
number of active fermion flavors. The left–right mixing parameter
is

tan ζ = 2r
mb

mt

(
MW L

MW R

)2

, (4)

where r is a parameter less than 1. The mixing coupling λAB
u =

V CKM∗
Aus V CKM

Bud , A, B are L, R . The right-handed CKM matrix has a
form,

V R = P U Ṽ L P D , (5)

in which P U = diag(su, sce2iθ2 , ste2iθ3), P D = diag(sdeiθ1 , sse−iθ2 ,

sbe−iθ3), and
Ṽ L =
⎛
⎝ 1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2e−2iθ2

Aλ3(1 − ρ − iη) −Aλ2e2iθ2 1

⎞
⎠ , (6)

where λ, A, ρ and η are Wolfenstein parameters and the new
phases θi are all related to spontaneous CP phase α,

θ1 = − sin−1[0.31(sdsc + 0.18sdst)r sinα
]
,

θ2 = − sin−1[0.32(sssc + 0.25ssst)r sinα
]
,

θ3 = − sin−1[sbstr sinα], (7)

where experimental quark masses have been used with possible
si = ±1 signs. The four-quark operators are

O LL,R R
± = (s̄iui)V ∓A(ū jd j)V ∓A ± (s̄id j)V ∓A(ū ju j)V ∓A,

O LR,RL
+ = (s̄iui)V ∓A(ū jd j)V ±A − 1

3
(s̄iu j)V ∓A(ū jdi)V ±A,

O LR,RL
− = −1

3
(s̄iu j)V ∓A(ū jdi)V ±A, (8)

where i and j are color indices and the subscript V ± A refers to
a quark bilinear of the form q̄γμ(1 ± γ5)q.

As mentioned above, one has to include the penguin contribu-
tions in the SM calculation because the CKM matrix elements have
non-zero CP phases only when the third family is introduced. The
only detail we would like to point out about the SM contribution is
that the electromagnetic penguin involves predominantly the fol-
lowing operator

O 8 = 1

2
(s̄id j)A−V

[
2(ū jui)V +A − (d̄ jdi)V +A − (s̄ j si)V +A

]
, (9)

which is an (8,8) representation of the chiral SU(3)L × SU(3)R

group. In principle, there are also new QCD penguin diagrams in-
volving the right-handed gauge boson, particularly with left–right
gauge boson mixing. However, these contributions are suppressed
by a loop factor relative to the tree contributions as well as the
�I = 1/2 rule, and hence are neglected [8].

Now we come to estimate the new contributions to the direct
CP-violation parameter ε′ . There are two types of tree contribu-
tions: the right-handed current alone and left–right interference.
Both are nominally the same size, and are suppressed by 1/M2

W R
relative to the SM contribution. In practice, however, the inter-
ference contribution dominates numerically. Let us consider the
right-handed current contribution first. The relevant hadronic ma-
trix elements can be obtained from the SM ones through parity
transformation,

〈ππ |O R R± |K0〉 = −〈ππ |O LL± |K0〉. (10)

We use the matrix elements from a domain-wall lattice QCD cal-
culation [15], which are consistent with the �I = 1/2 rule,

〈
(ππ)I=0

∣∣O LL−
∣∣K0

〉 = 0.192i GeV3,〈
(ππ)I=0

∣∣O LL+
∣∣K0

〉 = 0.064i GeV3,〈
(ππ)I=2

∣∣O LL+
∣∣K0

〉 = 0.025i GeV3. (11)

The matrix element of O LL+ in I = 0 state is less important and can
largely be ignored.

The dominating new contribution is from the left–right W -
boson interference. Due to the QCD running effect and chiral sup-
pression, O LR+ operator is less important relative to O LR− and hence
will be ignored. Therefore, we need to consider only the matrix el-
ement of O LR− operator in the I = 2 state. Introduce the following
(8,8) operators,
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Fig. 2. The new contribution in LRSM to ε′ as a function of MW R for sinα = 0.1,
r = 0.5 with sd = ss = −1 and all other sq = 1. The light shaded part is allowed by
the experimental data, and the heavy-shaded area is 1/4 of the experimental data.

O (8,8)
3/2 = (s̄id j)V −A(ū jui)V +A + (s̄iu j)V −A(ū jdi)V +A

− (s̄id j)V −A(d̄ jdi)V +A,

O (8,8)
1/2A = (s̄id j)V −A(ū jui)V +A − (s̄iu j)V −A(ū jdi)V +A

− (s̄id j)V −A(s̄ j si)V +A,

O (8,8)
1/2S = (s̄id j)V −A(ū jui)V +A + (s̄iu j)V −A(ū jdi)V +A

+ 2(s̄id j)V −A(d̄ jdi)V +A − 3(s̄id j)V −A(s̄ j si)V +A, (12)

where subscripts 3/2 and 1/2 indicate isospin. Using the above,
one can express O LR− as follows

O LR− = −1

9
O (8,8)

3/2 − 1

18
O (8,8)

1/2S + 1

6
O (8,8)

1/2A . (13)

On the other hand, the electromagnetic penguin operator O 8 can
be expressed as

O 8 = 1

2

(
O (8,8)

3/2 + O (8,8)
1/2A

)
. (14)

Therefore, we find the model-independent relation,

〈
(ππ)I=2

∣∣O LR−
∣∣K0

〉 = −2

9

〈
(ππ)I=2

∣∣O 8
∣∣K0

〉
. (15)

In the vacuum insertion approximation, one finds

〈
(ππ)I=2

∣∣O 8
∥∥K0

〉 = √
6 fπ

(
m2

K

ms(μ) + md(μ)

)2

i, (16)

which is about 0.95i GeV3 ( fπ = 93 MeV) if the strange quark
mass is taken to be 120 MeV at the scale of mc . On the other hand,
the lattice QCD calculation in Ref. [15] gives 1.4i GeV3 at the scale
of 1.9 GeV. This lattice calculation, however, does not reproduce
the experimental data on ε′ . In Ref. [9], an extensive discussion
has been made about the size of this matrix element. It is ex-
pected that the variation of the matrix element is between 1 to 2
of the factorization result.

Because the phase α in the factor eiα is dominating, ε′ is ap-
proximately a function of r sinα, rather than r and sinα indepen-
dently. Since r sinα has been fixed by ε and neutron EDM de

n [7],
ε′ is approximately a function of MW R only. In Fig. 2, we plot ε′
as a function of MW R for sinα = 0.1, r = 0.5 and sdss = 1 which is
required by the neutron EDM calculation. [All other si = 1.] We
choose the renormalization scale at the charm quark mass and
ΛQCD = 340 MeV. The dashed curve shows the result with the
large-Nc matrix element, whereas the solid curve shows that from
the lattice QCD [15].

If one uses that factorized matrix element and following the
Refs. [9,18] for other hadronic matrix elements, the experimental
data is roughly reproduced by the SM calculation. Requiring the
new contribution is less than 1/4 of the experimental data, we
get a large lower bound of 8 TeV on the right-handed scale. On
the other hand, if one takes the calculation in Ref. [15] seriously,
the lattice QCD generates a small and negative contribution to ε ′ .
If then requiring that the experimental number is entirely repro-
duced by the new contribution, we find a limit on MW R about
5 TeV. In any case, ε′ gives a tighter lower bound on MW R than
the well-known neutral kaon mass difference. If on the other hand,
we take r sinα = 0.15, as required by low MH , the bound changes
to 8.5 TeV. Therefore, we take the range 5–8 TeV as our final esti-
mate.

Finally, we have also calculated the tree-level flavor-changing
neutral Higgs contributions to H�S=1. Since the relevant coupling
is suppressed by either the Cabibbo angle or the quark masses,
their contribution is negligible.

To conclude, we have found that a robust bound on the mass
of the right-handed W -boson based on a relatively well-known
estimate on the strong interaction matrix element of O LR− , which
is known to within a factor of 2. The result is on the order of
5–8 TeV, which is just on the border for the Large Hadron Collider
detection. This situation turns out to be better than the similar
calculation in SM.
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