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Abstract

Under certain well defined conditions, the stream X-machine testing method can produce a test set that is
guaranteed to determine the correctness of an implementation. The testing method has originally assumed
that an implementation of each processing function or relation is proven to be correct before the actual
testing can take place. Such a limitation has been removed in a subsequent paper, but only for determin-
istic X-machines. This paper extends this result to non-deterministic stream X-machines and considers
a conformance relationship between a specification and an implementation, rather than mere equivalence.
Furthermore, it shows how this method can be applied to test a P system by building a suitable stream
X-machine from the derivation tree associated with a partial computation.
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1 Introduction

The stream X-machine (SXM ) [10] is a form of extended finite state machine (FSM).
It describes a system as a finite set of states and a number of transitions between
states. In addition, a SXM contains an internal store, called memory. A transition
is triggered by an input value, produces an output value and may access and/or
alter the memory. A transition diagram of a SXM is a finite automaton (called an
associated automaton) in which the arcs are labelled by relation names (referred to
as processing relations). Under certain well defined design for test conditions, it is
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possible to produce a test set that is guaranteed to determine the correctness of an
implementation under test (IUT ) [14,10,2,12,16].

Traditional extended finite-state machine test generation methods [3,17] rely
on the construction of an equivalent finite state machine, where states are the
state/memory pairs of the original SXM. For complex specifications, this leads to a
known state explosion problem; the SXM testing method does not perform such a
construction. Instead, however, the method assumes that the processing functions
(relations) are correctly implemented and reduces testing of a SXM to testing of its
associated automaton. Therefore, it is fair to say that the method only tests the
integration of the implementation of processing functions (relations). In practice,
the correctness of an implementation of a processing function (relation) is checked
by a separate process [10], using the SXM testing method or alternative functional
methods. The method (called in what follows SXM integration testing) was first
developed in the context of deterministic SXMs (i.e. those SXMs in which all labels
represent partial functions rather than relations and an input can trigger at most
one transition in any state and for any memory value). The deterministic SXM
(DSXM ) integration testing method [14,10] was extended to the non-deterministic
case (NSXM integration testing) in paper [15]. Conformance testing for SXMs has
been previously considered in [8] for a subclass of quasi-non-deterministic SXMs;
later work [9] uses a rather general definition of conformance, but requires an im-
plementation to compute a function (this paper assumes a non-deterministic IUT).

The applicability of the mentioned integration testing methods is limited by
the assumption that the implementation of each processing function (relation) can
be tested in isolation from the rest of the system. This is not always a realistic
assumption. This limitation has been removed [11] in the context of deterministic
SXMs, so that testing of functions can be performed along with the integration
testing. This paper extends [11] for non-deterministic SXMs. This is called complete
NSXM testing. Such an extension is not trivial for the following reasons: (a) in
a non-deterministic SXM an input sequence may potentially produce an infinite
number of output sequences, while a test set will be applied to an IUT for a limited
number of times (as few as possible); (b) in a non-deterministic SXM some paths
may never be exercised.

Since their introduction in 1998 [19], P systems have been intensively studied
and developed, in particular with regard to the computational power of different
variants and their capability to solve hard problems. In the last years there have
also been significant developments in using the P systems paradigm to model, simu-
late and formally verify various systems [5]. Suitable classes of P systems have been
associated with some of these applications and software packages have been devel-
oped. Although formal verification has been applied to different models based on P
systems [10], testing is completely neglected in this context. Testing is an essential
part of software development and all software applications, irrespective of their use
and purpose, are tested before being released. Two recent papers provide initial
steps towards building a P system testing theory: based on rule coverage [7] and
on FSM conformance techniques [13]. In this paper we develop a testing method
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for non-deterministic SXMs and show how this can be applied to P systems: a way
of deriving a SXM from a P system is provided and the method is applied to the
obtained model. This approach significantly extends the previous testing methods
for P systems by considering (1) a SXM model of a P system instead of a simple
FSM and also (2) non-determinism, a widely spread characteristic of P systems.

2 Preliminaries

This section introduces the notation and the formalisms used in the paper: finite
state machines, stream X-machines and P systems.

For a finite alphabet A, A∗ denotes the set of all finite sequences with members
in A; ε denotes an empty sequence. For a, b ∈ A∗, ab denotes the concatenation of
sequences a and b; an is defined by a0 = ε and an = an−1a for n ≥ 1. For U, V ⊆ A∗,
UV = {ab | a ∈ U, b ∈ V }; Un is defined by U0 = {ε} and Un = Un−1U for n ≥ 1.
For a relation f : A ←→ B, dom(f) denotes the domain of f and Im(f) denotes the
image of f . If a /∈ dom(f), we write f(a) = ∅. For U ⊆ A, f(U) = ∪a∈Uf(a) and
f | U : U ←→ B denotes the restriction of f to U , i.e. f | U(a) = f(a),∀a ∈ U . For
two relations f, g : A ←→ B, we use f 
 g to denote that dom(f) = dom(g) and
for any a ∈ dom(f), f(a) ⊆ g(a). For φ : M × Σ ←→ Γ × M and m ∈ M we define
ωφ

m : Σ ←→ Γ by ωφ
m(σ) = πΓ(φ(m, σ)), σ ∈ Σ, where πΓ : Γ×M −→ Γ denotes the

projection function. We shall also use the projection function πM : Γ × M −→ M .
For a finite set A, #A denotes the number of elements of A.

Definition 2.1 A finite automaton (FA for short) is a tuple (Σ, Q, F, I), where Σ
is a finite input alphabet; Q is a finite set of states; F is a (partial) next state
function, F : Q×Σ −→ 2Q; I is a set of initial states, I ⊆ Q; all states are assumed
terminal.

Function F is usually described by a state transition diagram. A FA is called
deterministic if there is one initial state (I = {q0}) and F maps each state/input
pair into at most one state (F : Q × Σ −→ Q). The next state function can be
extended to a partial function F ∗ : Q × Σ∗ −→ Q defined by F ∗(q, ε) = q, ∀q ∈ Q;
F ∗(q, sσ) = F (F ∗(q, s), σ)), ∀q ∈ Q, s ∈ Σ∗, σ ∈ Σ. For q ∈ Q, LA(q) = {s ∈
Σ∗ | (q, s) ∈ dom(F ∗)}. If q = q0 then the set is simply denoted LA and called
the language accepted by A. A state q ∈ Q is called accessible if ∃s ∈ Σ∗ such that
F ∗(q0, s) = q. A is called accessible if ∀q ∈ Q, q is accessible. For U ⊆ Σ∗, two
states q1, q2 ∈ Q are called U -equivalent if LA(q1) ∩ U = LA(q2) ∩ U ; otherwise,
q1 and q2 are called U -distinguishable. If U = Σ∗ then q1 and q2 are simply called
equivalent or distinguishable. A is called reduced if ∀q1, q2 ∈ Q, ((q1 = q2) =⇒ (q1

and q2 are distinguishable)). A deterministic FA A is called minimal if any other
FA that accepts the same language as A has at least the same number of states as
A. The reader is assumed to be familiar with basic automata theory, for details see
for example [6].

Given a FA specification A and a class of implementations C, a test set of A

w.r.t. C is a set of input sequences that, when applied to any implementation
A′ in the class C, will detect any response in A′ that does not conform to the
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response specified by A, i.e. ∀A′ ∈ C, (LA ∩ Y = LA′ ∩ Y =⇒ LA = LA′). The
class C is identified by the assumptions we can make about an implementation A′.
If no information is available, a test set may not exist for even very simple FA
specifications. There are a number of more or less realistic assumptions that one
can make about the form and size of an implementation and these, in turn, give
rise to different techniques for generating test sets [17]. One of the least restrictive
assumptions refers to the number of states of A′ and is the basis for the W method
[4,1]: the difference between the number of states of an implementation and that of
a specification has to be at most k, a non-negative integer estimated by a tester.

The W -method involves the selection of two sets of input sequences, a transition
cover P and a characterization set W defined as follows:

Definition 2.2 S ⊆ Σ∗ is called a state cover of A if ε ∈ S and ∀q ∈ Q \ {q0},
∃s ∈ S such that F ∗(q0, s) = q. P ⊆ Σ∗ is called a transition cover of A if
S ∪ SΦ ⊆ P for some state cover S of A. W ⊆ Σ∗ is called a characterisation set
of A if any two distinct states q1, q2 ∈ Q, q1 = q2, are W -distinguishable.

Note that a state cover, a transition cover and a characterisation set exist if A is
minimal.

Theorem 2.3 [1] Let A be a deterministic FA having input alphabet Σ, n the num-
ber of states of A, m ≥ n and Cm the set of deterministic FAs with an input alphabet
Σ and each with a maximal number of states m. If P is a transition cover and W

a characterisation set of A then Ym−n = P (Σm−n ∪ Σm−n−1 ∪ . . . ∪ {ε})(W ∪ {ε})
is a test set of A w.r.t. Cm.

The above theorem is the theoretical basis for the W -method in the context
of partially specified deterministic FA. The reason ε is included in W is to ensure
that if an IUT has ignored the last element σ of a sequence of inputs verifying the
existence of a transition triggered by σ, this will be detected.

A SXM is a form of extended FSM as defined next.

Definition 2.4 A SXM is a tuple Z = (Σ,Γ, Q, M,Φ, F, I, m0), where Σ and Γ are
finite sets called an input alphabet an output alphabet respectively; Q is a finite set
of states; M is a (possibly) infinite set called memory; Φ, called the type of Z, is
a finite set of distinct processing relations that the machine can use. A processing
relation is a non-empty relation of the form φ : M ×Σ ←→ Γ×M . Often Φ is a set
of (partial) functions. F is the (partial) next state function, F : Q×Φ −→ 2Q. In a
similar way to finite automata, F is usually described by a state transition diagram.
I is a set of initial states, I ⊆ Q; m0 is the initial memory value, m0 ∈ M .

It is sometimes helpful to think of a SXM as a finite automaton with the arcs labelled
by relations from the type Φ. The FA AZ = (Φ, Q, F, I, T ) over an alphabet Φ is
called the associated FA of Z.

Definition 2.5 Given a sequence p ∈ Φ∗, p induces the relation |p | : M × Σ∗ ←→
Γ∗ × M defined as follows: (1) (m, ε) | ε | (ε, m), ∀m ∈ M , (2) ∀p ∈ Φ∗, φ ∈ Φ,
(m, sσ) | pφ | (gγ, m′), where ∀m, m′ ∈ M, s ∈ Σ∗, g ∈ Γ∗, σ ∈ Σ, γ ∈ Γ are such
that ∃m′′ ∈ M with (m, s) | p | (g, m′′) and (m′′, σ)φ(γ,m′).
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A sequence | p | can be considered a relation between a (memory, input string) pair
and the (output string, memory) pairs produced by a consecutive application of the
relations in p. It is easy to see that if Φ is a set of (partial) functions rather than
relations then | p | is a also a (partial) function.

Definition 2.6 A SXM Z is called deterministic if the following three conditions
hold: (1) the associated FA of the machine Z is deterministic, i.e. Z has only
one initial state (I = {q0}) and the next state function maps each pair of (state,
processing function) onto at most one state (F : Q × Φ −→ Q); (2) Φ is a set of
(partial) functions rather than relations; (3) any two distinct processing functions
that label arcs emerging from the same state have disjoint domains, i.e. ∀φ1, φ2 ∈ Φ,
((∃q ∈ Q with (q, φ1), (q, φ2) ∈ dom(F )) =⇒ (φ1 = φ2 or dom(φ1)∩ dom(φ2) = ∅)).
From the above definition, NSXMs can have three types of non-determinism: state
non-determinism if #I > 1 or ∃q ∈ Q, φ ∈ Φ with #(F (q, φ)) > 1; oper-
ator non-determinism if some elements of Φ are relations but not partial func-
tions; domain non-determinism if there exist q ∈ Q, φ1, φ2 ∈ Φ, φ1 = φ2 with
(q, φ1), (q, φ2) ∈ dom(F ) and dom(φ1)∩dom(φ2) = ∅. It is not necessary to consider
the case of state non-determinism since it can easily be eliminated by rewriting a
NSXM using standard algorithms that take a non-deterministic FA and produce an
equivalent deterministic FA; in general, this transformation may introduce domain
non-determinism. Further, NSXMs are assumed to be free of state non-determinism
and are denoted by a tuple Z = (Σ, Γ, Q, M, Φ, F, q0, m0) where F is a partial func-
tion and q0 is the initial state. The associated deterministic FA is then a tuple
AZ = (Φ, Q, F, q0). In general, a non-deterministic SXM computes a relation since
the application of an input sequence may produce more than one output sequence.
The exact correspondence between an input sequence and an output produced is
defined next.

Definition 2.7 A SXM Z, computes a relation fZ : Σ∗ ←→ Γ∗ defined by : s fZ g

if there is p ∈ Φ∗, m ∈ M such that p ∈ LAZ
and (m0, s) | p | (g, m).

When a path p is important, we will write s fp
Z g. Note that for a SXM featuring

domain non-determinism, p may not be uniquely identified by s. If Z is a deter-
ministic SXM, then fZ is a (partial) function rather than a relation. We define a
computation of Z as any subset of fZ that associates each input sequence s with
output sequences produced when a machine exercises every path in Z that can be
traversed by s at least once.

Definition 2.8 A relation � : Σ∗ ←→ Γ∗ is called a computation of Z if the
following two conditions hold: (1) ∀ s ∈ Σ, g ∈ Γ, s � g =⇒ s fZ g; (2) ∀ s ∈ Σ,
g ∈ Γ, p ∈ Φ∗, s fp

Z g =⇒ (s fp
Z g′ and s � g′ for some g′ ∈ Γ).

The set of all computations of Z is denoted by HZ . It is easy to see that fZ ∈ HZ

and ∀ � ∈ HZ , � 
 fZ . If Φ is a set of (partial) functions (such as when Z is a
DSXM) then HZ = {fZ}, because in this case for each path through the machine
there is only one sequence of possible outputs.

The following definition refers to one of the many variants of P systems, namely
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cell-like P system, which uses non-cooperative transformation and communication
rules [20]. Since now onwards we will refer to this model as simply P system.

Definition 2.9 A P system is a tuple Π = (V, μ, w1, ..., wn, R1, ..., Rn), where

• V is a finite set, called alphabet;
• μ defines the membrane structure; a hierarchical arrangement of n compartments

called regions delimited by membranes; these membranes and regions are identi-
fied by integers 1 to n;

• wi, 1 ≤ i ≤ n, represents the initial multiset occurring in region i;
• Ri, 1 ≤ i ≤ n, denotes the set of rules applied in region i.

The rules in each region have the form a → (a1, t1)...(am, tm), where a, ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a symbol a in the
current region, the symbol a is replaced by the symbols ai with ti = here; symbols
ai with ti = out are sent to the outer region (or environment when the current
region is the most external) and symbols ai with ti = in are sent into one of the
regions contained in the current one, arbitrarily chosen. In the following definitions
and examples all the symbols (ai, here) are used as ai. The rules are applied in
maximally parallel mode which means that they are used in all the regions in the
same time and in each region all symbols that may be processed, must be. A
configuration of the P system Π is a tuple c = (u1, ..., un), ui ∈ V ∗, 1 ≤ i ≤ n. A
derivation of a configuration c1 to c2 using the maximal parallelism mode is denoted
by c1 =⇒ c2.

3 NSXM Integration Testing

This section presents the theoretical basis for the NSXM integration testing method
[15]. This method generates a test set from a non-deterministic SXM specification,
providing that the system components (i.e. processing relations) are implemented
correctly. Therefore, it is assumed that the IUT is a NSXM having the same type
(processing relations) as a specification. The concepts and results in this section are
largely from [15], the presentation of which has been slightly modified to fit with
other published work in the area [8,11]. The essence remains unchanged.

In order to test non-deterministic implementations, one usually makes a so-called
complete-testing assumption [18]: it is possible, by applying a given input sequence
s to an implementation for a finite number of times, to exercise all the paths of the
implementation that can be traversed by s. Without such an assumption, no test
suite can guarantee full fault coverage of non-deterministic implementations. For
testing of an IUT Z ′ against a specification Z, we apply elements of a test set X a
number of times, so as to ensure that both a specification and an implementation
traverse all paths they can. During a test, only a subset of a (potentially infinite)
set of outputs is observed from a non-deterministic implementation; for this reason,
a possible computation �

′ of Z ′ is observed (�′ | X). If all outputs of Z ′ in response
to X can be produced by Z, it means that Z performed a computation � and
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� | X = �
′ | X. In this case, we should be able to conclude that for any sequence of

inputs Z ′ will produce an output which is allowed by Z. This justifies the following.

Definition 3.1 Let Z be a SXM and C a set of SXMs having the same input
alphabet (Σ) and output alphabet (Γ) as Z. Then a finite set X ⊆ Σ∗ is called a
test set of Z w.r.t. C if ∀Z ′ ∈ C, � | X = �

′ | X for some � ∈ HZ , �
′ ∈ HZ′ implies

fZ = fZ′.

It is assumed that an IUT is a NSXM having the same input alphabet, output
alphabet, memory and an initial memory value as a specification; additionally,
a SXM specification has to satisfy three conditions: input-completeness, output-
distinguishability and observability.

Definition 3.2 Two SXMs Z and Z ′ are called weak testing compatible if they
have identical input alphabets, output alphabets, memory sets and initial memory
values. Two weak testing compatible SXMs are called testing compatible if they
have identical types.
Φ is called input-complete if ∀φ ∈ Φ, m ∈ M , ∃σ ∈ Σ such that (m, σ) ∈ dom(φ).
Φ is called output-distinguishable if ∀φ1, φ2 ∈ Φ, (there are m ∈ M, σ ∈ Σ such
that ωφ1

m (σ) ∩ ωφ2
m (σ) = ∅), then φ1 = φ2 (ωφ

m was introduced in Sect. 1).
Φ is called observable if ∀φ ∈ Φ, σ ∈ Σ, γ ∈ Γ, m, m1, m2 ∈ M , ((γ,m1) ∈ φ(m, σ),
(γ,m2) ∈ φ(m, σ) implies m1 = m2).

These three conditions (input-completeness, output-distinguishability and ob-
servability) are generally known as “design for test conditions” [10,14]. 3 With-
out them, it would be extremely difficult to test a system properly. The input-
completeness condition ensures that all sequences of processing relations in the
associated FA can be attempted using appropriate inputs, so they can be tested
against the implementation. The output-distinguishability condition ensures that
any processing relation can be identified from the machine computation by examin-
ing the outputs produced. When Φ is observable, the next memory value computed
by relations can be determined. Note that if Φ is a set of (partial) functions then
it is already observable, so this condition is not explicitly stated when considering
such SXMs (such as DSXMs).

The basic idea of the testing method is to translate a test set of an associated
FA into a test set of an IUT. In order to do this, we need a mechanism, called a test
function, that converts sequences of processing relations into sequences of inputs.

Definition 3.3 Let Z = (Σ,Γ, Q, M, Φ, F, q0, m0) be a SXM with an input-complete
type Φ. A test function of Z t : Φ∗ −→ Σ∗ is defined as follows. First of all, t(ε) = ε;
for n > 0 and φ1, . . . , φn ∈ Φ, t(φ1 . . . φn) = σ1 . . . σk, where σ1, . . . , σk ∈ Σ are such
that (m0, σ1 . . . σk) ∈ dom(| φ1 . . . φk |). In order to determine the value k ≤ n, two
cases are considered, (1) φ1 . . . φn ∈ LAZ

, in which case k = n; (2) φ1 . . . φn /∈ LAZ

and for 0 ≤ i < n there is φ1 . . . φi ∈ LAZ
such that φ1 . . . φi+1 /∈ LAZ

, in which
case k = i + 1.

3 The design for test conditions for a deterministic SXM have been relaxed in [12] and [16]
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In other words, for any sequence v = φ1 . . . φn of processing relations, t(v) is a
sequence of inputs that exercises the longest prefix φ1 . . . φi of v that is a path in
a specification NSXM and, if i < n, also exercises φi+1, the relation that follows
after this prefix. Note that since Φ is input-complete there always exist σ1, . . . , σk

as above, but these are not necessarily uniquely defined.
The result below is the theoretical basis for NSXM integration testing.

Theorem 3.4 [15] Let Z be a SXM having type Φ input-complete, output-
distinguishable and observable and C a set of SXMs testing compatible with Z.
If t is a test function of Z and Y ⊆ Φ∗ a test set of AZ w.r.t. AC , where
AC = {AZ′ | Z ′ ∈ C}, then X = t(Y ) is a test set of Z w.r.t. C.

Since C is a set of (non-deterministic) SXMs testing compatible with Z, it is
assumed that the processing relations are implemented correctly, i.e. an IUT uses
the same set of processing relations as a specification. Therefore, the method only
tests the integration of processing relations. The correctness of implementation of
these relations is checked by separate testing processes, as discussed in [15].

We can now use theorems 3.4 and 2.3 to generate a test set of Z w.r.t. Cm, the
set of NSXMs testing compatible with Z whose number of states does not exceed
m ≥ n. This is Xm−n = t(Ym−n), where Ym−n = P (Φm−n ∪ . . . ∪ {ε})(W ∪ {ε}), n

is the number of states in Z, P is a transition cover and W a characterisation set of
AZ and t is a test function of Z. More details about the applicability of the NSXM
integration testing method can be found in reference [15].

4 Theoretical Basis for Complete NSXM Testing

This section presents the theoretical basis for the complete NSXM testing method.
Unlike integration testing, no assumption is made here regarding the correctness of
the implementation of processing relations. Therefore, the general case is considered
when a specification and an IUT may have different types (i.e. are weak testing
compatible). Furthermore, an IUT will be checked for conformance to a specification
rather than for equivalence. An IUT Z ′ conforms to Z if Z ′ is defined on all inputs
on which Z is defined and the behaviour of Z ′ is a subset of the behaviour of Z that
traverses every path of Z at least once.

Definition 4.1 Let Z and Z ′ be two SXMs having the same input alphabet (Σ) and
output alphabet (Γ). We say that Z ′ conforms to Z, written Z ′ 
 Z, if fZ′ 
 fZ

and HZ ∩HZ′ = ∅.
The definition of a test set is revised to reflect the more general situation.

Definition 4.2 Let Z be a SXM and C a set of SXMs with the same input alphabet
(Σ) and output alphabet (Γ) as Z. Then a finite set X ⊆ Σ∗ is called a conformance
test set of Z w.r.t. C if ∀Z ′ ∈ C, � | X = �

′ | X for some � ∈ HZ , �
′ ∈ HZ′ implies

Z ′ 
 Z.

Obviously, any test set of Z w.r.t. C is also a conformance test set of Z w.r.t. C.
If Z is a deterministic SXM then the notions of a test set and a conformance test
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set coincide.
The output-distinguishability condition has to be updated for the situation

where a specification and an implementation may have different types.

Definition 4.3 Let Z = (Σ, Γ, Q, M, Φ, F, q0, m0) and Z ′ =
(Σ, Γ, Q′, M,Φ′, F ′, q′0, m0) be two weak testing compatible SXMs having types
Φ and Φ′, respectively. Then Φ is called output-distinguishable w.r.t. Φ′ if
there exists a bijective function c : Φ −→ Φ′ such that the following holds:
∀φ ∈ Φ, φ′ ∈ Φ′, ((∃m ∈ M, σ ∈ Σ such that ωφ

m(σ) ∩ ωφ′
m(σ) = ∅) =⇒ φ′ = c(φ)).

This says that, for a processing relation φ in Φ, we must be able to identify a
corresponding relation φ′ = c(φ) in Φ′ by examining outputs. Naturally, if Φ is
output-distinguishable then Φ is also output-distinguishable w.r.t. itself. In the
conditions of Def. 4.3 we denote by A−c

Z′ = (Φ, Q′, F ′−c, q
′
0) the FA obtained by

substituting each arc c(φ) in AZ′ with φ, i.e. F ′−c(q
′, φ) = F ′(q′, c(φ)). Obviously,

for φ1, . . . , φn ∈ Φ, φ1 . . . φn ∈ LA−c
Z′

iff c(φ1) . . . c(φn) ∈ LAZ′ .

Design for test conditions imply two important properties of computations, (1)
the HZ ∩ HZ′ = ∅ condition of Def. 4.1 requires AZ and AZ′ to be equivalent
(reference [9] permits LA′

Z
⊆ LAZ

rather than LA′
Z

= LAZ
as considered here, but

restricts consideration to integration testing of an IUT which computes a function);
(2) an equivalent definition to Def. 4.1 can be written as domfZ′ = domfZ ∧ fZ′ ∈
HZ .

Since the method does not assume that processing relations are correctly imple-
mented, we will have to test their implementations in addition to their integration.
Therefore, a test set has to contain two components: an integration test set (from
the previous section) and a set for testing processing relations (called a relation test
set). The latter is defined below.

Definition 4.4 Let Z = (Σ, Γ, Q, M,Φ, F, q0, m0) and Z ′ =
(Σ, Γ, Q′, M,Φ′, F ′, q′0, m0) be two weak testing compatible SXMs. Then for
φ ∈ Φ and m ∈ M , a finite set Σφ

m ⊆ Σ is called an m conformance test set
of φ w.r.t. Φ′ if the following holds: ∀φ′ ∈ Φ′, (if ψ | Σφ

m = ψ′ | Σφ
m for some

ψ, ψ′ : Σ ←→ Γ, ψ 
 ωφ
m, ψ′ 
 ωφ′

m then φ′ 
 φ).
Σφ

m is called a m test set of φ w.r.t. Φ′ if the following holds: ∀φ′ ∈ Φ, (if
ψ | Σφ

m = ψ′ | Σφ
m for some ψ,ψ′ : Σ ←→ Γ, ψ 
 ωφ

m, ψ′ 
 ωφ′
m then φ′ = φ).

An m (conformance) test set of φ w.r.t. Φ′ is a finite set of inputs that checks φ

(for conformance or equivalence) against any processing relation in Φ′.

Definition 4.5 Let Z be a SXM having type Φ. Then a set V = {v1, . . . , vk} ⊆ Φ∗

is called a relation cover of Z if Φ can be written as Φ = {φ1, . . . , φk} such that the
following hold: (1) v1 = ε and φ1 ∈ LAZ

; (2) for any 2 ≤ i ≤ k, vi ∈ {φ1, . . . , φi−1}∗
and viφi ∈ LAZ

.

In the above definition, vi is a sequence containing only the relations φ1, . . . , φi−1

that reach a state in a specification from which an arc with φi is defined. Therefore,
V reaches every processing relation in AZ using sequences of relations that have
already been accessed. ¿From Def. 4.5, it follows that a relation cover of Z exists if
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for any proper subset Φ0 of Φ, LAZ
\Φ∗

0 = ∅. This happens if AZ is accessible and all
processing relations in Φ are actually used as labels in AZ (i.e. πM (dom(F )) = Φ),
as can be expected in practice.

Definition 4.6 Let Z = (Σ,Γ, Q, M, Φ, F, q0, m0) and Z ′ =
(Σ, Γ, Q′, M, Φ′, F ′, q′0, m0) be two weak testing compatible SXMs, Φ = {φ1, . . . , φk}
input-complete, V = {v1, . . . , vk} a relation cover of Z and t a test function of
Z. Then XΦ = ∪k

i=1t(vi)Σi
mi

is called a relation test set of Z w.r.t. Φ′ if for any
1 ≤ i ≤ k, mi ∈ πM (| vi | (m0, t(vi))) and Σi

mi
is an mi conformance test set of φi

w.r.t. Φ′ such that {mi} × Σi
mi

∩ dom(φi) = ∅.
For simplicity, in the expression of XΦ we used t(vi) instead of {t(vi)}. A relation
test set of Z exists if a relation cover of Z exists and Φ is input-complete. Due
to non-determinism, relations can produce any possible values of memory; in order
to test any given relation φi, it is necessary to attempt all values from Σi

mi
for

some value mi of memory. If t(vi) reaches different values of memory every time
it is attempted, this cannot be done. For this reason, we have to strengthen the
complete-testing assumption by requiring that there is an output sequence that can
always (i.e. eventually) be produced by a NSXM in response to an input sequence.
From the observability condition, this ensures the existence of mi which can be
reached #Σi

mi
times by t(vi).

The idea behind the construction of a relation test set is to access and test
every relation in AZ using sequences of relations that have already been tested.
Therefore, a relation test set is used to test the processing relations of a SXM
specification against their implementations, as shown by the result below.

Lemma 4.7 Let Z and Z ′ be two weak testing compatible SXMs having types Φ
and Φ′, respectively, such that Φ is input-complete, output-distinguishable w.r.t. Φ′

and observable. If XΦ is a relation test set of Z w.r.t. Φ′ and � | XΦ = �
′ | XΦ for

some � ∈ HZ , �
′ ∈ HZ′, then there exists a bijective function c : Φ −→ Φ′ such that

for any φ ∈ Φ, c(φ) 
 φ.

Proof. Let Φ = {φ1, . . . , φk}, V = {v1, . . . , vk} and XΦ = ∪k
i=1t(vi)Σi

mi
be as in

Def. 4.6. Let also c : Φ −→ Φ′ be as in Def. 4.3. For simplicity, we use c : Φ∗ −→ Φ′∗

to denote the free-semigroup morphism induced by c. We prove by induction on
1 ≤ i ≤ k the following statement: c(φi) 
 φi and c(viφi) ∈ LAZ′ .

For i = 1 this is c(φ1) 
 φ1 and c(φ1) ∈ LAZ′ . Let σ1 ∈ Σ1
m0

and γ1 ∈ Γ, such
that γ1 ∈ �(σ1) ∩ ωφ1

m0(σ1). Since �(σ1) = �
′(σ1), ∃φ′ ∈ Φ′ such that φ′ ∈ LAZ′

such that γ1 ∈ �
′(σ1) ∩ ωφ′

m0(σ1), so γ1 ∈ ωφ1
m0(σ1) ∩ ωφ′

m0(σ1). Since Φ is output-
distinguishable w.r.t. Φ′, we have φ′ = c(φ1), so c(φ1) ∈ LAZ′ . Furthermore,
we define o1 : Σ1

m0
←→ Γ by σ1 o1 γ1 for all σ1 and γ1 as above and define

ψ1, ψ
′
1 : Σ ←→ Γ by ψ1(σ) = o1(σ), σ ∈ Σ1

m0
, ψ1(σ) = ωφ1

m0(σ), σ ∈ Σ \ Σ1
m0

,

ψ′
1(σ) = o1(σ), σ ∈ Σ1

m0
, ψ′

1(σ) = ω
φ′

1
m0(σ), σ ∈ Σ \ Σ1

m0
. It is easy to verify that

ψ1 
 ωφ1
m0 , ψ′

1 
 ω
φ′

1
m0 and ψ1 | Σ1

m0
= ψ′

1 | Σ1
m0

. Since Σ1
m0

is an m0 conformance
test set of φ1 w.r.t. Φ′, we have c(φ1) 
 φ1.
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Assume the statement true for 1 ≤ j ≤ i − 1, i > 1. Let si = t(vi), gi ∈ Γ∗,
σi ∈ Σi

mi
, γi ∈ Γ such that giγi ∈ �(siσi)∩ω

|viφi|
m0 (siσi). Since Φ is observable, there

is an unique mi ∈ M such that (gi, mi) ∈| vi | (m0, si). ¿From �(siσi) = �
′(siσi) it

follows that ∃v′i ∈ Φ′∗, φ′ ∈ Φ′ such that v′iφ
′ ∈ LAZ′ and giγi ∈ �

′(siσi)∩ω
|v′

iφ
′|

m0 (siσi),

so giγi ∈ ω
|viφi|
m0 (siσi)∩ω

|v′
iφ

′|
m0 (siσi). Since Φ is output-distinguishable w.r.t. Φ′, Φ is

observable and ∀1 ≤ j ≤ i, c(φj) 
 φj , we have (1) v′i = c(vi) and (2) mi ∈ M is the
unique memory value such that (gi, mi) ∈ | c(vi) |(m0, si). Furthermore, c(vi)φ′ ∈
LAZ′ and γi ∈ ωφ′

mi(σi), so γi ∈ ωφi
mi(σi)∩ω

c(φi)
mi (σi). Since Φ is output-distinguishable

w.r.t. Φ′, we have φ′ = c(φi), so that c(viφi) ∈ LAZ′ . Similarly to the base case,
we define oi : Σi

mi
←→ Γ by σi oi γi for all σi and γi; ψi, ψ

′
i : Σ ←→ Γ are defined

by ψi(σ) = oi(σ), σ ∈ Σi
mi

, ψi(σ) = ωφi
mi(σ), σ ∈ Σ \ Σi

mi
, ψ′

i(σ) = oi(σ), σ ∈ Σi
mi

,

ψ′
i(σ) = ω

φ′
i

mi(σ), σ ∈ Σ \ Σi
mi

. Then ψi 
 ωφi
mi , ψ′

i 
 ω
φ′

i
mi and ψi | Σi

mi
= ψ′

i | Σi
mi

.
Since Σi

mi
is an mi conformance test set of φi w.r.t. Φ′, we have c(φi) 
 φi. �

Note that if Φ is observable/output-distinguishable and (∀φ ∈ Φ, c(φ) 
 φ) then Φ′

is also observable/output-distinguishable.
We can now prove the result we are after. Theorem 4.8 is the theoretical basis

for the complete NSXM testing method.

Theorem 4.8 Let Z be a SXM having type Φ and C a set of SXMs weak test-
ing compatible with Z having type Φ′ such that Φ is input-complete, output-
distinguishable w.r.t. Φ′ and observable. If t is a test function of Z, Y ⊆ Φ∗ is
a test set of AZ w.r.t. A−c

C , where A−c
C = {A−c

Z′ | Z ′ ∈ C} and XΦ is a relation test
set of Z w.r.t. Φ′, then X ′ = t(Y ) ∪ XΦ is a conformance test set of Z w.r.t. C.

Proof. Let Z ′ ∈ C and � ∈ HZ , �
′ ∈ HZ′ such that � | X ′ = � | X ′. Then we have

to prove that Z ′ 
 Z. For simplicity, we use c to denote both the bijective function
c : Φ −→ Φ′ and the free-semigroup morphism c : Φ∗ −→ Φ′∗ induced by it. ¿From
Lemma 4.7 it follows that ∀φ ∈ Φ, c(φ) 
 φ. Let v ∈ Y . We prove that v ∈ LAZ

iff
c(v) ∈ LAZ′ .

“if”: Assume v ∈ LAZ
. Then from �(t(v)) = �

′(t(v)) it follows that ∃v′ ∈ Φ′∗

such that ω
|v|
m0(t(v)) ∩ ω

|v′|
m0 (t(v)) = ∅. Since Φ is observable, output-distinguishable

w.r.t. Φ′ and ∀φ ∈ Φ, c(φ) 
 φ, we have v′ = c(v), so c(v) ∈ LAZ′ .
“only if:” Assume v /∈ LAZ

and c(v) ∈ LAZ′ . Then let v = φ1 . . . φn and let
1 ≤ k ≤ n be such that φ1 . . . φk−1 ∈ LAZ

and φ1 . . . φk /∈ LAZ
. By definition of t,

(m0, t(v)) ∈ dom(| φ1 . . . φk |). Since ∀φ ∈ Φ, c(φ) 
 φ we have that (m0, t(v)) ∈
dom(| c(φ1) . . . c(φk) |). Since c(v) ∈ LAZ′ , we have c(φ1) . . . c(φk) ∈ LAZ′ , hence

from �(t(v)) = �
′(t(v)) it follows that ∃v′ ∈ Φ∗ such that v′ ∈ LAZ

and ω
|v′|
m0 (t(v))∩

ω
|c(φ1)...c(φk)|
m0 (t(v)) = ∅. Since Φ is observable, output-distinguishable w.r.t. Φ′

and (∀φ ∈ Φ, c(φ) 
 φ), we have v′ = φ1 . . . φk, so φ1 . . . φk ∈ LAZ
, which is a

contradiction.
Therefore (v ∈ Y and v ∈ LAZ

) iff (v ∈ Y and c(v) ∈ LAZ′ ), hence (v ∈ Y and
v ∈ LAZ

) iff (v ∈ Y and v ∈ L−c
AZ′ ). Since Y is a test set of AZ w.r.t. A−c

C , it follows
that v ∈ LAZ

iff v ∈ L−c
AZ′ . Therefore, v ∈ LAZ

iff c(v) ∈ LAZ′ . We have just proven

F. Ipate, M. Gheorghe / Electronic Notes in Theoretical Computer Science 227 (2009) 113–126 123



that there exists a bijective function c : Φ −→ Φ′ such that ∀φ ∈ Φ, c(φ) 
 φ and
c(LAZ

) = LAZ′ . From this it follows easily that Z ′ 
 Z. �

Corollary 4.9 In the conditions of theorem 4.8, if all Σi
mi

are mi test sets (rather
than mi conformance test sets) of φi w.r.t. Φ′ then X ′ = t(Y ) ∪ XΦ is a test set of
Z w.r.t. C.

Proof. Since all Σi
mi

are mi test sets of φi w.r.t. Φ′, from the proof of Lemma 4.7
it follows that ∀φ ∈ Φ, φ = c(φ). ¿From this and the proof of Theorem 4.8 it follows
that LAZ

= LAZ′ . Hence fZ = fZ′ . �

5 Applying complete NSXM testing to P systems

In this section we discuss how Theorem 4.8 (or Corollary 4.9) and Theorem 2.3 can
be applied to generate (conformance) test sets for a P system specification. In this
respect we show how to build a stream X-machine from a P system. We will use the
approach described in [7] to build a derivation tree for a predefined number of steps,
k. Using the approach described here we not only develop a new testing method
for P systems, but provide a clear way of ensuring that (1) each rule is correctly
implemented and (2) each rule or set of rules expected to be applied are actually
applied.

The proposed P system testing approach consists of two major steps: (1) deriving
a SXM from a P system and (2) applying the NSXM testing method for the resulting
model. In order to obtain the SXM model, it is necessary to: (a) build a derivation
tree for a given number of steps, k; (b) consider this tree as the underlying structure
of the SXM, in which the states of the machine are the nodes of the tree and the
arcs are labelled by tuples of multisets of rules (This structure can be minimised
as shown in [13]); (c) define the functions from Φ as follows: for each distinct node
from the derivation tree there is a derivation step

(x1x
′
1, . . . , xnx′

n) =⇒ (y1x
′
1, . . . , ynx′

n)

where xi, 1 ≤ i ≤ n, represents the part of the multiset xix
′
i which will derive into

yi by applying rules from Ri and x′
i is the multiset which is not changed in this step;

if this derivation step is labelled by l then the processing function associated with
l is defined by: for every x′

i, 1 ≤ i ≤ n, and for given xi, yi, 1 ≤ i ≤ n, as above,

φl((x1x
′
1, . . . xnx′

n), (x1, . . . xn)) = ((y1, . . . yn), (y1x
′
1, . . . ynx′

n)).

The application of the NSXM testing method involves the following de-
tailed steps: (a) checking the conditions imposed for testing (mainly output-
distinguishability as discussed below); (b) obtaining test sets for the processing
functions from Φ; (c) deriving the overall test set.

As Φ contains only processing functions (rather than relations), observability
is outright satisfied. Furthermore, by construction, all processing functions can be
exercised (using appropriate inputs) from any memory value that is attainable in the
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test generation process, so, for testing purposes, Φ can be considered to be input-
complete. Thus, only the output-distinguishability of Φ needs to be examined. The
test set of each processing function will typically include the input that triggers the
function (in the given memory value) as well as other values (outside the domain of
the processing function, for which other transitions will actually be triggered) - this
will ensure that the processing functions are correctly implemented. As Φ is a set
of processing functions (not relations), these are test sets (rather than conformance
test sets). Finally, a test set for the overall system will be derived using Corollary
4.9 and Theorem 2.3.

Note that, in order to properly adapt the NSXM testing approach to the case
of P systems, we need to consider a specific testing strategy for SXMs based on
breakpoints, which requires stopping the testing process in each state in order to
observe the input. This is necessary in this case because we do not have proper
inputs and they are identified from the current multisets as being those submultisets
that are associated to rewriting rules.

Consider, for example, the two compartment P system
Π = ({s, a, b, c}, [1[2]2]1, s, λ, R1, R2),
where
R1 = {r1 : s → sa(b, in), r2 : s → ab};
R2 = {r1 : b → bc, r2 : b → c}
and its derivation tree for k = 3. Due to space constraints the derivation tree is
not given here. It is not difficult to verify that the example satisfies the output-
distinguishability property. Consequently, in this case, we can build a test set based
on the methodology presented in this paper for SXMs and, according to this, we
can identify at any moment the rule or set of rules applied. However, this property
is not true for any P system. Indeed, let us consider a one compartment P system
consisting of the following four rules r1 : a1 → a2, r2 : a2 → a1, r3 : a1 → a1,
r4 : a2 → a2 and the initial multiset a1a2. In this case we can either apply the
multiset r1r2 or r3r4. Obviously the two functions are associated with different rules
and consequently they should be different, but they are not output-distinguishable.
Designing P systems for which the output-distinguishability condition is always met
will require further investigations.

Finally, note that the approach developed here for testing P systems uses func-
tions instead of relations. In fact, the more general NSXM approach can be applied
to P systems by also considering all the branches emerging from the same node as
defining a relation.

6 Conclusions

The complete NSXM testing method presented here generalises the NSXM inte-
gration testing method. It no longer requires implementations of the processing
relations to be proved correct before integration testing can take place. Instead,
the testing of processing relations is performed along with the integration testing.
This is an important advance since often implementations of the processing rela-
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tions are not separate units of code (procedures, methods, etc.) that can be tested
in isolation from the rest of the system.

The paper also shows how a SXM model of a P system can be obtained and
how the NSXM testing approach can be applied to generate conformance test sets
for the P system. Further work will involve devising alternative approaches for
deriving SXM models of P systems as well as aspects related to the application of
NSXM testing to P systems (e.g. designing P systems that meet the design for test
conditions).
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