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Abstract

We present results related to satisfying shortest path queries on a planar graph stored in
external memory. Let N denote the number of vertices in the graph and sort(N ) denote the
number of input=output (I=O) operations required to sort an array of length N :

(1) We describe a blocking for rooted trees to support bottom-up traversals of these trees in
O(K=B) I=Os, where K is the length of the traversed path. The space required to store the
tree is O(N=B) blocks, where N is the number of vertices of the tree and B is the block
size.

(2) We give an algorithm for computing a 2
3 -separator of size O(

√
N ) for a given embedded

planar graph. Our algorithm takes O(sort(N )) I=Os, provided that a breadth-8rst spanning
tree is given.

(3) We give an algorithm for triangulating embedded planar graphs in O(sort(N )) I=Os.

We use these results to construct a data structure for answering shortest path queries on planar
graphs. The data structure uses O(N 3=2=B) blocks of external memory and allows for a shortest
path query to be answered in O((

√
N +K)=DB) I=Os, where K is the number of vertices on the

reported path and D is the number of parallel disks. ? 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Answering shortest path queries in graphs is an important and intensively stud-
ied problem. It has applications in communication systems, transportation problems,
scheduling, computation of network Gows, and geographic information systems (GIS).
Typically, an underlying geometric structure is represented by a combinatorial structure,
which is often a weighted planar graph.
The motivation to study external memory shortest path problems arose in our GIS

research and in particular, with an implementation of the results in [16] for shortest path
problems in triangular irregular networks. In this application the given graph represents
a planar map, i.e., it is planar and embedded. Quite commonly it is too large to 8t into
the internal memory of even a large supercomputer. In this case, and in many other
large applications, the computation is forced to wait while large quantities of data
are transferred between relatively slow external (disk-based) memory and fast internal
memory. Thus, the classical internal memory approaches to answering shortest path
queries in a planar graph (e.g. [6,8–10,15]) may not work eIciently when the data
sets are too large.

1.1. Model of computation

Unfortunately, the I=O-bottleneck is becoming more signi8cant as parallel computing
gains popularity and CPU speeds increase, since disk speeds are not keeping pace [22].
Thus, it is important to take the number of input=output (I=O) operations performed by
an algorithm into consideration when estimating its eIciency. This issue is captured
in the parallel disk model (PDM) [24], as well as a number of other external memory
models [5,25]. We adopt the PDM as our model of computation for this paper due to
its simplicity, and the fact that we consider only a single processor.
In the PDM, an external memory, consisting of D disks, is attached to a machine

with an internal memory capable of holding M data items. Each of the disks is divided
into blocks of B consecutive data items. Up to D blocks, at most one per disk, can
be transferred between internal and external memory in a single I=O operation. The
complexity of an algorithm is the number of I=O operations it performs.

1.2. Previous results

Shortest path problems can be divided into three general categories: (1) computing
a shortest path between two given vertices of a graph, (2) computing shortest paths
between a given source vertex and all other vertices of a graph (single source shortest
paths (SSSP) problem), and (3) computing the shortest paths between all pairs of
vertices in a graph (all pairs shortest paths (APSP) problem).

Previous results in the RAM model: In the sequential RAM model, much work
has been done on shortest path problems. Dijkstra’s algorithm [6], when implemented
using Fibonacci heaps [11], is the best-known algorithm for the SSSP-problem for
general graphs (with nonnegative edge weights). It runs in O(|E| + |V | log |V |) time,
where |E| and |V | are the numbers of edges and vertices in the graph, respectively.
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The APSP-problem can be solved by applying Dijkstra’s algorithm to all vertices
of the graph, which results in an O(|V‖E| + |V |2 log |V |) running time. For planar
graphs, an O(N

√
logN )-algorithm for the SSSP-problem and an O(N 2)-algorithm for

the APSP-problem, where N = |V |, are given in [9]. A linear-time SSSP-algorithm for
planar graphs is presented in [15].
An alternate approach is to preprocess the given graph for online shortest path

queries. For graphs for which an O(
√

N )-separator theorem holds (e.g., planar graphs),
an O(S)-space data structure (N 6 S6N 2) that answers distance queries in O(N 2=S)
time is presented in [8]. The corresponding shortest path can be reported in time pro-
portional to the length of the reported path. (For planar graphs slightly better bounds
are given.)
It is known that every tree or outerplanar graph has a 2

3 -separator of size O(1).
In [17] it is shown that every planar graph has a 2

3 -separator of size O(
√

N ), and a
linear-time algorithm for 8nding such a separator is given. Other results include separa-
tor algorithms for graphs of bounded genus [1] and for computing edge-
separators [7].

Previous results in the PRAM model: A PRAM algorithm for computing a 2
3 -

separator of size O(
√

N ) for a planar graph is presented in [12]. The algorithm runs
in O(log2 N ) time and uses O(N 1+�) processors, where � ¿ 0 is a constant. In [13]
a PRAM algorithm is given that computes a planar separator in O(logN ) time using
O(N=logN ) processors, provided that a breadth-8rst spanning tree (BFS-tree) of the
graph is given.

Previous results in external memory: In the PDM, sorting, permuting, and scanning
an array of size N take sort(N ) = O((N=DB) logM=BN=B); perm(N ) = O(min{N; sort
(N )}), and scan(N )=O(N=DB) I=Os [23,24]. For a comprehensive survey on external
memory algorithms, refer to [23]. The only external-memory shortest path algorithm
known to us is the SSSP-algorithm in [4], which takes O(|V |=D+(|E|=DB) logM=B|E|=B)
I=Os with high probability, on a random graph with random weights. We do not know
of previous work on computing separators in external memory; but one can use the
PRAM-simulation results in [3] together with the results of [12,13] cited above. Un-
fortunately, the PRAM simulation introduces O(sort(N )) I=Os for every PRAM step,
and so the resulting I=O complexity is not attractive for this problem.

1.3. Our results

The main results of this paper are:

(1) A blocking to store a rooted tree T in external memory so that a path of length
K towards the root can be traversed in at most �K=�DB�+3 I=Os, for 0¡ � ¡ 1.
If �¿ 3−√

5
2 , the blocking uses at most (2+2=(1−�))|T |=B+D blocks of external

storage. For � ¡ 3−√
5

2 , a slight modi8cation of the approach reduces the amount
of storage to (1 + 1=(1 − 2�))|T |=B + D blocks. For 8xed �, the tree occupies
optimal O(|T |=B) blocks of external storage and traversing a path takes optimal
O(K=DB) I=Os. Using the best previous result [20], the tree would use the same
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amount of space within a constant factor, but traversing a path of length K would
take O(K=logd(DB)) I=Os, where d is the maximal degree of the vertices in the
tree (see Section 3).

(2) An external memory algorithm which computes a separator consisting of O(
√

N )
vertices for an embedded planar graph in O(sort(N )) I=Os, provided that a BFS-
tree of the graph is given. Our algorithm is based on the classical planar separator
algorithm in [17]. The main challenge in designing an external memory algorithm
for this problem is to determine a good separator corresponding to a fundamental
cycle (see Section 4).

(3) An external memory algorithm which triangulates an embedded planar graph in
O(sort(N )) I=Os (see Section 5).

(4) An external memory data structure for answering shortest path queries online. Re-
sults 1–3, above, are the main techniques that we use to construct this data struc-
ture. Our data structure uses O(N 3=2=B) blocks of external memory and answers
online distance and shortest path queries in O(

√
N=DB) and O((

√
N + K)=DB)

I=Os, respectively, where K is the number of vertices on the reported path (see
Section 6).

Our separator and triangulation algorithms may be of independent interest, since graph
separators are used in the design of eIcient divide-and-conquer graph algorithms and
many graph algorithms assume triangulated input graphs.

2. Preliminaries

2.1. De3nitions

An undirected graph (or graph for short) G = (V; E) is a pair of sets V and E,
where V is called the vertex set and E is called the edge set of G. Each edge in E
is an unordered pair {v; w} of vertices v and w in V . Unless stated otherwise, we use
|G| to denote the cardinality of V . In a directed graph, every edge is an ordered pair
(v; w). In this case, we call v the source vertex and w the target vertex of edge (v; w).
A graph G is planar if it can be drawn in the plane so that no two edges intersect,
except possibly at their endpoints. Such a drawing de8nes for each vertex v of G, an
order of the edges incident to v clockwise around v. We call G embedded if we are
given this order for every vertex of G. By Euler’s formula, |E|6 3|V | − 6 for planar
graphs.
A path from a vertex v to a vertex w in G is a list p = 〈v = v0; v1; : : : ; vk = w〉

of vertices, where {vi; vi+1}∈E for 06 i ¡ k. The length of path p is the number
k of edges in the path. We call p a cycle if v0 = vk . Paths and cycles are de8ned
analogously for directed graphs. A directed acyclic graph (DAG) is a directed graph
that does not contain cycles of length ¿ 0. A graph G is connected if there is a path
between any two vertices in G. A subgraph G′=(V ′; E′) of G is a graph with V ′ ⊆ V
and E′ ⊆ E. Given a subset X ⊆ V , we denote by G[X ] = (X; E[X ]) the subgraph of
G induced by X , where E[X ] = {{v; w}∈E: {v; w} ⊆ X }. The graph G–X is de8ned
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as G[V \X ]. The connected components of G are the maximal connected subgraphs of
G. A tree with N vertices is a connected graph with N − 1 edges. A rooted tree is a
tree with a distinguished root vertex. The level or depth of a vertex v in a rooted tree
is the number of edges on the path from v to the root. For an edge {v; w} in a tree T
we say that v is w’s parent and w is v’s child if w’s depth in T is greater than v’s. A
vertex v is an ancestor of a vertex w, and w is a descendant of v, if v is w’s parent
or it is an ancestor of w’s parent. A common ancestor of two vertices v and w is a
vertex u which is an ancestor of v and w. The lowest common ancestor (lca)(v; w) of
v and w is the common ancestor of v and w at maximum depth among all common
ancestors of v and w. A preorder numbering of a rooted tree T with N vertices is an
assignment of numbers 0 through N − 1 to the vertices of T such that every vertex
has a preorder number less than any of its descendants and the preorder numbers of
each vertex and all its descendants are contiguous. Given an ordering of the children
of each node, a lexicographical numbering of T is a preorder numbering of T such
that the preorder numbers of the children of any node, sorted by the given order, are
increasing. An independent set I ⊆ V in a graph G is a set of vertices such that for
every vertex v∈ I and every edge {v; w}∈E, w �∈ I . That is, no two vertices in I are
adjacent. A k-coloring of a graph G is an assignment f :V → {1; : : : ; k} of colors to
the vertices of G such that for any edge {v; w}∈E, f(v) �=f(w).

A spanning tree of a graph G=(V; E) is a tree T =(V; F), where F ⊆ E. A BFS-tree
is a rooted spanning tree T of G such that for any edge {v; w} in G, the levels of v
and w in T diPer by at most 1.
Let c :E → R+ be an assignment of non-negative costs to the edges of G. The cost

‖p‖ of a path p = 〈v0; : : : ; vk〉 is de8ned as ‖p‖=∑k−1
i=0 c({vi; vi+1}). A shortest path

&(v; w) is a path of minimal cost from v to w.
Let w :V → R+ be an assignment of non-negative weights to the vertices of G

such that
∑

v∈V w(v)6 1. The weight w(H) of a subgraph H of G is the sum of the
weights of the vertices in H . An �-separator, 0¡ � ¡ 1, of G is a subset S of V such
that none of the connected components of G − S has weight exceeding �.
For a given DAG G = (V; E), a topological ordering is a total order O ⊆ V × V

such that for every edge (v; w)∈E, (v; w)∈O.
We will describe results on paths in a rooted tree which originate at an arbitrary

node of the tree and proceed to the root. We will refer to such paths as bottom-up
paths.
For a given block size B, a blocking of a graph G = (V; E) is a decomposition of

V into vertex sets B1; : : : ;Bq such that V =
⋃q

i=1 Bi and |Bi|6B. The vertex sets Bi

do not have to be disjoint. Each such vertex set Bi corresponds to a block in external
memory where its vertices are stored.

2.2. External memory techniques

First, we introduce some useful algorithmic techniques in external memory which
we will use in our algorithms. These include external memory stacks and queues, list
ranking, time-forward processing and their applications to processing trees.
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We have already observed that scanning an array of size N takes O(scan(N )) I=Os
using at least D blocks of internal memory to hold the D blocks currently being
scanned. Using 2D blocks of internal memory, a series of N stack operations can be
executed in O(scan(N )) I=Os. These 2D blocks hold the top-most elements on the
stack. Initially, we hold the whole stack in internal memory. As soon as there are 2DB
elements on the stack, and we want to push another element on the stack, we swap
the DB bottom-most elements to external memory. This takes one I=O. Now it takes
at least DB stack operations (DB pushes to 8ll the internal buPer again or DB pops
to have no elements left in internal memory) before the next I=O becomes necessary.
Thus, we perform at most one I=O per DB stack operations, and N stack operations
take O(N=DB)=O(scan(N )) I=Os. Similarly, to implement a queue, we need 2D blocks
of internal memory, D to buPer the inputs at the end of the queue and D to buPer the
outputs at the head of the queue.
The list-ranking problem is the following: Given a singly linked list L and a pointer

to its head, compute for every node of L its distance to the tail of L. A common
variant is to assign weights to the nodes of L and to compute for every node the
weight of the sublist of L starting at this node. In [3], a recursive list-ranking procedure
was developed. If the list has size at most M , the problem can be solved in internal
memory. Reading the input and writing the output take O(scan(N )) I=Os in this case.
If the list contains more than M nodes the procedure 3-colors the list and removes the
largest monochromatic set of vertices. For every removed vertex x, the weight of x’s
predecessor y is updated to w(y) = w(y) + w(x). After recursively applying the same
technique to the remaining sublist, which has size at most 2

3N , the removed vertices are
reintegrated into the list and their ranks computed. In [3] it is shown that the 3-coloring
of the list and the removal and reintegration of the independent set can be done in
O(sort(N )) I=Os. Thus, this procedure takes T (N )6T ( 23N )+O(sort(N ))=O(sort(N ))
I=Os. In [26] it is shown that the 3-coloring technique can be extended to rooted trees,
which allows the application of the same framework to the problem of computing the
level of every node in a rooted tree. Alternatively, one can use the Euler-tour technique
together with the list-ranking technique to compute these levels.
The Euler-tour technique can be described as follows: Given a rooted tree T , we

replace every edge {v; w} by two directed edges (v; w) and (w; v). For every vertex v,
let e0; : : : ; ek−1 be the incoming edges of v and e′0; : : : ; e

′
k−1 be the outgoing edges of

v, where e′i is directed opposite to ei. We de8ne edge e′(i+1) mod k to be the successor
of edge ei, for 06 i ¡ k. At the root of T we de8ne edge e′k−1 to have no successor.
This de8nes a traversal of the tree, starting at the root and traversing every edge of the
tree exactly twice, once per direction. To compute the levels of all vertices in T , for
instance, we assign weight 1 to all edges directed from parents to children and weight
−1 to all edges directed from children to parents. Then we can apply the list-ranking
technique to compute the levels of the endpoints of all edges.
If we choose the order of the edges e0; : : : ; ek−1 carefully, we can use the Euler-tour

technique to compute a lexicographical numbering of a given rooted tree. Recall that
in this case we are given a left to right ordering of the children of every vertex. We
construct the Euler tour by choosing for every vertex v edge e0 to be the edge connect-
ing v to its parent. The remaining edges e1; : : : ; ek−1 are the edges connecting v to its
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children, sorted from left to right. It is easy to see that the Euler tour thus constructed
traverses the tree T lexicographically. To compute the lexicographical numbers of all
vertices, we assign weight 1 to edges directed from parents to children and weight 0 to
all remaining edges. After applying list ranking to this list, the lexicographical number
of a vertex v is the rank of the edge with weight 1 and target vertex v.
An important ingredient of the 3-coloring technique in [3] as well as most of the

algorithms presented in this paper is time-forward processing, which was introduced in
[3]. This technique is useful for processing DAGs. We view the DAG as a circuit and
allow sending a constant amount of information along every edge. Every node can use
the information sent along its incoming edges to compute a function of these values
and then send a constant amount of information along each of its outgoing edges. The
technique presented for this problem in [3] has two constraints: (1) the fan-in of the
vertices in the DAG has to be bounded by some constant d and (2) the ratio m=M=B
has to be large enough. These constraints have been removed in [2] using the following
elegant solution: Given a DAG G, sort the vertex set topologically, which de8nes a
total order on this set. Then evaluate the nodes in their order of appearance, thereby
ensuring that all nodes u with an outgoing edge (u; v) have been evaluated before
v. Every such node u inserts the information it wants to send to v into a priority
queue, giving it priority v. Node v performs din(v) DELETEMIN operations to retrieve
its inputs, where din(v) is the fan-in of v. It is easy to verify that at the time when
v is evaluated, the din(v) smallest elements in the priority queue have indeed priority
v. After sorting the vertex and edge sets of the DAG, this technique performs 2|E|
priority queue operations, which take O(sort(|E|)) I=Os [2]. Thus, this technique takes
O(sort(|V |+ |E|)) I=Os.

3. Blocking rooted trees

In this section, we consider the following problem: Given a rooted tree T , store it
in external memory so that for any query vertex v∈T , the path from v to the root
of T can be reported I=O-eIciently. One can use redundancy to reduce the number
of blocks that have to be read to report the path. However, this increases the space
requirements. The following theorem gives a trade-oP between the space requirements
of the blocking and the I=O-eIciency of the tree traversal.

Theorem 1. Given a rooted tree T of size N and a constant �; 0¡ � ¡ 1; we can store
T on D parallel disks so that traversing any bottom-up path of length K in T takes at
most �K=�DB�+3 I=Os. The amount of storage used is at most (2+2=(1−�))N=B+D
blocks for �¿ 3−√

5
2 and at most (1 + 1=(1− 2�))N=B + D blocks for � ¡ 3−√

5
2 .

Proof. This follows from Lemmas 2 and 3 below.

Intuitively, our approach is as follows. We cut T into layers of height �DB. This
divides every bottom-up path of length K in T into subpaths of length �DB; each
subpath stays in a particular layer. We ensure that each such subpath is stored in
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Fig. 1. A tree is cut into layers of height �DB. (Here, �DB=2.) The tree is cut along the dashed lines. The
resulting subtrees Ti are shaded.

at most D blocks, and each of the D blocks is stored on a diPerent disk. Thus each
subpath can be traversed at the cost of a single I=O operation. This gives us the desired
I=O-bound because any bottom-up path of length K crosses at most �K=�DB�+1 layers
and is thus divided into at most �K=�DB�+ 1 subpaths.
More precisely, let h represent the height of T , and let h′ = �DB be the height

of the layers to be created (we assume that h′ is an integer). We cut T into layers
L0; : : : ; L�h=h′�−1, where layer Li is the subgraph of T induced by the vertices on levels
ih′ through (i+1)h′−1 (see Fig. 1). Each layer is a forest of rooted trees, whose heights
are at most h′. Suppose that there are r such trees, T1; : : : ; Tr , taken over all layers.
We decompose each tree Ti, 16 i6 r, into possibly overlapping subtrees Ti;0; : : : ; Ti; s

having the following properties:

Property 1. |Ti; j|6DB; for all 06 j6 s.

Property 2.
∑s

j=0 |Ti; j|6 (1 + 1=(1− �))|Ti|.

Property 3. For every leaf l of Ti; there is a subtree Ti; j containing the whole path
from l to the root of Ti.

Lemma 2. Given a rooted tree Ti of height at most �DB; 0¡ � ¡ 1; we can decompose
Ti into subtrees Ti;0; : : : ; Ti; s having Properties 1–3.

Proof. If |Ti|6DB; we “decompose” Ti into one subtree Ti;0 = Ti. Then Properties
1–3 trivially hold. So assume that |Ti|¿ DB.
Given a preorder numbering of the vertices of Ti, we denote every vertex by its

preorder number. Given a parameter 0¡ t ¡ DB to be speci8ed later, let s=�|Ti|=t�−1.
We de8ne vertex sets V0; : : : ; Vs, where Vj={jt; : : : ; (j+1)t−1} for 06 j6 s (see Fig.
2(a)). The vertex set Vs may contain less than t vertices. The tree Ti; j = Ti(Vj) is the
subtree of Ti consisting of all vertices in Vj and their ancestors in Ti (see Fig. 2(b)).
We claim that these subtrees Ti; j have Properties 1–3, if we choose t appropriately.
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Fig. 2. (a) A rooted tree Ti with its vertices labelled with their preorder numbers. Assuming that t=8, V0 is
the set of black vertices, V1 is the set of gray vertices, and V2 is the set of white vertices. (b) The subtrees
Ti(V0); Ti(V1), and Ti(V2) from left to right.

Property 3 is guaranteed because for every leaf l, the subtree Ti; j, where l∈Vj,
contains the whole path from l to the root of Ti. To prove Property 1, let Aj be the
set of vertices in Ti; j which are not in Vj. Every such vertex x is an ancestor of
some vertex y¿ jt. That is, x ¡ y. As x �∈ Vj and the vertices in Vj are numbered
contiguously, x ¡ jt. Vertex y is in the subtree of Ti rooted at x and x ¡ jt6y. Thus,
vertex jt must be in this subtree as well because the vertices in the subtree rooted at x
are numbered contiguously. Hence, every vertex in Aj is an ancestor of vertex jt. This
implies that |Aj|6 �DB because jt has at most one ancestor at each of the at most
�DB levels in Ti. Hence, |Ti; j| = |Aj| + |Vj|6 �DB + t. Choosing t = DB − �DB, we
guarantee that every subtree Ti; j has size at most DB. Now Property 2 holds because

s∑
j=0

|Ti; j|6
�|Ti|=(DB−�DB)�−1∑

j=0

DB (1)

6
( |Ti|

DB − �DB
+ 1

)
DB (2)

=
1

1− �
|Ti|+ DB (3)

¡
(

1
1− �

+ 1
)
|Ti|: (4)

The step from lines (3) to (4) uses the fact that |Ti|¿ DB.

Lemma 3. If a rooted tree T of size N is decomposed into subtrees Ti; j such that
Properties 1–3 hold; T can be stored on D parallel disks so that any bottom-up path
of length K in T can be traversed in at most �K=�DB�+ 3 I=Os; for 0¡ � ¡ 1. For
�¿ 3−√

5
2 ; the amount of storage used is at most (2 + 2=(1− �))N=B+D blocks. For

� ¡ 3−√
5

2 ; the tree occupies at most (1 + 1=(1− 2�))N=B + D blocks.

Proof. We consider D disks of block size B as one large disk divided into superblocks
of size DB. Thus; by Property 1; each subtree Ti; j 8ts into a single superblock and can
be read in a single I=O.
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A bottom-up path p of length K in T crosses at most k = �K=�DB�+1 layers. This
divides p into k maximal subpaths such that none of them crosses more than one layer.
Each such subpath p′ is a leaf-to-root path in some subtree Ti, or a subpath thereof.
Thus, by Property 3, there exists a subtree Ti; j that contains the whole of the subpath
p′. That is, each subpath p′ can be accessed in a single I=O. Therefore, the traversal
of p takes at most �K=�DB�+ 1 I=Os.
By Property 2, all subtrees Ti; j together use at most (1+ 1=(1− �))

∑r
i=0 |Ti|= (1+

1=(1−�))N space. Initially, we store every subtree Ti; j in a separate superblock, which
may leave many superblocks sparsely populated. As long as there are at least two
superblocks that are at most half full we keep merging pairs of superblocks. Finally,
if we are left with a single half full superblock we try to 8nd a superblock that can be
merged with it. If we 8nd one, we merge the two superblocks. Otherwise, the half-full
superblock together with any other superblock contains more than DB vertices. All other
superblocks are at least half full. Thus, on average, each superblock is at least half full,
and we use �(2− 2=(1− �))N=DB� superblocks, i.e., D�(2− 2=(1− �))N=DB�6 (2 +
2=(1− �))N=B + D blocks to store all subtrees Ti; j.
For � ¡ 3−√

5
2 ≈ 0:38; 1 + 1=(1 − 2�)¡ 2 + 2=(1 − �). In this case, we apply the

following strategy. We cut the given tree T into layers of height 2�DB. We guarantee
that the vertices of every subtree Ti; j are stored contiguously, but not necessarily in
a single block. As every tree Ti; j has size at most DB, it is spread over at most two
blocks. Thus, two I=Os suIce to traverse any leaf-to-root path in a subtree Ti; j, and
traversing a path of length K takes at most 2(�K=2�DB�+1)6 �K=�DB�+3 I=Os. On
the other hand, we guarantee that all superblocks except for the last one are full. Thus,
we use �(1 − 1=(1 − 2�))N=DB� superblocks, i.e., D�(1 − 1=(1 − 2�))N=DB�6 (1 +
1=(1− 2�))N=B + D blocks of external memory.

4. Separating embedded planar graphs

We now present an external-memory algorithm for separating embedded planar
graphs. Our algorithm is based on the classical linear-time separator algorithm of [17].
It computes a 2

3 -separator S of size O(
√

N ) for a given embedded planar graph G in
O(sort(N )) I=Os, provided that a BFS-tree of the graph is given. 2

The input to our algorithm is an embedded planar graph G and a spanning forest
F of G. Every tree in F is a BFS-tree of the respective connected component. (In
the remainder of this section, we call F a BFS-forest.) The graph G is represented
by its vertex set V and its edge set E. To represent the embedding, let the edges
incident to each vertex v be numbered in counterclockwise order around v, starting
at an arbitrary edge as the 8rst edge. This de8nes two numbers nv(e) and nw(e), for
every edge e = {v; w}. Let these numbers be stored with e. The spanning forest F is
given implicitly by marking every edge of G as “tree edge” or “non-tree edge” and
storing with each vertex v∈V , the name of its parent in F .

2 The currently best-known algorithm for computing a BFS-tree [19] takes O(|V |+ |E|=|V |sort(|V |)) I=Os.
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4.1. Framework of the algorithm

First, we compute the connected components of the given graph G. If there is a
component whose weight is ¿ 2

3 we compute a separator S of that component. Then
we compute the connected components of G–S, which gives the desired partition of G
into subgraphs of weight at most 2

3 each.
The connected components can be computed in O(sort(N )) I=Os [3]. In the next

subsection, we describe how to compute the separator S using O(sort(N )) I=Os, leading
to the following theorem.

Theorem 4. Given an embedded planar graph G with N vertices and a BFS-forest F
of G; a 2

3 -separator of size at most 2
√
2
√

N for G can be computed in O(sort(N ))
I=Os.

4.2. Separating connected planar graphs

In this section, we present an external-memory algorithm for computing a 2
3 -separator

of size O(
√

N ) for a connected embedded planar graph G of size N and weight at
least 2

3 , provided that a BFS-tree T of G is given. We assume that G is triangulated. If
it is not, it can be triangulated in O(sort(N )) I=Os using the algorithm in Section 5. 3

Also, we assume that no vertex has weight exceeding 1
3 because otherwise S = {v},

where w(v)¿ 1
3 , is trivially a 2

3 -separator of G.
The algorithm (Algorithm 1) is based on the following observation: In a BFS-tree T

of a given graph G, non-tree edges connect vertices on the same level or on consecutive
levels. Thus, the removal of all vertices of any level in T disconnects the subgraph of
G corresponding to the upper part of T from the subgraph corresponding to the lower
part (see Fig. 3(a)). We will 8nd two levels l0 and l2 that divide the graph into three
parts G1; G2, and G3, where w(G1)6 2

3 , w(G3)6 2
3 , and the number of vertices on

levels l0 and l2 is at most 2
√
2
√

N − 2(l2 − l0 − 1) (Step 2; see Fig. 3(b)). Thus, G1

and G3 already have the desired weight, and we can aPord to add up to two vertices
per level between l0 and l2 to the separator, in order to cut G2 into pieces whose
individual weights are at most 2

3 (Step 3; see Fig. 3(c)).

3 Note, however, that the graph has to be triangulated before computing the BFS-tree. Otherwise, T might
not be a BFS-tree of the triangulation anymore.

SEPARATECONNECTED(G; T ):

1: Label every vertex in T with its level in T .
2: Compute levels l0 and l2 cutting G into subgraphs G1, G2, and G3 such

that w(G1)6 2
3 ; w(G3)6 2

3 and L(l0) + L(l2) + 2(l2 − l0 − 1)6 2
√
2
√

N .
3: Find a 2

3 -separator S′ of size at most 2(l2 − l0 − 1) for G2.
4: Remove the vertices on levels l0 and l2 and in S′ and all edges incident to

these vertices from G and compute the connected components of G − S.

Algorithm 1: Separating a connected embedded planar graph.
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Fig. 3. Illustrating the three major steps of the separator algorithm.

Lemma 5. Algorithm 1 computes a 2
3 -separator S of size at most 2

√
2
√

N for an
embedded connected planar graph G with N vertices in O(sort(N )) I=Os; provided
that a BFS-tree of G is given.

Proof. First; let us assume that Step 3 computes the desired separator of G2 in O(sort
(N )) I=Os. Then the major diIculty in Algorithm 1 is 8nding the two levels l0 and l2
in Step 2. For a given level l; let L(l) be the number of vertices on level l and W (l)
be the weight of the vertices on level l. We 8rst compute the level l1 closest to the
root such that

∑
l6l1 W (l)¿ 1

2 (see Fig. 3(a)). Let K =
∑

l6l1 L(l). Then we compute
levels l06 l1 and l2 ¿ l1 such that L(l0) + 2(l1 − l0)6 2

√
K and L(l2) + 2(l2 − l1 −

1)6 2
√

N − K (see Fig. 3(b)). The existence of level l1 is obvious. The existence of
levels l0 and l2 has been shown in [17]. It is easy to see that levels l0 and l2 have
the desired properties.
Now we turn to the correctness of Step 3. In this step, we shrink levels 0 through

l0 to a single root vertex r of weight 0. Next, we remove levels l2 and below, and
retriangulate the resulting graph, obtaining a triangulation G′ (see Fig. 3(c)). Then we
use the techniques of Section 4.3 to compute a fundamental cycle C of G′ which is
a 2

3 -separator of G′. Graph G2 is a subgraph of G′. Thus, G2 ∩ C is a 2
3 -separator of

G2. The fundamental cycle can have length at most 2(l2 − l0) − 1. If the length is
indeed 2(l2 − l0) − 1, C contains the root vertex r, which is not part of G2. Thus,
S ′=G2∩C has size at most 2(l2− l0−1), as desired. When shrinking levels 0 through
l0 to a single vertex we have to be a bit careful because we have to maintain the
embedding of the graph. To do this we number the vertices of T lexicographically
and sort the vertices v1; : : : ; vk on level l0 + 1 by increasing numbers (i.e., from left to
right). Let wi be the parent of vi on level l0. Then, we replace edge {vi; wi} by edge
{r; vi} and assign nvi({r; vi})=nvi({vi; wi}) and nr({r; vi})= i. This places edges {r; vi}
counterclockwise around r and guarantees that edge {r; vi} is embedded between the
appropriate edges incident to vi. We construct a BFS-tree T ′ of G′ by adding the edges
{r; vi} to the remains of T in G′. It is easily veri8ed that T ′ is a spanning tree of G′.
It is not so easy to see that T ′ is a BFS-tree of G′, which is crucial for simplifying
Algorithm 2 in Section 4.3, which computes the desired separator for G′ and thus G2.

Consider the embedding of G in the plane (see Fig. 4(a)). Then, we de8ne Rl0 to
be the union of triangles that have at least one vertex at level l0 or above in T (the
outer face in Fig. 4(a)). Analogously, we de8ne Rl2 to be the union of triangles that
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Fig. 4. (a) An embedding of a given graph G. Regions Rl0 ; Rl2 , and R′ are the white, light gray, and dark
gray parts of the plane, respectively. The additional curves in region Rl0 are level l0 + 1 vertices. (b) In
Step 3 of Algorithm 1, we replace the graph in region Rl0 by a single root vertex r and connect it to all
vertices at level l0 + 1 (dotted curves). We also remove the interior of region Rl2 . All non-triangular faces
like face f have to be triangulated.

have at least one vertex at level l2 or below in T (the light gray interior faces in Fig.
4(a)). The embedding of G2 then lies in R′=R2 \ (Rl0 ∪Rl2 ) (the dark gray regions in
Fig. 4(a)). The boundary of R′ is a set of edge-disjoint cycles, and the interior of R′

is triangulated. Also, note that no vertex at level at most l0 can be on the boundary
between Rl0 and R′ because all incident triangles are in Rl0 . On the other hand, for a
vertex at level at least l0 + 2 to be on that boundary it has to be on the boundary of a
triangle that has a vertex at level at most l0 on its boundary, which is also impossible.
Thus, the boundary between Rl0 and R′ is formed by level l0 + 1 vertices only. (Note
that some level l0 +1 vertices are interior to Rl0 (the additional curves in region Rl0 in
Fig. 4(a)).) Analogously, the boundary between Rl2 and R′ is formed by level l2 − 1
vertices only. When shrinking the vertices above and including level l0 to a single root
vertex, we can think of this as removing the parts of G in Rl0 and placing the new root
vertex r into Rl0 (see Fig. 4(b)). The tree edges connecting r to level l0 + 1 vertices
are embedded in Rl0 . As we did not alter the triangulation of R′ (i.e., G2), the only
faces of G′ where the triangulation algorithm adds diagonals are in Rl0 or Rl2 . As all
vertices on the boundary of Rl0 are already connected to r, the triangulation algorithm
only adds edges connecting two level l0 + 1 or two level l2 − 1 vertices, thereby not
destroying the BFS-property of T ′ with respect to G′.
Now, we analyze the complexity of Algorithm 1. Step 1 takes O(sort(N )) I=Os (see

Section 2.2). In Step 2, we sort the vertices by their levels and scan it until the total
weight of the vertices seen so far exceeds 1

2 . We continue the scan until we reach
the end of a level. While scanning we maintain the count K of visited vertices. We
scan the vertex list backward, starting at l1, and count the number of vertices on each
visited level. When we 8nd a level l0 with L(l0)+2(l1− l0)

√
K we stop. In the same

way we 8nd l2 scanning forward, starting at the level following l1. As we sort and
scan a constant number of times, Step 2 takes O(sort(N )) I=Os. Removing all levels
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Fig. 5. A non-tree edge e and the corresponding fundamental cycle C(e) shown in bold. R1(e) is the region
inside the cycle and R2(e) is the region outside the cycle.

below and including l2 takes O(sort(N )) I=Os: We sort the vertex set and 8rst sort the
edges by their 8rst endpoints; in a single scan we mark all edges that have their 8rst
endpoint on level l2 or below; after sorting the edges by their second endpoints, we
scan the edge list again to mark all edges with their second endpoints on level l2 or
below; 8nally, it takes a single scan to remove all marked vertices and edges. Shrinking
levels 0 through l0 to a single root vertex takes O(sort(N )) I=Os: O(sort(N )) I=Os
to number the vertices lexicographically, O(sort(N )) I=Os to sort the vertices on level
l0 + 1 and another scan to replace edges {vi; wi} by edges {r; vi}. By Theorem 7, we
can retriangulate the resulting graph in O(sort(N )) I=Os. The removal of the vertices
and edges in G1 can be done in a similar way as for G3. The rest of Step 3 takes
O(sort(N )) I=Os by Lemma 6. Steps 2 and 3 have marked the vertices on levels l0 and
l2 and in S ′ as separator vertices. Then we use the same technique as for removing
G3 to remove all separator vertices and incident edges in O(sort(N )) I=Os. Computing
the connected components of G − S takes O(sort(N )) I=Os [3].

4.3. Finding a small simple cycle separator

Let G′ be the triangulation as constructed at the beginning of Step 3 of Algorithm
1 and T ′ be the BFS-tree of G′ constructed from T . Every non-tree edge e = {v; w}
in G′ de8nes a fundamental cycle C(e) consisting of e itself and the two paths in
the tree T ′ from the vertices v and w to the lowest common ancestor u of v and w
(see Fig. 5). (Note that in a BFS-tree, u is distinct from both v and w.) Given an
embedding of G′, any fundamental cycle C(e) separates G′ into two subgraphs R1(e)
and R2(e), one induced by the vertices embedded inside C(e) and the other induced by
those embedded outside. In [17] it is shown that there is a non-tree edge e in G′ such
that R1(e) and R2(e) have weights at most 2

3 each, provided that no vertex has weight
exceeding 1

3 and G′ is triangulated. Moreover, for any non-tree edge e, the number of
vertices on the fundamental cycle C(e) is at most 2height(T ′) − 1 = 2(l2 − l0) − 1.
Next, we show how to 8nd such an edge and the corresponding fundamental cycle
I=O-eIciently.
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We compute labels for the non-tree edges of G′ so that we can compute the weights
w(R1(e)) and w(R2(e)) of regions R1(e) and R2(e) only using the labels stored with
edge e. Then we can 8nd the edge e whose corresponding fundamental cycle is a
2
3 -separator in a single scan over the edge set of G′.
Consider Fig. 5. Given a lexicographical numbering of the vertices in T ′, denote the

number assigned to vertex x by nl(x). For a given edge e={v; w}, we denote by v the
endpoint with smaller lexicographical number, i.e., nl(v)¡ nl(w). Then the vertices in
the white and striped subtrees and on the path from u to w are exactly the vertices
with lexicographical numbers between nl(v) and nl(w). We compute for every vertex
x a label 3l(x) =

∑
nl(y)6nl(x) w(y). Then the weight of the vertices in the white and

striped subtrees and on the path from u to w is 3l(w)− 3l(v). Given for every vertex
x the weight 4(x) of the vertices on the path from x, inclusive, to the root r of T ′, the
weight of the vertices on the path from u to w, including w but not u, is 4(w)− 4(u),
and the weight of the white and striped subtrees is 3l(w) − 3l(v) + 4(w) − 4(u). It
remains to add the weight of the cross-hatched trees and to subtract the weight of the
white trees to obtain the weight w(R1(e)) of region R1(e).

For every edge e, we compute a label �(e). If e = {v; w} is a tree edge and v is
further away from the root of T ′ than w, then �(e) is the weight of the subtree of
T ′ rooted at v. If e is a non-tree edge, �(e) = 0. Let e0; : : : ; ek be the list of edges
incident to a vertex x, sorted counterclockwise around x and so that e0 = {x; p(x)},
where p(x) denotes x’s parent in T ′. Then we de8ne �x(e0)=0 and �x(ei)=

∑i
j=1 �(ej)

for i ¿ 0. Now the weight of the white subtrees in Fig. 5 is �v(e), and the weight of
the cross-hatched subtrees is �w(e). Thus, we can compute the weight of region R1(e)
as

w(R1(e)) = 3l(w)− 3l(v) + 4(w)− 4(u) + �w(e)− �v(e): (5)

It is easy to see that the weight of region R2(e) is

w(R2(e)) = w(G′)− w(R1(e))− 4(v)− 4(w) + 24(u)− w(u) (6)

(the weight of the whole graph minus the weight of the interior region minus the
weight of the fundamental cycle). Assuming that all these labels are stored with e, we
can scan the edge set of G′ and compute for every visited non-tree edge the weights
of R1(e) and R2(e) using Eqs. (5) and (6). It remains to show how to compute these
labels. We provide the details in the proof of the following lemma.

CYCLESEPARATOR(G′; T ′):

1: Compute the vertex and edge labels required to compute the weights of
regions R1(e) and R2(e), for every non-tree edge e.

a: Label every vertex x in G′ with a tuple A(x) = (W (x); nl(x); 4(x); 3l(x)),
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where
• W (x) is the weight of the subtree of T ′ rooted at x,
• nl(x) is x’s lexicographical number in T ′,
• 4(x) is the total weight of all ancestors of x in T ′, inclusive, and
• 3l(x) =

∑
nl(y)6nl(x) w(y) (“weighted lexicographical number of x”).

b: For every edge e = {v; w},
(1) Compute the lowest common ancestor u of v and w and copy the tuples

A(u), A(v), and A(w) to e, and
(2) Compute a label �(e) de8ned as

�(e) =
{
0 if e is a non-tree edge
W (v) if e is a tree edge and w = p(v):

c: For every vertex x let e0; : : : ; ed be the set of edges incident to x sorted
counterclockwise around x and so that e0 = {x; p(x)}. Compute labels

�x(ei) =
{
0 if i = 0
�x(ei−1) + �(ei) if i ¿ 0:

2: Scan the edge list of G′ and compute for every non-tree edge e, the weights
of R1(e) and R2(e) using equations (5) and (6). Choose a non-tree edge e
such that w(R1(e))6 2

3 and w(R2(e))6 2
3 .

3: Report the fundamental cycle C(e).

Algorithm 2: Finding a simple cycle separator in a triangulation.

Lemma 6. Given a triangulated graph G′ with N vertices and a BFS-tree T ′ of G′;
Algorithm 2 takes O(sort(N )) I=Os to compute a 2

3 -simple cycle separator of size at
most 2height(T ′)− 1 for G′.

Proof. The labelling of vertices in Step 1a takes O(sort(N )) I=Os: The subtree weights
W (v) and the weighted levels 4(v) of the vertices can be computed using time-forward
processing in the tree. To compute the subtree weights; we process the tree bottom-up.
To compute the weighted levels; we process the tree top-down. In Section 2.2; we have
described how to compute a lexicographical numbering of T ′ in O(sort(N )) I=Os. To
compute 3l(x) for all vertices x; we sort the vertex set of T ′ by increasing numbers
nl(x) and then scan this sorted list to compute labels 3l(x) as the pre8x sums over the
weights w(x).
As there are at most 2N −5 non-tree edges in T ′, we have to compute O(N ) lowest

common ancestors in T ′ in Step 1b, which takes O(sort(N )) I=Os [3]. To copy the
labels of u, v, and w to edge e={v; w}, we 8rst sort the vertex set by increasing vertex
names. Then we sort the edge set three times, once by each of the values of u, v, and
w. After each sort, we scan the vertex and edge sets to copy the tuples A(u), A(v),
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and A(w), respectively, to the edges. Computing labels �(e) then takes an additional
scan over the edge set of T ′.
To compute labels �x(e) in Step 1c, we create a list L1 containing two tuples

(v; nv(e); p(v); w; �(e)) and (w; nw(e); p(w); v; �(e)) for every edge e = {v; w}. We sort
this list lexicographically, so that (the tuples corresponding to) the edges incident to
vertex x are stored consecutively, sorted counterclockwise around x. Then we scan L1

and compute a list L2 of triples (v; w; �v(e)) and (v; w; �w(e)). Note that in L1, the edge
(x; p(x)) is not necessarily stored as the 8rst edge in the sublist of edges incident to
x causing us to skip some edges at the beginning of the sublist until we 8nd edge
(x; p(x)) in the list. The skipped edges have to be appended at the end of the sublist.
We can use a queue to do this. After sorting L2 as well as the edge list of T ′, it takes
a single scan of the two sorted lists to copy the labels �v(e) and �w(e) to all edges e.
Step 2 searches for a non-tree edge whose corresponding fundamental cycle is a

2
3 -separator. As already observed, this search takes a single scan over the edge list of
G′, using the labels computed in Step 1 to compute the weights w(R1(e)) and w(R2(e))
of the interior and exterior regions.
Step 3 is based on the following observation: Given a lexicographical numbering

nl(x) of the vertices of T ′, this numbering is also a preorder numbering. Given a vertex
v with preorder number x, let the subtree rooted at v have size m. Then the vertices in
this subtree have preorder numbers x through x+m− 1. This implies that the ancestor
of a vertex v at a given level l is the vertex u such that nl(u)=max{nl(u′): l(u′)= l∧
nl(u′)6 nl(v)}, where l(x) denotes the level of vertex x. Using this observation we sort
the vertices by increasing levels in T ′ and in each level by increasing lexicographical
numbers and scan this sorted list of vertices backward, 8nding the ancestors of v and
w at every level until we come to a level where v and w have the same ancestor, u.
Thus, Step 3 also takes O(sort(N )) I=Os.

5. Triangulating embedded planar graphs

In this section, we present an O(sort(N ))-algorithm to triangulate a connected em-
bedded planar graph G = (V; E). We assume the same representation of G and its
embedding as in the previous section. Our algorithm consists of two phases. First, we
identify the faces of G. We represent each face f by a list of vertices on its bound-
ary, sorted clockwise around the face. In the second phase we use this information to
triangulate the faces of G. We show the following theorem.

Theorem 7. Given an embedded planar graph G; it can be triangulated in O(sort(N ))
I=Os.

Proof. This follows from Lemmas 8 and 11.

5.1. Identifying faces

As mentioned above, we represent each face f by the list of vertices on its boundary,
sorted clockwise around the face. Denote this list by Ff. Let F be the concatenation of
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Fig. 6. (a) The directed graph D (dotted arrows) corresponding to a given graph G (solid lines). Note that
vertex v appears twice on the boundary of face f, and vertex w appears twice on the boundary of the outer
face. (b) The directed graph Ĝ (white vertices and dotted arrows) corresponding to D.

the lists Ff for all faces f of G. The goal of the 8rst step is to compute F . The idea of
this step is to replace every edge {v; w} of G by two directed edges (v; w) and (w; v)
and decompose the resulting directed graph, D, into directed cycles, each representing
the clockwise traversal of a face of G (see Fig. 6(a)). (“Clockwise” means that we
walk along the boundary of the face with the boundary to our left. Thus, a clockwise
traversal of the outer face corresponds to walking counterclockwise along the outer
boundary of the graph. This somewhat confusing situation is resolved if we imagine
the graph to be embedded on a sphere because then all faces are interior.) Removing
one edge from each of these cycles gives us a set of paths. The vertices on such a
path appear in the same order on the path as clockwise around the face represented
by the path. (Note that the same vertex may appear more than once on the boundary
of the same face, if it is a cutpoint (see Fig. 6(a)).) Considering the set of paths as a
set of lists, we can rank the lists. This gives us the orders of the vertices around all
faces, i.e., the lists Ff.
The problem with the directed cycles in D is that they are not vertex-disjoint. Hence,

we cannot apply standard graph external-memory algorithms to extract these cycles.
The following modi8cation solves this problem: Instead of building D, we build a
graph Ĝ for G (see Fig. 6(b)), which is closely related to the representation of G
by a doubly-connected edge list [21]. Ĝ contains a vertex v(v;w) for every edge (v; w)
in D and an edge between two vertices v(u;v) and v(v;w) if the corresponding edges
(u; v) and (v; w) are consecutive in some cycle of D representing a face of G. Graph
Ĝ consists of vertex-disjoint cycles, each representing a face of G. We compute the
connected components of Ĝ, thereby identifying the cycles of G, and apply the same
transformations to Ĝ that we wanted to apply to D. Step 1 of Algorithm 3 gives the
details of the construction of Ĝ. In Step 2, we use Ĝ to compute F .

Lemma 8. Algorithm 3 takes O(sort(N )) I=Os to constructs the list F for a given
graph G.
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Proof. Correctness: Two vertices in Ĝ that are consecutive on a cycle of Ĝ represent
two edges that are consecutive on the boundary of a face of G in clockwise order.
Thus; these two edges are consecutive around a vertex of G in counterclockwise order.
The correctness of Step 1 follows from this observation.
After removing an edge from every cycle in Ĝ, the connected components of Ĝ are

paths. Considering these paths as lists, we can rank these lists. Sorting the vertices in V̂
by component labels and decreasing ranks (Step 2d) arranges the vertices representing
the same face of G consecutively and sorts them clockwise around the face. Given a
sublist V̂ f of V̂ representing a face f of G, the vertices of V̂ f represent the edges of
D clockwise around the face.

IDENTIFYFACES(G):

1: Construct a directed graph Ĝ = (V̂ ; Ê):
a: For each edge e = {v; w}∈E, add two vertices, v(v;w) and v(w;v) to V̂ .
b: For each vertex v∈V , let {v; w0}; : : : ; {v; wk−1} be the edges incident to v,
in counterclockwise order.

c: Add directed edges (v(wi;v); v(v;w(i+1) mod k )), 06 i ¡ k, to Ê.

2: Construct F :
a: Compute the connected components of Ĝ (considering Ĝ as undirected),
labelling every vertex v̂ with a label c(v̂) identifying its connected component.

b: Remove one edge from each connected component of Ĝ.
c: Rank the resulting lists.
d: Sort V̂ by component labels c(v̂) and decreasing ranks.
e: Scan V̂ and write for each vertex v(v;w), a copy of v with face label f(v)=

c(v(v;w)) to F .

Algorithm 3: Identifying the faces of G.

We can think of Step 2e as scanning this list of edges in D and writing the sorted
sequence of source vertices of these edges to disk. This produces the desired list Ff,
and the application of Step 2e to the whole of V̂ produces the concatenation F of all
such lists Ff. Note that the lists Ff are distinguished in F , as two vertices in F have
the same label f(v) if and only if they belong to the same list Ff.

Complexity: Step 1a requires a single scan over the edge list E of G. For step 1b,
recall that we are given the embedding as two labels nv(e) and nw(e) for every edge
e = {v; w}. We replace e by two triples (v; nv(e); w) and (w; nw(e); v), and sort the
resulting list of triples lexicographically. In the resulting list, all (triples representing)
edges incident to a vertex v are stored consecutively, sorted counterclockwise around
the vertex. Thus, Step 1c requires a single scan over this sorted list of triples, and Step
1 takes O(sort(N )) I=Os.
Steps 2a and 2c take O(sort(N )) I=Os [3] as do Steps 2d and 2e. The details of Step

2b are as follows: Note that for every vertex v̂, there is exactly one edge (v̂; ŵ) in Ĝ.
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Thus, we sort V̂ by vertex names and Ê by the names of the source vertices, thereby
placing edge (v̂; ŵ) at the same position in Ê as v̂’s position in V̂ . Scanning V̂ and Ê
simultaneously, we assign component labels c((v̂; ŵ)) = c(v̂) to all edges (v̂; ŵ) in Ê.
Then we sort Ê by these component labels. Finally we scan Ê again and remove every
edge whose component label is diPerent from the component label of the previous
edge. Also, we remove the 8rst edge in Ê. As this procedure requires sorting and
scanning V̂ and Ê twice, the complexity of Step 2 is O(sort(N )) I=Os.

5.2. Triangulating faces

We triangulate each face f in four steps (see Algorithm 4). In Step 1, we reduce f
to a simple face f̂. That is, no vertex appears more than once in a clockwise traversal
of f̂’s boundary. Accordingly, we reduce the list Ff to Ff̂. In Step 2, we triangulate

f̂. We guarantee that there are no parallel edges in f̂. But we may add parallel edges
to diPerent faces (see Fig. 8(a) for an example). Let e1; : : : ; ek be the set of edges with
endpoints v and w. In Step 3, we select one of these edges, say e1, and mark edges
e2; : : : ; ek as con=icting. Each of these edges is said to be in con=ict with e1. In Step
4, we retriangulate all faces so that conGicts are resolved and a 8nal triangulation is
obtained.
The following lemma states the correctness of Step 1.

Lemma 9. For each face f of G; the face f̂ computed by Step 1 of Algorithm 4 is
simple. The parts of f that are not in f̂ are triangulated. Moreover; Step 1 does
not introduce parallel edges.

Proof. We mark exactly one copy of every vertex on f’s boundary. For the 8rst vertex;
we append a second marked copy to the end of Ff only to close the cycle. This copy
is removed at the end of Step 1. We remove an unmarked vertex v by adding an edge
between its predecessor u and successor w on the current boundary of the face; thereby
cutting triangle (u; v; w) oP the boundary of f. As we remove all unmarked vertices
this way; the resulting face f̂ is simple and the parts that have been removed from f
to produce f̂ are triangulated.
Next, we show that Step 1 does not add parallel edges to the same face f. Assume

for the sake of contradiction that we have added two edges with

TRIANGULATEFACES(G; F):

1: Make all faces of G simple:

For each face f, (a) mark the 8rst appearance of each vertex v in Ff, (b)
append a marked copy of the 8rst vertex in Ff to the end of Ff, (c) scan
Ff backward and remove each unmarked vertex v from f and Ff by adding
a diagonal between its predecessor and successor in the current list, and (d)
remove the last vertex from list Ff. Call the resulting list Ff̂.
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2: Triangulate the simple faces:
Let Ff̂ = 〈v0; : : : ; vk〉. Then add “temporary diagonals” {v0; vi}, 26 i6 k − 1,
to f̂.

3: Mark conGicting diagonals:
Sort E lexicographically, representing edge {v; w} by an ordered pair (v; w),
v ¡ w, and so that edge {v; w} is stored before any “temporary diagonal”
{v; w}. Scan E and mark all occurrences except the 8rst of each edge as
conGicting. Restore the original order of all edges and “temporary diagonals”.

4: Retriangulate conGicting faces:
a: For each face f̂, let Df̂ = 〈{v0; v2}; : : : ; {v0; vk−1}〉 be the list of “temporary
diagonals”.

b: Scan Df̂ until we 8nd the 8rst conGicting diagonal {v0; vi}.
c: Replace the diagonals {v0; vi}; : : : ; {v0; vk−1} by new diagonals
{vi−1; vi+1}; : : : ; {vi−1; vk}.

Algorithm 4: Triangulating the faces of G.
endpoints v and w to f (see Fig. 7(a)). We can add two such edges e1 and e2 only
if one of the endpoints, say w, appears at least twice in a clockwise traversal of
f’s boundary. Then, however, there is at least one vertex x that has all its occurrences
between two consecutive occurrences of w because e1 and e2 form a closed curve. That
is, the marked copy of x also appears between these two occurrences of w. Adding
e2 to f would remove this marked copy from f’s boundary; but we never remove
marked vertices. Thus, e2 cannot exist.
Now assume that we add two edges e1 and e2 with endpoints v and w to diPerent

faces f1 and f2. By adding e1 we remove a vertex u from f1’s boundary (see Fig.
7(b)). As this copy is unmarked, there has to be another, marked, copy of u. Consider
the region R1 enclosed by the curve between the marked copy of u and the removed
copy of u, following the boundary of f1. In the same way we de8ne a region R2

enclosed by the curve between the removed copy of u and the marked copy of u.

Fig. 7. Illustrating the proof of Lemma 9.
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Fig. 8. (a) A simple face f̂ with a conGicting diagonal edge d = {v0; vi}. Diagonal d conGicts with d′ and
divides f̂ into two parts f1 and f2. One of them, f1, is conGict-free. Vertex vi−1 is the third vertex of
the triangle in f1 that has d on its boundary. (b) The conGict-free triangulation of f̂.

Any face other than f1 that has v on its boundary must be in R1. Any face other than
f1 that has w on its boundary must be in R2. However, R1 and R2 are disjoint. Thus,
we cannot add a diagonal {v; w} to any face other than f1.

Step 2 triangulates all simple faces f̂, possibly adding parallel edges to diPerent
faces. Consider all edges e1; : : : ; ek with endpoints v and w. We have to remove at
least k − 1 of them. Also, if edge {v; w} was already in G, we have to keep this edge
and remove all diagonals that we have added later. That is, the edge {v; w} is the edge
with which all diagonals {v; w} are in conGict, and we have to label all diagonals as
conGicting while labelling edge {v; w} as non-conGicting. If edge {v; w} was not in
G, we can choose an arbitrary diagonal {v; w} with which all other diagonals with the
same endpoints are in conGict. This strategy is realized in Step 3. The following lemma
states the correctness of Step 4, thereby 8nishing the correctness proof for Algorithm
4.

Lemma 10. Step 4 makes all faces f̂ con=ict-free; i.e.; the triangulation obtained
after Step 4 does not contain parallel edges.

Proof. Let d={v0; vi} be the edge found in Step 4b (see Fig. 8(a)). Then d cuts f̂ into
two halves, f1 and f2. All diagonals {v0; vj}, j ¡ i are in f1; all diagonals {v0; vj},
j ¿ i are in f2. That is, f1 does not contain conGicting diagonals. Vertex vi−1 is the
third vertex of the triangle in f1 that has d on its boundary. Step 4c removes d and
all edges in f2 and retriangulates f2 with diagonals that have vi−1 as one endpoint.
(Intuitively it forms a star at the vertex vi−1; see Fig. 8(b).)
Let d′ be the edge that d is in conGict with. Then d and d′ form a closed curve.

Vertex vi−1 is outside this curve and all boundary vertices of f2 excluding the endpoints
of d are inside this curve. As we keep d′, no diagonal, except for the new diagonals
in f̂, can intersect this curve. Thus, the new diagonals in f̂ are non-conGicting. The
“old” diagonals in f̂ were in f1 and thus, by the choice of d and f1, non-conGicting.
Hence, f̂ does not contain conGicting diagonals.
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Lemma 11. Given the list F as computed by Algorithm 3; Algorithm 4 triangulates
the given graph G in O(sort(N )) I=Os.

Proof. We have already shown the correctness of Algorithm 4. In Step 1; we 8rst
sort every list Ff by vertex names. Then it takes a single scan to mark the 8rst
occurrences of all vertices in Ff. Using another sort we restore the original order of
the vertices in Ff. The rest of Step 1 requires scanning F; writing the marked vertices
to Ff̂; in their order of appearance; and keeping the last visited marked vertex in main
memory in order to add the next diagonal. Thus; Step 1 takes O(sort(N )) I=Os. Step
2 requires a single scan over the list F; as modi8ed by Step 1. Assuming that all
edges in G before the execution of Step 2 were labelled as “edges”; we label all edges
added in Step 2 as “diagonals”. Then Step 3 requires sorting the list of edges and
diagonals lexicographically and scanning this sorted list to label conGicting diagonals.
Note; however; that Step 4 requires the diagonals to be stored in the same order as
added in Step 2. Thus; before sorting in Step 3; we label every edge with its current
position in E. At the end of Step 3; we sort the edges by these position labels to
restore the previous order of the edges. Of course; Step 3 still takes O(sort(N )) I=Os.
Step 4 takes a single scan over E. Thus; the whole algorithm takes O(sort(N )) I=Os.

A problem that we have ignored so far is embedding the new diagonals. Next, we
describe how to augment Algorithm 4 in order to maintain an embedding of G under
the edge insertions performed by the algorithm. To do this, we have to modify the
representation of the embedding slightly. Initially, we assumed that the edges e1; : : : ; ek

incident to a vertex v are assigned labels nv(ei) = i clockwise around v. During the
triangulation process we allow labels nv(e) that are multiples of 1=N . Note that this
does not cause precision problems because we can represent every label nv(e) as an
integer N · nv(e) using at most 2 logN bits (while nv(e) uses logN bits).
Let v0; e0; v1; e1; : : : ; vk−1; ek−1 be the list of vertices and edges visited in a clockwise

traversal of the boundary of a face f (i.e., Ff=〈v0; : : : ; vk−1〉). During the construction
of Ff, we can easily assign labels n1(vi) and n2(vi) to the vertices, where n1(vi) =
nvi(e(i−1) mod k) and n2(vi) = nvi(ei). When we add a diagonal d = {vi; vj}, i ¡ j, we
update the labels of vi and vj to n2(vi)=n2(vi)−1=N and n1(vj)=n1(vj)+1=N and embed
d assigning nvi(d) = n2(vi) and nvj (d) = n1(vj). Assuming that n1(vi)¡ n2(vi) − 1=N
or n1(vi)¿ n2(vi) and n2(vj)¿ n1(vj)+1=N or n2(vj)6 n1(vj), this embeds d between
e(i−1) mod k and ei at vi’s end and e(j−1) mod k and ej at vj’s end. It remains to show that
this assumption is always satis8ed.
We maintain the following invariant for every face f: Let v0; e0; : : : ; vk−1; ek−1 be

the boundary description of f as given above. Then for every vertex vi, either n1(vi)+
(k − 3)=N ¡ n2(vi) or n1(vi)¿ n2(vi). Initially, this is true because all labels nv(e) are
integers and k6N . Adding diagonal d to f as above cuts f into two faces f1 and f2.
For all vertices vl, l �∈ {i; j}, the labels do not change; but the sizes of f1 and f2 are
less than the size of f. Thus, for all these vertices the invariant holds. We show that
the invariant holds for vi. A similar argument can be applied for vj. Let f1 be the face
with vertices vj; : : : ; vi on its boundary and f2 be the face with vertices vi and vj on the
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Fig. 9. A given planar graph G (a) and its separator tree ST (G) (b). Note that any path between vertices
v and w, which are stored in the white and gray subtrees of ST (G), respectively, must contain a black or
horizontally striped separator vertex. These separators are stored at common ancestors of 5(v) and 5(w).

boundary. Let the size of fi be ki6 k−1. If n2(vi)6 n1(vi), then this is also true after
subtracting 1=N from n2(vi). Otherwise, n2(vi)−n1(vi)¿ (k−3)=N −1=N ¿ (k1−3)=N .
Thus, the invariant holds for all vertices on f1’s boundary. In f2 we do not have any
room left to add diagonals incident to vi or vj. However, Steps 1 and 4 of Algorithm
4 scan along the boundaries of the faces and keep cutting oP triangles. Choosing the
indices i and j in the above description so that f2 is the triangle that we cut oP, we
never add another diagonal to f2. (Note that it would be just as easy to maintain the
embedding in Step 2; but we need not even do this because diagonals are added only
temporarily in Step 2, and 8nal diagonals are added in Step 4.)

6. The shortest path data structure

In this section, we incorporate the main ideas of the internal memory shortest path
data structure in [8] and show how to use them together with the external-memory
techniques developed in this paper to design an eIcient external-memory shortest path
data structure. The data structure in [8] uses O(S) space and answers distance queries on
graphs with separators of size O(

√
N ) in O(N 2=S) time, where 16 S6N 2. Reporting

the corresponding shortest path takes O(K) time, where K is the number of vertices
on the path. The basic structure used to obtain the above trade-oP is an O(N 3=2)
size internal memory data structure that answers distance queries in O(

√
N ) time. Our

external-memory data structure is fully blocked. That is, it uses O(N 3=2=B) blocks of
external memory and answers distance queries in O(

√
N=DB) I=Os. The corresponding

shortest path can be reported in O(K=DB) I=Os.
Given a planar graph G (see Fig. 9(a)), we compute a separator tree ST (G) for

G (see Fig. 9(b)). This tree is de8ned recursively: We compute a 2
3 -separator S(6)

of size O(
√|G|) for G. Let G1; : : : ; Gk be the connected components of G–S(6).

Then we store S(6) at the root 6 of ST (G) and recursively build separator trees
ST (G1); : : : ; ST (Gk), whose roots become the children of 6. Thus, every vertex v
of G is stored at exactly one node 5(v)∈ ST (G). For two vertices v and w, let
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5(v; w)=lca(5(v); 5(w)). For a vertex 5∈ ST (G), we de8ne S−(5) (resp. S+(5)) as the
sets of vertices stored at 5 and its ancestors (resp. descendants). For convenience, we
denote the sets S(5(v)) and S(5(v; w)) by S(v) and S(v; w), respectively. Sets S−(v),
S+(v), S−(v; w) and S+(v; w) are de8ned analogously. In [8], it is shown that any
path between v and w in G must contain at least one vertex in S−(v; w). For a given
graph H , we denote the distance between two vertices v and w in H by dH (v; w).
Then d(v; w) = minx∈S−(v;w){dG[S+(x)](x; v) + dG[S+(x)](x; w)}. If we represent all sets
S−(v) and S−(v; w) as lists sorted by increasing depth in ST (G), then S−(v; w) is the
longest common pre8x of S−(v) and S−(w). Let D(v) be a list of distances, where
the ith entry in D(v) is the distance dG[S+(x)](v; x) between v and the ith entry x in
S−(v). Given the lists S−(v), S−(w), D(v), and D(w), we can compute d(v; w) by
scanning these four lists. We scan S−(v) and S−(w) in “lock-step” fashion and test
whether xv = xw, where xv and xw are the current entries visited in the scans of the
two lists. If xv = xw, then we proceed in the scans of D(v) and D(w) to compute
dG[S+(xv)](xv; v) + dG[S+(xv)](xv; w) and compare it to the previously found minimum. If
xv �= xw, we have reached the end of S−(v; w) and stop.

For every separator vertex x, our data structure contains a shortest path tree SPT (x)
with root x. This tree represents the shortest paths between x and all vertices in
G[S+(x)]. That is, every vertex v of G[S+(x)] is represented by a node in SPT (x),
and the shortest path from v to x in G[S+(x)] corresponds to the path from v to x in
SPT (x). Given the distance d(v; w) between two vertices v and w, there must be some
vertex xmin ∈ S−(v; w) such that d(v; w) = dG[S+(xmin)](xmin ; v) + dG[S+(xmin)](xmin ; w). The
shortest path &(v; w) from v to w is the concatenation of the shortest paths from v to
xmin and from xmin to w. Given SPT (xmin), we can traverse the paths from v and w to
the root xmin and concatenate the traversed paths to obtain &(v; w). To traverse these
two paths in the tree, we have to 8nd the two (external) memory locations holding the
two nodes representing v and w in SPT (xmin). We construct lists P(v) for all vertices
v of G holding pointers to the representatives of v in all shortest path trees. Let x
be the separator vertex stored at the ith position in S−(v). Then the ith position of
P(v) holds a pointer to the node representing v in SPT (x). That is, if xmin is stored at
position i in S−(v) and S−(w), the ith positions of P(v) and P(w) hold the addresses
of the representatives of v and w in SPT (xmin), giving us enough information to start
traversing and reporting &(v; w).
The size of the separator S(5) stored at every vertex 5 in the separator tree ST (G)

is O(
√|G[S+(5)]|). From one level in ST (G) to the next the sizes of the subgraphs

G[S+(5)] associated with the vertices decrease by a factor of at least 2
3 . Thus, the

sizes of the graphs G[S+(5)] on a root-to-leaf path in ST (G) are bounded from above
by a geometrically decreasing sequence, and the sizes of the separators S(5) stored at
these vertices form a geometrically decreasing sequence as well. Hence, there are only
O(

√
N ) separator vertices on any such path and each list S−(v) has size O(

√
N ). As

we have to scan lists S−(v), S−(w), D(v), and D(w) to compute d(v; w), this takes
O(

√
N=DB) I=Os. It takes two more I=Os to access the pointers in P(v) and P(w).

Assuming that all shortest path trees have been blocked as described in Section 3,
traversing the paths from v and w to xmin in SPT (xmin) takes O(K=DB) I=Os, where K
is the number of vertices on the shortest path &(v; w).
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It remains to show that the data structure can be stored in O(N 3=2=B) blocks. As
every list S−(v), D(v), and P(v) has size O(

√
N ) and there are 3N such lists, all lists

require O(N 3=2) space and can thus be stored in O(N 3=2=B) blocks. There is exactly
one shortest path tree for every separator vertex. Consider tree SPT (x) and a node v in
this tree. Then this node corresponds to the entry for x in list S−(v). That is, there is
a one-to-one correspondence between entries in the lists S−(v) and shortest path tree
nodes. Thus, the total size of all shortest path trees is O(N 3=2) as well. As blocking
the shortest path trees increases the space requirements by only a constant factor, the
shortest path trees can also be stored in O(N 3=2=B) blocks of external memory. We
have shown the following theorem.

Theorem 12. Given a planar graph G with N vertices; one can construct a data
structure that answers distance queries between two vertices in G in O(

√
N=DB)

I=Os. The corresponding shortest path can be reported in O(K=DB) I=Os; where K
is the length of the reported path. The data structure occupies O(N 3=2=B) blocks of
external memory.

7. Conclusions

The I=O-eIcient construction of our shortest path data structure is still a problem, as
there are no algorithms for BFS, embedding, and the single source shortest path problem
that perform I=O-eIciently on planar graphs. The separator algorithm in Section 4 tries
to address the problem of computing the separators required to build the separator tree
I=O-eIciently. Also, in [26] an O(sort(N )) algorithm for transforming a given rooted
tree of size N into the blocked form described in Section 3 is given.
A shortcoming of our separator algorithm is that it needs a BFS-tree. Most separator

algorithms rely on BFS, but BFS and depth-8rst search (DFS) seem to be hard problems
in external memory. Thus, it is an important open problem to develop an I=O-eIcient
separator algorithm that does not need BFS or DFS. The existence of an I=O-eIcient
planar embedding algorithm is also open.
Recently, Maheshwari and Zeh [18] presented O(sort(N )) algorithms for outer-

planarity testing, computing an outerplanar embedding, BFS, DFS, and computing a
2
3 -separator of a given outerplanar graph. It is an important question whether there are
other interesting classes of graphs with similar I=O-complexities for these problems.
They also showed U(perm(N )) lower bounds for computing an outerplanar embed-
ding, and BFS and DFS in outerplanar graphs. As outerplanar graphs are also planar,
the lower bounds for BFS and DFS also apply to planar graphs. A similar technique as
in [18] can be used to show that planar embedding has an U(perm(N )) lower bound.
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