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ASCENDING SEQUENCES IN PERMUTATIONS
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The problem of the number p(n,r), (1 <r =< n), of permutations on the set {1,...,n} with
longest ascending subsequence of given length r is considered. By placing further restrictions on
the ascending subsequence, combinatorial identities are obtained which allow 1he explicit
calculation of p(n, r) in some cases.

1. Introduction, definitions and notation

Ulam [5] asks: what is the distribution of the length of the longest monotone
subsequence of terms in a randcm permutation of the first n* + 1 natural numbers?
Hammersley, in a recent discussion [1] of this problem, established the result: if ,
is a random permutation, uniformly distributed over the symmetric groug S. and if
[(m,) is the length of the longest ascending sequence (q.v.) in i, then, for some
constant ¢, . "? (. ) converges to ¢ in probability. Hammersley conjectured that
¢ = 2. Support has been given to this by Logan and Shepp [3] who, by variational
methods based on a relation between the probability distribution of I/(#.) and
Young tableaux [4], showed that ¢ =2. It is also known [2] that ¢ <2.49.

In this note we consider some of the combinatorial aspects of the problem. (In
view of [4], this is equivalent to considering combinatorial properties of Young
tableaux, in terms of which some of our results (e.g. (17)) are already known.) We
begin with some definitions and notation.

Let S, be the symmetric group of permutations of the set {1,...,n} where for =
in $. we write, as usual,

m=(m,..., M) (1
The integers i,,...,i. give an ascending sequence in 7 if
1S11<Iz<"'<t,,.$n; 7T(h)<77(12)<'<77(l,.) (2)

and then I(m), the lengtk of the longest ascending sequence in 7, is the largest
integer for which (2) holds. 'We refer to the ‘gap’ between 7., and 7, (i =2,..., 1)
in (1) as the ith gap, the first gap coming before 7, and the (n + 1)th or last gap
coming after m,: many of our arguments depend on our producing elements of S....,
out of those of S, by inserting (n + 1) into a suitable gap.

Let P(n,m), (1< m < n), be the set of permutations in S, with longes’ ascending
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'ni') be the number of permut“'lons in P(n, m)

Hammersley s result Followmg Hammersley, for o given by (1), suppose that
(m)=1 and for i=1,. = a (wr) to be the greatest intecer j such that
(7. m) has é‘jl(’)‘n ( quence of length ;, setting a, = 0. Let C(a) be
the set of permutatxons in S,, for wmch

a= a(#) (ao, Qyy ..oy ai)

and let c(a) b= the number of permutations in C(a). Hammersley noted a number
of relations which holé between the ¢(a) of which the most important are

| plmm)= 3 c(@), G)
where
Am={a:0=ag<a;< - <a,=n}
and
c(ao, @, ..., am 1 + 1)+ clan, as, .. s Gy 0 +1)
=(n + 1)c(aGo, as, .- ., Qm, n) @)

W» now continue this work by determmmg, first of all some of the c(a).

2. An instance of Pascal’s triangle
Asa prelinﬁnary exampleiof our method of proof we establish the identity (c.f.
Pascal’s triangle)
c@Orr+1,..,n)=cO,rr+1,..,n=1D+cO,r-1,r...,0-1) ()
which, since ‘
c@,n)=1=¢(,1,2,.../n), (6)
yields (c.f. [1, 16.16] where a more direct proof is given).

cO,rnr+1,..,n)= (:t:ll)' )

To prove (5), we observe that any element of C(0, 7, r + 1,..., n) may be obtained
by .aserting n into either the last gap of an element of C(0,r,7r +1,...,n — 1) or the
t.rst gap of an element of C(0,r - 1,r,...,n~1).

3. Ascending sequences of length two

The ¢ (0, r, n) also satisfy a family of relaticns. For example, we may produce a
member cf C(0, 1, #) by inserting n in the secor..! gap of an -lement of C(0,n — 1)
orof C(0,r.n—1)forr=1,..,n-2; and since 1l the elements of C(0,1, n) may
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be produced in this way we have the set identity

C(o,l,n)={U C(O,r,n—l)} UCOn-1. n=2

r=1

and so
n-2

c©0,1,n)=cOn-1)+2 c0,rn-1), n=2 ®)

r=1

(where we make the convention now and hereafter that U,.,= ¢, '_.=0
whenever b < a). Similar insertion arguments showx that

n-2
c(©0,s,n)=cOn-1)+ > cOrn~1), n=s+1=3, )

r=s-~1

and hence, in particular, we have from (8, 9),
c(0,1,n,=c¢(0,2,n), n=3. (10)

We may bring (8, 9) into a ‘Pascal’ form, similar to (5), but with different
‘boundary’ conditions, by writing

cOrn)=f(n-1,n-r), n-1=zr=1 (11)
and we then obtain, after some manipulation, the equation
fnr)=f(nr-D+f(n-1r), n=r=1 (12)
gether with, from (10),
fum)=f(n,n-1), n=1 (13)
where we also take (c.f. (6))
f(n,0)=1, n=0. (14)

The problem is thereby seen to be equivalent to another well known problem, that
of determining the number of walks, on the non-negative quadrant of the integral
square lattice in two dimensional Euclidean space with the restriction y < x, from
the origin to the point (n, r), 0 < r < n. This follows since (12, "3, 14) are just the
equations governing the number in question. Hence, we find (see e.g. [6, pas. 26-27,
169-184]) that

f(n,r)=(1—ni1)("+'), n=r=0. (15)

r

(The f(n, r) have an i 1terpretation also in terms of permutations as the nomber of 7
in P(n +2,2) such ti i, with 7 as in (1),

m =T +"1; m,=n + 2,

c(O,l,n)=zzf(n——2,r)=f(n—1,n—]), n=2)



- (1)

(n+1)(2n) e | |

(wmcn corﬁrfns (15 9) of [1])

Aseendlng «equences of length three nnd hinher

The c(a }, for gene 'he samc kmd as (8, 9) except that
these equations, being now of greate: complexity; are more ditficult to write down
than o pruve. As dn e-tample we eansadex%osa forc(0; 1,5, 1), (s > t +1). It is not
difficult to sec, on the lmes of @), “mi, forn—-1=>s22,

CO.1,5n)= { U CO,rs~1,n- 1)}
u{ U co.tnn- 1)}UC(0, 1,n-1).

For all the elements of C(0,1,s,n) are produced by inserting n into either the
second gap of an element of C(0,r,s~1,n - i),r=1,...,5 —2 or the sth gap of an
element of C,L,rn-1), r=s..,n-2, or the s-th gap of an element of

C(0,1,n—1). Hence
FE - . -2 . -2
cOLsn)=cOLn-1)+3 cOns-1Ln-1)+3> cO1,nn-1),
. =1 r=y
n-1a>s>2. (18)

More generally, we may show that

3 n-2
c0t5n)=c0,L,n-1)+ 5 c(l4as—Ln-1)+2 c@trn-1),
r=t -} rey
n—-lzs=t+1=3 (19)
and equations (15), (16) are vuiicient ‘or us to prove inductively that

¢i0,1,r,n)=c(0,2,r,n), 1-12r23, (20a)

0, nr+1,n)=c(l,rr+2,n), 1=3=r=1. (20b)
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On the other hand (18, 19) have not, as yet, vielded closed expressicns for
¢(0,1,5,n) akin o (17). [Egs. (20a, b) do, however, reveal an error in Table XIV of
(1) ¢(0,1,7,9) should be 3751, the value correctly given for ¢(0,2,7,9), and not
4168.)

The extension of such results to longer asce: ding sequences is straightforward
and, for some a, it is then easy to determine c(a) explicitly. For example
corresponding to (18, 19) we have, again by an insertion argument,

c(©0,1,2,..,n-2,n)=¢(0,1,2,...,n-2,n-1)- ¢(0,1,2,...,n-3,n - 1),

n=4

from which it follows, since

c(0,1,2,..,n—-1,n)=1, n=2,
that

c0,1,2,..,n=-2,n)=(n-1), n=3.
Corresponding to (20) we find

c(@)=c¢0,1,2,..,n-2,n) aE€E A,
and hence, combining these results with (3) we have (c.f. [1, 15.11])

pinn-1)= 2 c(a)=(n—-1j(n-1), n=2. (21)

CEAn -1

Similarly we may show that

c@0,3,4,...,n)= (n;l), n=3,
c(0,1.2,...,n—3,n‘;=2(";1)—1, n=4
c(@a)=¢(0,1,2,..,n-3,n), a€ A n2 a<3, n=4

and so (c.f. 1, 15.14))

p(n,n-2)= ; c(a)=c(0,3,4,...,n)+ > c(a)

al=n~-2
ay<3

() ) e e

Considering a in A,,.-; we obtain, after the same manner,
c(@)=c¢(0,1,2,....,n-4,n), a€A,..3 ar=1a<5 n=5

c(@)=c¢(0,2,3,..,n-3,n), a€A,..5 a=2,a<5, n=5

c(0,1,5,6,...,n)=c¢c(0,2.5,6,...,n), n=5

c(a}=¢(0,3.4,...n-2.n), a€ A5, a5 =3, n=S.



mely, for éﬁia‘mple

cean=am)=c0,2,3,..,n=3,m)=3("7 1)—- @n - 5),

n=Ss,

n=4.

It 'oﬁows, collertmg the terms togeth er as before usmg (3), that p(m,n—3) is a
palynérmal of degree six in n (dnsprovmg (15.13) oi [1]), the formula given there
'bemg one of degme seven in n)

8. Olien problems

It remains’a challenge to find more elegant formulae for the c(a) and in
particular to give an explicit solution for (18,:19).
Eq. (17), mvolvmg as it Joes the Catalan numbexs Cn

I 1 (2n)
" r+1

reveals an association with other well 'nown combinatorial problems, as, for
example, the walk problem :iready mentioned, in which these numbers also occur.
The association is already known in the case of Young tableaux but a direct proof
woul¢ be welcome as it might suggest other ways. of calculating c(a).

The permutations in S, may be further restricted by taking account of longer
descending sequences as well as longest ascending sequences: what then are the
analogues of the present results?
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