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Abstract

Davey, B.A. and F.A. Pricstley, Partition-induced natural d' alitics for varieties of pseudo-
complemented distributive latiices, Discrete Mathematics 113 (1993) 41-58.

A natural duuiity is obtained for each finitely gencrated variety B, (n <) of distributive
p-algebras. The dualisy for B, is based on a schizophrenic object: P, in B,, is the algebra 2" @1
which generates the variety and P, is a topological relationa! structure carrying the discrete
topology and a set of aigebraic relations. The relations are (i) the graphs of a (3-clement)
generating set for the endomorphism monoid of P, and (ii) a set of subalgebras of P. in
one-to-one correspondence with partitions of the integer n. Each of the latter class of relations,
regarded as a digraph, is ‘nearly’ the union of two isomorphic trees. The duality is cbtained by
the piggyback method of Davey and Werner (which has previously yielded a duality in case
n =2), combined with use of the restriction to finitc p-algebras of the duality for bounded
distributive ‘attices, which enables thc relutions suggested by the general theory to be
concretely described.

1. Introduction

A distributive p-algebra is an algebra (A; v, A, *, 0, 1) of type (2,2,1,0,0)
such that (A4; v, A, 0, 1) is a distributive lattice with zero, 0, and identity, 1, and
* is an operation of pseudocomplementation, that is,

a*=max{beA|anb=0}.
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The distributive p-algebras form a variety B,,. The lattice of subvarietics of B,,
was determined bv Lee in [14]. It is an @ + 1 chain

B ,cB,cB,c---cB,c---cB,,.

Here B_, is the trivial variety, B, is the variety of Boolean algebras and B, the
variety of Stone algebras. The equational characterisation of B,, is given in [13, p.
167]. For our purposes the alternative characterisation based on Birkhoff’s
subdirect product theorem is more useful. This gives B, = ISP(P,), where the
p-algebra P,=(FP,:v. A, *.0,1) is obtained by adjoining a new unit to the
n-atom Boolean lattice. We shall represent B, as 2({1,....n})U{T} and
denote the empty set by L and the set {1....,n} by 4. Then, foraeP,,

{d\a facd.
1 ifa=T.

One tool used to study the varieties B, has been the duality for {0, 1}-
distributive lattices. Surveys of this duality can be found in [5] and [16], and an
introductory account in [8]. The duality vields a category %, dually equivalent to
B, and allows the algebras in B, to be concretely represented as families of sets.
This representation (whose details we recall in Section 3) is appealingly pictorial,
but has one major drawback. Although the duality between B, and %, was
successfully used by Davey and Goldberg in [6] to identify coproducts, and in
particular free algebras in B, it is not the natural tool to employ. For n=2,
products in %, are not cartesian. A good duality for handling free algebras should
have the property that products in the dual category are cartesian. A duality with
this property. and many other categorically desiruble features. does exist for B,
(n < w), as the results of [10] show. In that paper Davey and Werner undertook a
major study of naturzi dualities. They showed that, under suitable conditions, a
prevariety of the form =/ =IS™(P) has a duality defined by hom-functors and
based on a schizophreaic object. This object is required to live, as P, in . It also
lives. as a topologicai relational structure P, on the same underlying set P as P, in
the dual category formed by taking isomorphic copies of closed substructures of
powers of P. The struciuic P acts as the dual of the free algebra F#(1), and P*
(with product topology and pointwise defined relational structure) as the dual of
Fzi(rx). When. as is the case for B,. the generating algebra P is finite, the
topology on P is discrete and plays no role. The study of free algebras is then
purely combiaatorial in nature.

It is relatively casy to cast appropriate known dualities in the canonical form of
the Davey--Werner theory (see the many examples given in [10]). However, as
we recall 'n more detail in the next section, it is much harder to find the right
candidate for P when a natural duality is not already available.

The search for a description of a natural duality for each B, 1 < w, has been
the subj:ct of a long-running serial. This paper and its companion, [9], unveil the
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last two episodes. The first instalment was written by M.H. Stone when he
obtained his famous duality for B, (Boolean algebras). The second was
contributed 40 years later by Davey: in [4] he described a natural duality for B,.
In [10] the dualities for B, and B, were used to illustrate the general theory
(indeed they provided some of the motivation for it). The NU-Duality Theorem
(Theorem 1.18 of [10]) uses results of Baker and Pixley [3] and applies to
varieties with a near-unanimity term. The theorem shows that for a variety of
distributive-lattice-ordered algebras (such as B,) it is possible to cbtain a duality
by taking the relational structure of P to consist of all subalgebras of P2 This led
to new dualities for certain vaneties, including de Morgan and Kleene algebras,
but left B, (n=2) out of reach because the number of subalgebras of P;
appeared uninvitingly large.

The next episude in the story concerns piggyback dualities ([11,12]). The
piggyback technique applies to prevarieties whose members have reducts in a
variety (such as {0, 1}-distributive lattices) for which a duality is already
available. Applied to a prevariety ISPP(P) of distributive-lattice-ordered algebras
the method identifies a restricted set of subalgebras of P? which serve to define P.
It was successfully used in [11, 12] to produce a workable duality for B,. The
necessary subalgebras of P3 were found by algebraic means. The corresponding
subalgebras required for a piggyback duality for B, (n =3) were not exhibited.
The story to clate ends with a comment in [11] asserting that these subalgebras are
‘many and ugly’. This paper refutes the claim that they are ugly; [9] addresses the
guestion of the number of relations needed.

The key that unlocks the piggyback subalgebras is the ‘old’ duality—that
between B, and %,. This allows us to derive a natural duality for B, for n=3
(Theorem 3.6). This duality has Pn = (P,; 9, R) with J the discrete topology and
R a set of p(n) + 3 relations, where p(n) denotes the number of partitions of the
integer n. The relations in R are:

(i) the graphs of a set of three endomorphisms which serve to generate the
endomorphism monoid of P,;

(ii) a set of subalgebras of P2 in one-to-one correspondence with the partitions
of n.

In (ii) th: partitions into a fixed number of parts all give isomorphic
subalgebras. Each relation in (ii) has a representations as a digraph. These
digraphs are described in Section 4. The elementary thcory of partitions can be
found in Andrews, [2, Chapter 1].

Until novs, every natural duality that has been expiicitly described has v ~ived
only a very small number of relations. In such cases there is no incentive to
discover whether the set of relations is redundant. Given the rapid growth of p(n)
with # we are obviously led to er2uire whether a duality exists for B, with fewcr
than p(n) + 3 relations, in our companion paper [9] we show, using a new range
of techriques, that n + 3 relations in fact suffice. This problem and its solutior
open up a new branch of duality theory—the study of ‘optimal’ dualities.
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2. Natural dualities, piggyback fashicn

In this section we outline the duality theory presented in [10-12] as it applies to
a (pre-)variety of distributive-lattice-ordered algebras generated by a single finite
algebra.

Assume that </ = ISP(P) is a prevariety such that P has a reduct P in D, the
variety of {0, 1}-distributive lattices. Assume that the underlying set, P, of P is
finite. Consider

P=(P, J.R),
where 7 is the discrete topology on P and R is a set of algebraic relations. (By an
algebraic relation we mean one which is a subalgebra of some finite power P™).
We shall, where convenient, identify a homomorphism from P™ to P with its
graph, and so regard operations as (algebraic) relations.

We equip an arbitrary power P* with the product topology and pointwise-
defined relations. A closed substructure of P* is a topologically closed subset of
P* which is also a substructure with respect to the relations in R. Now define & to
be the following category. A topological relational structure X belongs to & if it
embeds as a closed structure in some P®; the morphisms in & are the continuous
relation-preserving maps. For A € &, define the dual of A to be

D(A):= (A, P),
the set of s/-homomorohisms from A into P. This can be regarded as a subset of
P* and in fact belongs to & ([10, Lemma 1.3]). Then define the dual of X € Z to
be

E(X):=Z(X, P),
the set of Z-morphisms of X into P. Because the relations are algebraic, this
subset of P* forms a subalgebra ([10, Lemma 1.3]). The maps D and E extend to
morphisms to give hom-functors D: &/ — & and E:%¥— «. Lemmas 1.3-1.5 of
[10] show that these functors form an adjoint pair such that the evaluation maps,
which are the units of the adjunction, are embeddings.

If P is chosen in such a way that the evaluation map ¢ — e, from A to ED(A) is
an isomorphism for each A € o we say that we have a duality for . (We shall
not need to address the question of whether the duality is full, that is whether
X=DE(X) for all X € Z).

The duality for the variety D of {0, 1}-distributive lattices as given in [16] (or
see [8]) fits into this framework ([10, 2.8]). We have D =ISP(2), where 2
denotes the 2-element chain as a lattice. The 2-element chain, as an ordered set,
with the discrete topology is denoted by 2. The schizophrenic object is then the
2-element chain, living as 2 in D and as 2 in the dual category P, which may be
shown to consist of all compact totally order-disconnected spaces and continuous
order-preserving maps. In this context we shall use the letters H, K in place of D,
E to denote the hom-functors D(—,2), P(—, 2) (and also their restrictions to
subcategories—not necessarily full—of D and P). Then, for each A € D, the
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evaluation mcp from A to KH{A) (which we denote by &) is an isomorphism.

Assuming that the hom-functors D and E do establish a duality for the
prevariety & = [ISP(P), the foliowing properties hold (see [10, p. 106]):

(i) F is the dual of the free algebra Fsf(1), so that Fs{(1) = Z(P, P);

(i) products in & are cartesian, ro that Fsf(k) = Z(P*, P).

Therefore if we choose the structure P so that we indeed have a duality, we
have access 1o the free algcoras in .

As we mentioned in Section 1, we do chtain a duality for & by taking the set of
R of relations on P to consist of all subalgebras of P2, This result can be refined
by obscrving that it is sufficient to take a restricted set of subalgebras which
‘generatey’ the entire sct of subalgebras, in the sense defined in [10, p. 140]. Even
this refinement may not yield a workable duality: the subalgebras may be hard to
describe and a ‘small’ generating set may not be apparent. The piggyback method
developed in [11] and [12] identifies a restricted set of subaigebras which suffices
to define a duality. Assume that some topological relational structure P has been
put forward. We scek conditions under which the embedding e,:A— ED(A) is
surjective, for each A € of. The idea is to exploit the fact that, for any A, the
evaluation map k,:A—> KH(A) is onto. If it is possible to construct an injective
map A: ED(A)— KH(A) such that Ace, = k4, then e, is forced to be surjective.

To define A we need to associate with each continucus morphism ¢ from D(A)
(=%(A, P)) to P a continaous order-preserving map A(g) from H{(A) (=
D(A, P)) to 2 such that (Ace,)a) = k(a) for all a € A. A natural way to try to
construct A(@) is to seek a map «: P— 2 and a surjective map @, from D(A) to
H(A) such the diagram below commutes. In the diagram, « is some member of
H(P) and @, :=qa°—.

D(A)=sd(A, P) = P

¢“1 l

H(A)=D(A, P) 2% 2

The commutativity of the diagram means that, for y € H(A) and x € D(A),
(A(@))(y) = a(p(x)) where y(a) = a{x(a)) forallae A,

and it follows from this that Ace, = /:,.

To carry out this construction we necd:

(i) a:P— 2 such that @, is surjective;

(ii)) A(@), given by (A(®))(¥) = a(@(x)) where y = @,(x), is well defined on
H(A)=1Im @,, and is order-preserving and continuous, for each ¢;

(iii) A is one-to-one.
As noted in [11, p. 68], (i) will be automatic when the underlying duality is that
for D. Now consider (ii). Assume that y, = @ ,(x,) and y, = ®@,(x,). If we can
show that y, <y, implies

(A(@) () = a(@(x1) < a(g(x2)) = (A(@))(y2),
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then A(g) must be well defined (because = is <= N =). In the Piggyback Duality
Theorem of [10] the structure of P inciudes a family of relations which serves to
ensure that A(@) is well defined. The observation above shows that these
relativns can be omittzda in the special case we are considering. The following
theorem. whici specialises the Piggyback Theorem to a prevariety whose algebras
have a reduct in D, takes account of this. We say that a subset R, of a set of
relations R on P generaies R if, for every A<, whenever a morphism
@:D(A)— P preserves each r € R, it also preserves each r € R. In the theorem,
the inclusion of a generating set for the subalgebras of P* maximal in

a '(s):={(b. c) e P*| a(b) < a(c)}

ensures that A(¢) is order-preserving; its continuity is easily verified. The
separating set of endomorphisms makes A one-to-one. See [12] for the details of
the proof of the theorem.

Theorem 2.1. Suppose that < =ISP(P) is a prevariety generated by a finite
algebra P such that A € & has a reduct in D. Fix a € H(P).

Let P=(P: 7, R) be a topological relational structure on the underlying set P of
P in which R =S U G, where:

(1) J is the discrete topology,

(ii) S is a generating set for the collection of subaigebras of P> maximal in
a (<),

(i) G is the set of graphs of a family E of endomorphisms satisfying the
separation condition:

for ail a, b € P with a # b, there exists u in the submonoid of the (C
endomorphism monoid generated by E such that a(u(a)) # a(u(b)). )

Then the hom-functors D:Aw— (A, P) and E:X — %(X, P) set up a duality
for 4.

3. The duality for B,

We scek to apply the Piggyback Duality Theorem to B,. To do so, we use the
duality for D to identify the relations defining P,.. We begin by stating this duality
in the form in which it gives the most pictorial representations. To relate the
representation below to that stated in the previous section simply note that the
latiice of clopen upper sets of an ordered topological space Y is isomorphic to the
lattice of continuous order-preserving maps from Y into 2, via the map assigning
to a set U its characteristic function yx,,. A set U is an upper setif ye Uand z=y

imply z e U. For a detailed account of this representation see [5. 16], or [8,
Chapters 8-10].

Theorem 3.1. Let L € D. Then L is isomorphic to the lattice of clopen upper sets
(=order filters) of its dual space H(L):=D(L,2), which is topologised as a
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subspace of 2" and ordered pointwise. As an ordered set, H(L) is isomorphic to
the set of prime filters of L ordered by inclusion, and in case L is finite, H(L) has
the discrete topology and is order anti-isomorphic to the set of join-irreducible
elements of L.

Henceforth we shall, where expedient, identify L € D with the lattice of clopen
upper sets of H(L).
For morphisms we have the following result.

Theorem 3.2. Given L, M € D, there exists a bijective correspondence between
D(L, M) (the set of {0, l}-lattice homomorphisms from L to M) and
P(H(M), H(L)) (the set of continuous order-preserving maps from H(M) to
H(L)). This associates to f €« D(L, M) the map H(f):= —of ; specifically,

((H())ya)=y(f(a)) foraeL,yeHM). ()

Further, f is surjective if and only if H(f) is an order-embedding and f is a
lattice-embedding if and only if H(f) is surjective.

It follows immediately from this last result that, up to isomorphism, L is a
{0, 1}-sublattice of M € D if and only if there is a continuous order-preserving
surjection from H(M) onto H(L).

The final fact we need about the duality for D concerns products of finite
lattices. Suppose L, and L, are finite members of D. Then

H(L,)UH(L;)=H(L, X Ly).
It was shown in [15] (following Adams [1]}) that L € D is pseudocomplemented
if and only if Y=H(L) is a p-space, that is, it is a compact totally order-

disconnected space with the property that for each clopen upper set U in Y, the
set

lU:={zeY|z<y for some y e U}

is clopen. This condition on upper sets is satisfied automatically if Y (or
equivalently L) is finite. The pseudocomplement of a clopen upper set U in a
p-space Y is given by

U*=Y\|U.

Given A, BeB,,, a map f e D(A, B) preserves the operation * of pseudo-
complementation if and only if @ =H(f) is a p-morphism, that is, it is a
continuous order-preserving map with the property that

@(max y) =max ¢(y) forall y e H(B).

Here max z denotes the set of maximal points above z.
The subvarieties B, of B,, can be characterised in terms of prime filters: an
algebra A € B, belongs to B, if and only if each prime filter in A is contained in at
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1 2 3 n

Fig. 1.

most n maximal filters ([14]). Since H(A) is order-isomorphic to the set of prime
filters of A ordered by inclusion, we have the following theorem ({1, 15]).

Theorem 3.3. The restrictions of the functors H and K establish a contravariant
category equivalence between B, and %,, where ¥, is the category whose objects
are p-spaces in which each point is majorised by at most n maximal points and
whose morphisms are the p-morphisms.

We now have all the machinery for analysing subalgebras of P2. We use the
notation introduced in Section 1. The join-irreducible elements of P, are the
atoms {i} (i=1,...,n) together with T. Hence H(P,) is the ordered set V,
shown in Fig. 1. We henceforth identify P, with the lattice of upper sets of V.

We require a map a:P,—2={0,1} to support the piggyback construction.
We take « to be the element 0 of V,,. This is the map which sends T in P, to 1
and all other elements of P, to 0.

Endomorphisms of B, can be identified with p-morphisms from V, to V,. A
map ¢:V,—V, is a p-morphism if and only if:

(i) i =1 implies @(i)=1, and

(ii) if @(0)#0, the map @ is constant, and if @(0) =0, the restriction of ¢ to

{1...., n} is a permutation of {1, ..., n}.
(It can in fact be seen that (i) is implied by (ii).] Since the symmetric group S, is
generated by the cycle 0 =(12- - -n) and the transposition 7= (12), we deduce
that the endomorphism monoid of P, is generated by three maps, f,, f, and e.
These have the following p-morphisms as their duals:

(H(fNO0)=0, H()I1{L,2,...,n}=0,
(H(f))(0)=0, H(f)!{1,2,...,n}=1,
(H(e))(i)=1 foralli=0,1,...,n.

We claim that the separation condition (C) in the Piggyback Duality Theorem is
satisfied. Take a #b in P,. We must find an endomorphism u such that exactly
one of u(a), u(b) equals T. Certainly 0 ¢ a N b. If 0 belongs to just one of a and
b, then we take u =idp,. If 0¢a Ub, then there exists i =1 such that, without
loss of generality, i ea and i ¢ b. There exists 0 € S, such that (1) =i. Then 6
induces an automorphism f, of P, which is a composite of powers of f, and f, such
that (ecofy)(a)=T and {ef,)(b)# T.
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Our next task is to identify the subalgebras of P2 maximal in o~ '(=). Dually,
each subalgebra, M, of P} is determined by a p-morphism g,, defined on V, U V,;
M is recaptured as M = K(Im @,,). We label the elements of V, UV, as in Fig. 2.

The sublattice o~ '(<) is dual to W, the ordered set obtained by strengthening

the order on V,, U V,, by putting 0 <0. Lemma 3.4 establishes a little more than
this.

Lemma 3.4. A subalgebra M of P is contained in a”\(<) if and only if
Pu(0) < @1e(0).

Proof. Let f,, be the embedding duai to ¢,,. We have, by (¥) in 3.2,

Pm(0) < @u(0) & ((Va € M)(@u(0))(a) < (¢m(D))(@))
& ((Va e M)(@r(0))(a) = 1> (pu(0))(a) = 1)
© ((Va € M)0(fi(a)) = 1=>0(fu(a)))
& ((V(b, c) e M)O((b, ¢)) = 1>0((b, c) =1)
S ((Y(b, ) e M)a(b) =1 a(c)) = 1)
SMcal(<). 0O

We denote the set of subalgebras of P> maximal in a~'(<) by /.

Lemma 3.5. Let M I_)e a subalgebra of P>. Then M € M if and only if @, satisfies:
(i) @m(0) < @u(0),
(ii) @un(0) is nonmaximal,
(i) |pn({1,2,...,1})|=n.

Proef. 'n order that M be nonmaximal it is necessary that there should exist a
subalgebra M’ such that M « M' c a”'(=<). By Theorem 3.2 there would then
exist a surjective order-preserving map 7 :Im @, — Im @, such that ne @ = @y
and 7 is not an order-isomorphism. The conditions in the statement of the lemma
are exactly those needed to ensure that Im @,, cannot be ‘expanded’ in this way.
For example, consider condition (i). Assume that @,,(0) = @4,(0). Let Z denote
Im @, with a new bottom element, ¢, adjoined; certainly Z € %,. Define
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p:V,UV,—>Z and 7:Z— Im @y as follows:

_[e(y) ify#0,
tp(y)—{c ify=0,
[y if y#c,
"(y)"{q;(u) ify=c.

Then v is a p-morphism, 7 is order-preserving and ¢, has the nontrivial
factorisation @,, =n°y. Hence M is not maximal. Conditions (ii) and (iii) are
handled similarly. O

We deduce that, as an ordered set, the dual H(M) of a subalgebra M of P*
maximal in & '(=<) is as in Fig. 3, where r lies between 1 and n. On this ordered
set we superimpose the labels 0,1,2,....n,0,1,2,...,7 to indicate the point
of Im g,, to which these points of V,, UV, are mapped. Lemma 3.3 implies that
the n maximal points of H(M) are labelled bijectively with 1,2,...,n and that
the labels 1.2,...,7 are distributed surjectively among the maximal points

above the point labelled 0. Up to a permutation 1, 2, . . . , n and a permutation of
1,2,..., fi, the labelling is as shown in Fig. 3.

Each X, is a string of labels each of the form X, where 1<x <n. Define
X, ={x|x occurs in the string X;}. The sets X,,..., X, have the following
properties:

(1) i #j implies X, N X, =9,
(i) X, U---UX,={1,2,..., n},
(i) k,=k,=---=k,, where k;:=|X{,
{iv) i <j implies (Vs € X;)(Vt € X;)s <t.
Given such a labelling (which we call left-packed), there is an associated partition
p=(k, ks, ..., k) of the integer n. Conversely every partition p=
(k\, ks, . .., k,) of in gives rise to a unique labelling satisfying (i)—(iv). Given p

Xl XZ XT
1 2 r r+1 7'771
Z
0
0
Yy

Fig. 3.
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we define

X1={1,...,k|}, X2={k|+l,...,kl+k2},
X3={k|+k2+1,...,k|+k2+k3},..., X,={n—k,+1,...,n}.

We denote the maximal subalgebra of a™'(<) associated with the partition

p=(k, ks, ..., k) by M(k\, ka,,..., k) and denote the associated labelled
ordered set by Y,,.

Our final task in this section is to show that we have isolated a sufficient set of
subalgebras to define a duality. Given M e #{, there exists a partition
(k\, ks, . .., k,) of n and automorphisms f and g of P, such that (b, ¢) e M if and
only if (f(b), g(c))e L:=M(k,, k,, . .., k,). This is simply the formal statement
of our earlier observation that each M is, to within permutations of the labels, of
the form M(k,, k., . . ., k,). Regarding M and L as relations, we may write

M=((Lof)""og)"".
Here ° denotes the relational product given by
roh={(a, b) € P*| (h(a), b)er},

for a binary relation r and a map h.

Each of f and g is a composite of poweis of f, and f,. It follows from [10, pp.
140-142, (b) and (j)], that a map ¢:D(A)— P preserving f,, f, and L also
preserves M. We therefore obtain the promised duality, needing at most p(n) + 3
relations, as a corollary of the Piggyback Duality Theorem, 2.1.

Theorem 3.6. Let P,:=(P,; 9, SUG), with n=1, where:
(i) T is the discrete topology,
(i) S={M(k,, kz, ..., k)| (ky, ks, ..., k,) is a partition of n},
(iii) G is (the set of graphs of ) a generating set for the endomorphism monoid of
P

{e} ifn=1,
G= {fa! e} lfﬂ =2,
{forfrre} ifn=3,

suffices, where f,,, f, and e are defined as above.

4. The partition-induced relations

Let p=(ky, k2, ...,k) be a partition of n and consider the associated
subalgebra L:=M(k,, k,, . . ., k,) of a”'(=<). The algebra L is recaptured as the
lattice of upper sets of H(L), the ordered set in Fig. 3. Denote the lattice of
upper sets of a finite ordered set Q by U(Q). We have
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N
(]

(i) A1 DQ)=U(Q)D1 (where 1 denotes the l-element chain and @ is
linear sum), and
(i) U(Q,UQ2)=U(Q)) X U(Q2).

Hence, as a lattice,
Mk ks .. k)= X (27D1)D1

(where 2 is the 2-element chain). Hence the subalgebras M(k,, k>, ..., k,) and
M, I, . . ., L) are isomorphic as algebras if and only if r =, that is, if and only
if the associated partitions have the same number of parts.

We have identified L as a lattice, but have not yet described how the labelling
in Fig. 3 encodes the way L sits in P,. Let Y ={0,0,1,2....,n} be the ordered
set obtained from Y, by deieting the tilda-ed labels, except 0. For Z c Y, define
Z' and Z! by

Zf._{U{X\’|x€Z} if0¢Z,
U0, 1,2, ..., n) iflez,

Zl_z{Z\{()} if0¢Z,
Tl0.1.2,... .0} if0eZ

For each upper set Z in Y, the sets Z! and Z! belong to P, (concretely realised in
the way described in Section 1). Then

Mk, ks, ... k) ={(Z', Z")| Z e U(Y))}.

We can alternatively specify M(k,, k>, .. ., k,) as the algebra 2""x (27D 1)) D
1 with atoms {(i, X;)|i=1, ..., n}, where X, =0 for i >r.

Before we analyse in detail the subalgebras M(k,, k-, . . ., k,) qua relations,
we consider the B, duality for small values of n.

When n =1 there is only the single partition, (1), so that, as in [11] and [12],
we obtain a duality with just one relation. When n =2 we have two partitions,
(1. 1) and (2). The corresponding subalgebras are those given for B- in [11, 12].

Figs. 4 and 5 show the duals of the necessary maximal subalgebras in case n =3
and n = 4. For n =3 the associated subalgebras are shown alongside.

For n equal to 1 or 2 the relational structore of P, given in [11] and [12}
included a partial order. different from the partial order of P,. This happens for
every value of n. Consider the partition (1,1, ..., 1). The associated subalgebra
is

M1, 1,....1)={(a,a)|aeP,}U{(d, T)}.

This corresponds to the partial order on P, in which the only non-trivial
comparability is d < T.

In [11] the relation for B, corresponding to the partition (2) was described as
an ‘almost order'—an antisymmetric, transitive relation which satisfies the
reflexivity condition only on certain elements. The case n =2 is too special to
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Fig. 4.

reveal the general pattern. It turns out that the subalgebras M(k,, k., . . ., k,), as
relations, are best described as digraphs. In what follows we exclude the special
partition (1, 1, ..., 1), which we have already considered.

Fix (ki kz, ..., k)#(1,1,...,1) and regard p=M(k, ko,...,k,) as a
digraph G =(P,, p). We shall show that P,\{T} splits into the union of two
disjoint connected subgraphs, G, and G-, each of which is almost a tree, in a
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sease to be made precise. Moreover the components G, and Gy turn out to be
isomorphic, so that each is of size 2"~'. We define

G.={Ae?({1,2....,n})|1¢A),
Gi={Ae?({1,2,... n})|1eA).

Certainly P, =G, UG, U{T} with IG,|=1G:|=2""". The following proposition
describes G.

Proposition 4.1. Assume that p = M(k,, ks, ..., k) is the relation determined by
a partition p of n other than {1, 1, ..., 1) and let G =(P,, p) be the associated
digraph. et A€ F,. Then:

(i) (d. T)ep,

(i1) there is a loop at A if and only if A€ { L, d, T}.
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(iii) If (A, d) € p then (A, T) € p.

(iv) The digraph G is ihe disjoint union of the subgraphs G, and G U {T}.

(v) If the loops at L, d and T are deleted and, for all A with (A, d) € p, the
edge (A, T)ep is deleted, then G, and G, become trees. Moreover the map
A—{1,2,...,n}\A is an isomorphism between the tree G, and the tree G.

Proof. Since 0 is not maximal in Y,, we may take A=maxY, to obtain
(d,d)=(A', Al)ep. Since 0<0, taking A=maxY,U{0} gives (d, T)=
(A, ATy e p. It is trivial that (1L, L) and (T, T) are in p.

Since p#(1,1,...,1), we have {1,2} < X,. It follows that if A is a proper
non-empty upper set in Y,, then Al # A, Thus the only loops occur at 1. d and
T.

Assume that (A, d) € p. Then there exists U c ¥, with U'=A and U'=d.
Thus 0¢ U while max0={1,2,...,r} c U. Hence V:=U U {0} is an upper set
and yields (4, T)=(V}, V) ep.

Now iet Ae P\{T} with 1¢A. Then we claim that there is a path
A=A, A, ...,A, =T from A to T in G;. Since there is an edge from dto 1 in
T, we may assume that A £ {1, 2, ...} =d. We construct a path from A to d. Let
A,=A and, for all i =1, define A, = A]. (This is well defined since A; c max Y
implies Al € max Y, whence Al is an upper set.) As le A=A, and 1 e X, it
follows that 1€ A; for all i. By construction we have (A;, A;41)€p (because
0¢A;, so that A} = A;). Since {1,2)} c X, it foliows that if {1,2,...,s}c A,
then {1,2,...,s,s+1} cAl=A,... Consequently for somc ! we have A, =d.
Note that the path from A to d is unique, from which it follows that G is a tree.

We now take AeP, with 1¢ A. We claim that there is a path A=
A,, A, ..., A;=1 (=0) in G,. Again the path is uniquely given by A,,, = A].
Since 1¢ A, the least element of A=A, is greater than 1. We know that
{1,2} = X,. Thus if the least element of A; is k, then the least element of
A,.,=A] is at least k + 1. Eventually the least element of A; will be at least
r + 1, in which case A,,, =0. Since G, is connected and the path from A € G, to
L is unique, we conclude that G, is a tree.

It is clear that complementation is a graph-isomorphism between the trees G
and G, . Finally, since each elemen: of G, U G other than L and d has a unique
upper cover, it follows that G is the disjoint urion of G, and G- U{T}. O

We can now see the exteni te which the relation induced by a partition (other
than (1,1, ..., 1)) fails to be a partial order. We have (A, A)ep in G, UG, if
and only if Ae{Ll,d, T}. Given A, B, C € P, such that (A, B)ep, (B, C)ep,
A# B and B # C, we have B=d and C = T. Consider the associated trees drawn
with their roots uppermost. In G, we have reflexivity only at the top level, and
no nontrivial transitivity. In G; we have reflexivity at the top two levels, and
nontriviai transitivity restricte« to the top three levels. Fig. 6 shows the tree
structures obtained in the case n = 4.
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Table 1

(5,1 Q=2

4.2 =2

(3- 3) qy =<

“Ln ¢, =2,

3.2. 1) q,=2

2,2.2) @=3.¢.=2

G.LL q,=3.4-=2,

2.2.LD q,=3.¢.=2,

RCLLLD ¢ =5¢.=4¢:=3. ¢q,=2.

We conclude with an explicit description of the tree G, which uniquely
determines M(k,, k-, ..., k,). qua digraph. As usual we shall assume that
(ky, k2. - . . . k,) is a partition of 2 with k, > 1 (or, equivalently, r <n). Note that.
since each k;= 1 and k, > 1, we have k; +---+k,_,+1=r+1, whence

X,ci{r+1,...,n}.

In case r > 1, we now define a sequence r+1=¢,>q,>--->q,_1>q, =2 of
integers in the following way:

qu=r+1,q.=2,
g=min{i | X,c{q._.,....n}} forl<js<k.

We interpose some simple illustrations before giving our characterisation of ihe
trees associated with partitions. For both ol the partitions (3, 1) and (2, 2) of tie
integer 4 we have kK =1 and q, =2. Now consider partitions of 6. We obtain tl-e
sequences shown in Table 1.

We adopt the following additional notation. Given a set A we write 2'(A) for
P(A)\{B} and let PP(A) be the family of scts of the form B U C, where C c A.
Finally, for@#Jc{l,... . n}, let X, =U{X,|iel}.

The statements in Proposition 4.2 suppiement those in Proposition 4.1. All
foliow from Proposition 4.1 and the formula

M(ky. ks, ... k) ={(Z} ZY) | Z € Uu(Y))}.

Proposition 4.2 implies that the sequence of integers ¢, q,, . . . , 4, derived from
the partition (k,, k., . . ., k,) uniquely determines up to isomorphism the trees
associated with M(%;, k., ..., k).

Proposition 4.2. Let G| be as in Proposition 4.1. Assume that 1 <r <n and let
L={r+1,...,n}. Forl<sj<k, let
L=1g;.---. g~ 1}

(i) The vertices of G, are the elements of P({2,...,n}) wih 9 as the root.
{it) The set of veriices at depth 1 is P'(1,).
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p=(2,1,1): L
/<£>\ \

24 23
.
p=(22) i
N d
34 l3 \ 4 12 124 | 123
e
2 23 24 934 134 14 13 1
oT
p=(3,1):
d
23 24 234 134 14

Fig. 6.
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p=(4) TT

AN I

23 24 34 234 134 124 123 14 13 12 1

Fig. 6. (Cont.).

(iii) The height of the tree is k + 1; the depth of S #9 is
max{i |SNL#0}+1.

(iv) The nonleaves, other than the root, are precisely the sets of the form X, for
some non-empty subset J of {1, ..., r}. If the smallest integer in J is i and i € I,
then the depth of X, is j. The descendants of X, are the members of P’(1,).

If r=n, the tree G, has height 1; the empty set is the root and all non-empty
subsets of {2, . . . ,n} are leaves.
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