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A bnrcict 

D,.tvey. B.A. and H.A. Pricstley, Partition-induced natural dl alit& for varieties of pseudo- 

compicmented distrrbutivc lattices, Discrete Malhematics 113 (1993) 41-58. 

A natural dl:sitty is obtained for each finitely generated variety B,, (n < CG) of distributive 

p-algebras. 7 he duality for B,, is based on a schizophrenic object: E:, in B,, is the algebra 2” @ 1 
which gencrates the b:uiety and c?, is a topological relationai structure carrying the discrete 

topology and a set of Qcbraic reititions. The relations arc (i) the graphs of a (3-element) 

generating set for the endomorphism rnonoid of c:, and (ii) a set of subalgebras of pz in 

one-to-one co;respondence with partitions of the integer n. Each of the latter class of relations, 

regardec! as a digraph, is ‘nearly’ the union of IWO isomorphic trees. The duality is obtained by 

the piggyhack method of Davcy and Werner (which has previously yielded a duality in case 

tr 5.2), combined with use of the restriction to hnitc p-algebras of the duality for bounded 

distributive !attices. which enables the re!ations suggested by the general theory to be 

;oncreteiy dcscribcd. 

1,. Introduction 

A distributive p-algebra is an algebra (A; v, A, *, 0, 1) of type (2,2, I, 0,O) 

such that (A; v, A, 0, 1) is a distributive lattice with zero, 0, and identity, 1, and 

* is an operation of pseudocompiemcntation, that is, 
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The distributive p-algebras form a variety S,,,. The lattice of subvarieties of B,,, 

was determined by Lee in [ 141. It is an (0 + 1 chain 

Here B_, is the trivial variety, B,, is the variety of Boolean algebras and B, the 

variety of Stone algebras. The equational characterisation of B,, is given in [ 13, p. 

1671. For our purposes the alternative characterisation based on Birkhoff’s 

subdirect product theorem is more useful. This gives B,, = llSlP(&), where the 

p-algebra en = (&; v, A. *. 0, 1) is obtained by adjoining a new unit to the 

n-atom Boolean lattice. We shall represent P,, as P( { 2, . . . , rz}) U {T} and 

denote the empty set by _L and the set { 1, . . . , n } by :L Then, for a E pI,, 

a* = 
d\u if a rd. 

I ifa=T. 

One tool used to study the varieties B,, has been the duality for (0, l}- 

distributive lattices. Surveys of this duality can be found in [5] and [16], and an 

introductory account in [Ei]. The duality yields a category “&,, dually equivalent to 

B, and allows the algebras in B,, to be ;oncreteJy represented as families of sets. 

This representation (whose details we recall in Section 3) is appealingly pictorial, 

but has one major drawback. Although the duality between B,, and 9,: was 

successfully used by Davey and Goldberg in [6] to identify coproducts, and in 

particular free algebras in BII. it is not the natural tool to employ. For n 2 2, 

products in iq, are not Cartesian. A good duality for handling free algebras should 

have the property that products in the dual category are Cartesian. A duality with 

this property. and many ot!ler categorically desirah!e features. does exist for B,, 
(n < to), as the results of 1 I!)] show. Jn that paper Davey and Werner undertook a 

major study of naturzi dualities. They showed that, under suitable conditions, a 

prevariety of the form .d = UP(P) has a duality defined by horn-functors and 

based on a schizophre,lic object. This object is required to live, as P, in &. It also 

lives. as a topologicai relational structure p. on the same underlying set P as p, in 

the dual category farmed by taking isomorphic copies of closed substructures of 

powers of p. The struciuii p 3cts as tile dual of the free algebra F&!(l), and p” 

(with product tcGology and pointwlse defined relational structure) as the dual of 

F.r=/( K). When. as is the case for B,, , the generating algebra p is finite, the 

topology on p is discrete and plays no role. The study of free algebras is then 

purely combillatoriai in nature. 

It is relatively easy to cast appropriate known dualities in the canonical form of 

the Davey--Werner theory (see the many examples given in [lo]). However, as 

we recall in more detail in the next section. it is much harder to find the right 

candidate for e when a natural duality is not already available. 

The search for a description of a natural duality for each B,,, ti < w, has been 

the subjl:ct of a long-running serial. This paper and its companion, [9], un\-eii the 
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last two episodes. The first instalment was written by M.H. Stone when he 
obtained his famous duality for B,, (Boolean algebras). The second was 
contributed 40 years later by Davey: in [4] he described a natural duality for B,. 
In [lo] the dualities for B,, and B, were used to illustrate the general theory 
(indeed they provided some of the motivation for it). The NU-Duality Theorem 
(Theorem I.18 of [lo]) uses results of Baker and Pixley [3] and applies to 
varieties with a near-unanimity term. The theorem shows that for a variety of 
distributive-lattice-ordered algebras (such as B,,) it is possible to obtain a duality 
by taking the relational structure of p to consist of all subalgebras of p’. This led 
to new dualities for certain vaneties, including de Morgan and Kleene algebras, 
but left B,, (12 3 2) out of reach because the number of subalgebras of P,‘, 
appeared uninvitingly large. 

The next episode in the srtory concerns piggyback dualities ([ 11, 121). The 
piggyback technique applies to prevarieties whose members have reducts in a 
variety (such as (0, l}-distributive lattices) for which a duality is already 
available. Applied to a prevariety llW(P) of distributive-lattice-ordered algebras 
the method identifies a restricted set of subalgebras of p2 which serve to define p. 
It was successfully used in [ 11, 121 to produce a workable duality for B2. The 
necessary subalgebras of Pz were found by algebraic means. The corresponding 
subalgebras required for a piggyback duality for B,, (rz > 3) were not exhibited. 
The story to c!ate ends with a comment in [ 1 l] asserting that these subalgebras are 
‘many and ugly’. This paper reftttes the claim that they are ugly; [9] addresses the 
question of the number of relations needed. 

The key that unlochs the piggyback subalgebras is the ‘old’ duality-that 
between B,, and %,,. This allows us to derive a natural duality for B,, for n 2 3 
(Theorem 3.6). This duality has prz = (P,,; 5, R) with 5 the discrete topology and 
R a set of p(rz) + 3 relations, where p(n) denotes the number of partitions of the 
integer IL The relations in R are: 

(i) the graphs of a set of three endomorphisms which serve to generate the 
endomorphisrn monoid of p,,; 

(ii) a set oJ’ subalgebras of &‘z in one-to-one correspondence with the partitions 
of Fl. 

In (ii) th : partitions into a fixed number of parts all give isommphic 
subalgebras. Each relation in (ii) has a representations as a digraph. These 
digraphs are described in Section 4. The elementary theory of partitions can be 
found in Andrews, [2, Chapter 11. 

Until novr, every natural duality that has been expiicitly described his ~si.+~lv~-i 
only a very small number of relations. In such cases there is no inccntiw tcj 
discover whether the set of relations is redundant. Given the rapid growth of p(n) 
with )I we are obviously led to er)+ire whether a duality exists for B,, with fewci 

than p(n) + 3 relations, in our companion paper [9] we show, using a new range 
of techriques, that II + 3 relations in fact suffice. This problem and its solutior: 

open uy a new branch of duality theory -the study of ‘optimal’ dualities. 
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2. Natural dualities, piggyback fasbicn 

In this section we outline the duality theory presented in [l&12] as it applies to 
a (pre-)variety of distributive-lattice-ordered algebras generated by a single finite 

algebra. 
Assume that ,c9 = ES(P) is a prevariety such that p has a reduct r in D, the 

variety of (0, I}-distributive lattices. Assume that the underlying set, P, of r’ is 

finite. Consider 

p = (R Z R), 

where 9 is the discrete topology on P and R is a set of algebraic relations. (By an 
algebraic relation we mean one which is a subalgebra of some finite power p”‘). 
We shall, where convenient, identify a homomorphism from p to P with its 
graph, and so regard operations as (algebraic) relations. 

We equip an arbitrary power p” with the product topology and pointwise- 
define< relations. A closed substructure of p” is a topologically closed subset of 
p” which is also a substructure with respect to the relations in R. Now define %’ to 
be the following category. A topological relational structure X belongs to SY if it 
embeds as a closed structure in some p”; the morphisms in 2 are the continuous 
relation-preserving maps. For A E d, define the dual of A to be 

D(A):=.d(A, p), 

the set of d-h?momoqhisms from A into &‘. This can be regarded as a subset of 
p” and in fact belongs to S!? ([ 10, Lemma 1.31). Then define the dual of X E 9? to 
be 

E(X) := S?(X, p), 

the set of Z’-morphisms of X into p. Because the relations are algebraic, this 
subset of Px forms a subalgebra ([ 10, Lemma 1.31). The maps D and E extend to 
morphisms to give horn-functors D : d * SF’ and E : .%‘-, d. Lemmas 1.3-l .5 of 
[lo] show that these functors form an adjoint pair such that the evaluation maps, 
which are the units of the adjunction. are embeddings. 

!f P is chosen in such a way that the evaluation map u I-+ e, from A to ED(A) is 
an i&morphism for each A E d we say that we have a duality for ~4. (We shall 
not need to address the question of whether the duality is full, that is whether 
X s DE(X) for ail X E 2). 

The duality for the variety D of (0, I}-distributive lattices as given in [16] (or 
see [8]) fits into this framework ([lo, 2.81). We have D -= OSP(2), where 2 
denotes the 2-element chain as a lattice. The 2-element chain, as an ordered set, 
with the discrete topology is denoted by 2. The schizophrenic object is then the 
Z-element chain, living as 2 in D and as 2 in the dual category P, which may be 
shown to consist of all compact totally order-disconnected spaces and continuous 
order-preserving maps. In this context we shall use the letters H, K in place of D, 
E to denote the horn-functors D(- ,2), P(-, 2) (and also their restrictions to 
subcategories-not necessarily full-of D and P). Then, for each A ED, the 
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evaluation mop from .A to KH(A) (which we denote by kn) is an isomorphism. 
Assuming that the horn-functors D and E do establish a duality for the 

prevariety J$ = O%n(P), the fohnwing properties hold (see [lo, p. 1061): 
(i) I_‘ is the dual of the free algebra F&(l), so that F&(l) = S!?(S, p); 

(ii) products in %’ are Cartesian, so that F&'(K) = Z'(p", p). 
Therefore if we choose the structure y so that we indeed have a duality, we 

have access to the free algc 3ras in &. 
As we mentioned in Section I, we do obtain a duality for .G$ by taking the set of 

R of relations on p to consist of all subalg-bras of p”. This result can be refined 
by observing that it is sufficient to take a restricted set of subalgebras which 
‘generate:’ the entire set of subalgebras, in the sense dcfincd in [lo, p. 1401. Even 
this refinement may not yield a workable duality; the subalgebras may be hard to 
describe and a ‘small’ generating set may not be apparent. The piggyback method 
developed in [i 11 and [l?,] identifies a restricted set of subaigebras which suffices 
to define a duality. Assume that some topological relational structure e has been 
put forward. We seek conditions under which the embedding eA :A + ED(A) is 
surjective, for each A E &. The idea is to exploit the fact that, for any A, the 
evaluation map k A : A --, KH(A) is onto. If it is possible to construct an injective 
map A: ED(A)* KH(A) such that doeA = kA, then eA is forced to be surjective. 

To define A we need to associate with each continuous morphism q from D(A) 

(=d(A, P)) to P a continuous order-preserving rnilp d(q) from H(A) (= 
D(A, c)) to 2 such that (doe,)(a) = k,(a) for all a EA. A natural way to try to 
construct A(v) is to seek a map LY: p -2 and a surjectivc map @, from D(A) to 
H(A) such the diagram below commutes. In the diagram, CY is some member of 
H(P) and @,:=cuo--. 

@ll 1 n 1 
H(A) =D(A, r) % 2 

The commutativity of the diagram means that, for y E H(A) and x E D(A): 

(mP))(YJ = 4944) where y(a) = &x(u)) for all a E A, 

and it follows from this that A oeA = kA. 
To carry out this construction we need: 

(i) CY : f’-, 2 such that @* is surjective; 
(ii) A(q), given by (A(,cp))(y) = a( q(x)) whercx y = Qa(x), is well defined on 

H(A) = Im Qm, and is order-preserving and continuous, for each Q,; 
(iii) A is one-to-one. 

As noted in [ll, p. 681, (i) will be automatic when the underlying duality is that 
for D. Now consider (ii). Assume that y, = @...(x,) and y, = aa( If we can 
show that y, dy2 implies 



then A(q) must be well defined (because = is =: n a). In the Piggyback Duality 

Theorem of [IO] the structure of p includes a family of relations which serves to 
ensure that A(v) is well (!-II pCned. The observation above shows that thest 

retatiG;;rc can be omittzti in the special case we are considering. The following 
theorem. whlcik specialises the Piggyback Theorem to a prevariety whose algebras 
have a reduct in D. takes account of this. We say that a subset RI of a set of 
relations R on p gerrerales R if, for eveq -4 5 2, ,wlienever a ,norphism 
q: D(A)* p preserves each r E R,, it also preserves each r E R. In the theorem, 
the inclusion of a generating set for the subalgebras of p’ maximal in 

a-l(s):= {(IL C) E f-‘? 1 cu(h) s (u(c)} 

ensures that A(v) is order-preserving: its continuity is easily verified. The 
separating set of endomorphisms makes A one-to-one. See [ 121 for the details of 
the proof of the theorem. 

Theorem 2.1. Srtppose thclt -VI = UW( p) is CI prevariety gerleruted by a finite 

algebm p such thut A E -a( has ~1 reduct in D. Fix CY E H(P). 

Let p = (P; 3. R) be N topological relational strwtrwe 011 the wderlyirzg set P of 

p ifz which R = S U G, where: 

(i) 9 is the discrete topology, 

(ii) S is (1 generating set for the collection of sr~baigebras of P’ muximal in 

a.-‘( q. 

(iii) G is the set of graphs of a fumii;; E of endomorphisms satisfying the 

separation conditiorl : 

for ail (1. b E P 

emlomorphism 

with N # 
monoid 

b. there exists II iu the submonoid of the 

purlcrated by E such thut a(n(c4)) # cu(u(b N- u 
Then the horn-flmctors D : A - ti(A, p) and E : X - 2,(X. p) set 14~ n duality 

for &. 

3. The duality for B,, 

We seek to apply the Piggyback Duality Theorem to B,,. To do so, we use the 
duality for D to identify the relations defining c,,. We begin by stating this duality 
in the form in which it gives the most pictorial representations. To relate the 
representation below to that stated in the previous section simply note that the 

lattice of clopen upper sets of an ordered topological space Y is isomorphic to the 

lattice of continuous order-preserving maps from Y into 2, via the map assigning 

to a set U its characteristic function xrl. A set U is an upper set if y E U and z 2 y 

imply c E U. For a detailed account of this representation see [5, 161, or [8. 

Chapters 8- 101. 

Theorem 3.1. Let L E D. Then L is isomorphic to the luttice of clopen upper sets 

( = order jiltus ) of its dual space H(L) : = D( L , 2) _ which is topologised us u 
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subspace of 2’* and ordered pointwise. As an ordered set, H(L) is isomorphic to 
the set of prime filters of L ordered by inclusion, and in case L is finite, H(L) has 
the discrete topology and is order anti-isomorphic to the set of join-irreducible 
elements of L. 

Henceforth we shall, where expedient, identify L ED with the lattice of clopen 
upper sets of H(L). 

For morphisms we have the following result. 

Theorem 3.2. Given L, M ED, there exists a bijective correspondence between 
D(L, M) (the set of (0, 1 )-lattice homomorphisms from L to M) and 

P(H(M)* H(L)) (th e set of continuous order-preserving maps from H(M) to 
H(L)). This associates to f c D(L, M) the map H(f) := - of; specifically, 

((H(f))(y))(a) = Y (f (a)) for a E L, Y E H(M). 0) 

Further, f is surjective if and only if H(f) is an order-embedding and f is a 
lattice-embedding if and only if H(f) is surjective. 

It follows immediately from this last result that, up to isomorphism, L is a 
(0, l)-sublattice of M ED if and only if there is a continuous order-preserving 
surjection from H(M) onto H(L). 

The final fact we need about the duality for D concerns products of finite 
lattices. Suppose L, and L2 are finite members of D. Then 

H(L,) W H(L,) s H(L, x L,). 

It was shown in [ 151 (following Adams [l]) that L E D is pseudocomplemented 
if and only if Y = H(L) is a p-space, that is, it is a compact totally order- 
disconnected space with the property that for each clopen upper set I/ in Y, the 
set 

is clopen. This condition on upper sets is satisfied automatically if Y (or 
equivalently L) is finite. The pseudocomplement of a clopen upper set U in a 
p-space Y is given by 

U” = Y\&J. 

Given A, B E B,,,, a map f E D(A, B) preserves the operation * of pseudo- 

complementation if and only if cp = H(f) is a p-morphism, that is, it is a 
continuous order-preserving map with the property that 

q(max y) = max q(y) for all y E H(B). 

Here max z denotes the set of maximal points above z. 
The subvarieties B,, of B,,, can be characterised in terms of prime filters: an 

algebra A E B,,, belongs to B,, if and only if each prime filter in A is contained in at 
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most n maximal filters ([ 141). Since H(A) is order-isomorphic to the set of prime 
filters of A ordered by inclusion, we have the following theorem ([ 1, IS]). 

Theorem 3.3. The restrictions of the functors H arld K establish a contravariant 

category equivalence between B,, and 9,,. where ?I,, is the category whose objects 

are p-spaces in which each point is majorised by at most II maximal points and 

whose morphisms are the p-morphisms. 

We now have all the machinery for analysing subalgebras of P,‘,. We use the 
notation introduced in Section 1. The join-irreducible elements of p,‘,, are the 
atoms {i} (i = 1,. . . , n) together with T. Hence H(&) is the ordered set V,, 
shown in Fig. 1. We henceforth identify p,‘,, with the lattice of upper sets of V,,. 

We require a map cy : & + 2 = (0, l} to support the piggyback construction. 
We take cy to be the element 0 of I& This is the map which sends T in IT,, to 1 
and all other elements of pm to 0. 

Endomorphisms of & can be identified with p-morphisms from V,, to V,. A 
map 43 : V,, --* V,, is a p-morphism if and only if: 

(i) i 2 1 implies q(i) 2 1, and 
(ii) if ~(0) #O, the map Q, is constant, and if ~(0) = 0, the restriction of q to 

{L.... n} is a permutation of { 1, . . . , rr}. 
[It can in fact be seen that (i) is implied by (ii).] Since the symmetric group S,, is 
generated by the cycle 0 = (12 - - - n) and the transposition t = (12) we deduce 
that the endomorphism monoid of p,, is generated by three maps, fn, fr and e. 
These have the following p-morphisms as their duals: 

wuzJ)w = 0, H(f,) l{L 2,. - . , n> = 0, 

wm(O) = 0, H(f,) f { 1, 2, . . - , n } = t, 

(H(e))(i) = 1 for all i = 0, 1, . . . F II. 

We claim that the separation condition (C) in the Piggyback Duality Theorem is 
satisfied. Take a # b in p,,. -We must find an endomorphism u such that exactly 
one of u(a), u(b) equals T. Certainly 0 $ a f7 b. If 0 belongs to just one of a and 
6, then we take u = id,;. If 0 $ a U b, then there exists i 2 1 such that, without 
loss of generality, i E a and i $6. There exists t) E S,, such that 8( 1) = i. Then 8 
induces an automorphism fH of pm which is a composite of powers of iI and fr such 
that (eofH)(a) = T and (eoffl)(b) f T. 
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Fig. 2. 

Our next task is to identify the subalgebras of p: maximal in cy-‘(6). Dually, 
each subalgebra, M, of Pf, is determined by a p-morphism ~3,,,, defined on v, U V,,; 
M is recaptured as M = K(Im q,,,,). We label the elements of V,, U V,, as in Fig. 2. 

The sublattice (u-‘(s) is dual to W, the ordered set obtained by strengthening 
the order on V,# U V,, by putting 0 < 6. Lemma 3.4 establishes a little more than 
this. 

Lemma 3.4. A subalgebra M of p,‘, is contained in (Y-‘(G) if and only if 

Q%(O) d Q)Mm 

Proof. Let fm be the embedding dual to q,,,,. We have, by (t) in 3.2, 

TM(O) c qM@)e((Va E M)(qM(“))(a) B (Q)M@))ta)) 

e((va E M)(qM(“))(a) = 1 3 (Q)M(o))(a) = l) 

H (tv’a E M)“(fM(a)) = 1 %(f~(~))) 

@((v(b, c) E M)O((b, c)) = 1 $@(b, c) = 1) 

e((kt(b, c) E M)&(b) = 13 (u(c)) = 1) 

HM c a?(~). 0 

We denote the set of subalgebras of P” maximal in (Y-‘(C) by A. 

Lemma 3.5. Let M be a subalgebra of p2. Then M E & if and only if Q)M satis$es: 

(0 qM(O) < %f@h 

(ii) qM(o) is nonmaximal, 
(iii) (qM({ 1, 2, . . . , fi})l = n- 

Proof Jn order that M be nonmaximal it is necessary that there should exist a 
subalgebra M’ such that M c M’ E cu-‘(s). By Theorem 3.2 there would then 
exist a surjective order-preserving map q : Im TM” Im qM such that q 0 TM, = qM 
and q is not an order-isomorphism. The conditions in the statement of the lemma 
are exactly those needed to ensure that Im qM cannot be ‘expanded’ in this way. 
For example, consider condition (i). Assume that ~~~(0) = Q)&,(o). Let 2 denote 
Im qM with a new bottom element, c, adjoined; certainly Z E $,,. Define 
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ly : VI U V,z - 2 and ?7 : 2 3 Im qM as follows: 

V(Y) { 
= V,(Y) ifYf0, 

c if y =o, 

‘(‘)= I i(O) 
if v f c, 
if; = c . 

Then ?/J is a p-morphism, q is order-preserving and qM has the nontrivial 
factorisation qM = 17 0 q. Hence M is not maximal. Conditions (ii) and (iii) are 
handled similarly. Cl 

We deduce that, as an ordered set, the dual H(M) of a subalgebra M of P’ 
maximal in (U-‘(S) is as in Fig. 3, where r lies between 1 and n. On this ordered 
set we superimpose the labels 0, 1,2, . . . , n, 6, i, 2, . . . , ti to indicate the point 
of Im ~3~ to which these points of V,t CJ Vn are mapped. Lemma 3.3 implies that 
the n maximal points of H(M) are labelled bijectively with 1,2, . . . , rz and that 
the labels i, 2, . . . , ri are distributed surjectively among the maximal points 
above the point labelled 0. Up to a permutation 1, 2, . . . , II and a permutation of 
i, 2,. . . , ti, the labelling is as shown in Fig. 3. 

Each Xt is a string of labels each of the form X, where 1 sx s 12. Define 
X, = {x 1 _f occurs in the string Xi}- The sets X,, . . . , X, have the following 
properties: 

(i) i #j implies Xi n Xi = 0, 
(ii) XIU--*UX,={l,2 ,..., n}, 

(iii) 7c,akR-,a.-- 2 k,, where k, := 1X,1, 
(iv) i <j implies (V.r E X,)(Vt E Xi)s < t. 

Given such a labelling (which we call left-packed), there is an associated partition 

p =(k,, kz, - - . , k,) of the integer tt. Conversely every partition p = 
(k,, k,, . - . , k,) of r‘? gives rise to a unique labelling satisfying (i)-(iv). Given p 

Fig. 3. 
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we define 

x, = (1, - * - , k,}, x2 = {k, + 1, . . . , IQ+ k,}, 

X,={k,+k,+l,..., k,+k2+k3} ,..., X,={rz-kk,+l,...,n}. 

We denote the maximal subalgebra of CY-‘(c) associated with the partition 

p=(k,,&,.. . A,) by M(k,,kz,.. . , k,) and denote the associated labelled 
ordered set by Yp. 

Our final task in this section is to show that we have isolated a sufficient set of 
subalgebras to define a duality. Given M E .& there exists a partition 

(k,, kz, - . . , k,) of 11 and automorphisms f and g of 8, such that (h, c) E M if and 
only if (f(b), g(c)) E L := M(k, , kZ, . . . , k,). This is simply the formal statement 
of our earlier observation that each M is, to within permutations of the labels, of 
the form M(k,, k2, . . . , k,). Regarding M and L as relations, we may write 

M = ((Lof)-log)-‘. 

Here 0 denotes the relational product given by 

r-oh = {(a, b) E P2 1 (h(a), b) E r}, 

for a binary relation r and a map h. 
Each of f and g is a composite of powers of fn and fT. It follows from [ 10, pp. 

140-142, (b) and (j)], that a map cp :D(A)-+ c preserving fO, fT and L also 
preserves M. We therefore obtain the promised duality, needing at most p(n) + 3 
relations, as a corollary of the Piggyback Duality Theorem. 2.1. 

Theorem 3.6. Let I’,, : = (& ; 9, S U G), with n 3 1, where: 
(i) 5 is the discrete topology, 

(ii) S = { M(k,, k2, . . . , k,) 1 (k,, kz, . . . , I?,) is a partition of n>, 
(iii) G is (the set of graphs of) a generating set for the endomorphism monoid of 

P- -_)I 7 

ifn=l, 

if n =2, 

{.LfT, e} 0 23, 

sujjices, where J,, fr and e are defined as above. 

4. The partition-induced relations 

Let p=(k,,kz ,... , k,) be a partition of r2 and consider the associated 

subalgebra L : = M(k, , k2, . . . , k,) of cue’(s). The algebra L is recaptured as the 

lattice of upper sets of H(L), the ordered set in Fig. 3. Denote the lattice of 
upper sets of a finite ordered set Q by Q(Q). We have 



(i) d&(1t3Q)=6ti(Q)@1 ( w ere 1 denotes the l-element chain and @ is h 

linear sum), and 
(ii) %(Q, U Q?) = %(Q ,) x %(Q?). 

Hence, as a lattice, 

M(kl, k2, . . . , k,) = (2’- x (2’ CI3 1)) CB 1 

(where 2 is the 2-element chain). Hence the subalgebras M(k,, k2, . . . , k,) and 

M(i,, 12, - - - * I,) are isomorphic as algebras if and only if r = s, that is, if and only 

if the associated partitions have the same number of parts. 
We have identified L as a lattice, but have not yet described how the labelling 

in Fig. 3 encodes the way L sits in Pi_ Let Y = (0, 0, 1,2. . . . , IZ } be the ordered 
set obtained from Y[, by deieting the tilda-ed labels, except 0. For Z c Y, define 
ZT and Z1 by 

Zl:= 
I 

u {XV I -r E a ifiir$Z, 

(0, 1,2 ,... ,u} ifOEZ, 

Z& Z\(O) ifO@Z, 

{0,1,2 ,..., 82) ifOEZ. 

For each upper set Z in Y, the sets Z* and Z1 belong to e, (concretely realised in 
the way described in Section 1). Then 

M(k,, k2, . . . , k,) = {(Zl, ZT) 1 Z E 4!!(Y)}. 

We can alternatively specify M(k, , k2, . . . , k,) as the algebra (2”-’ x (2'@ I)) G3 
1 with atoms {(i, X,) Ii= 1,. . . , tz), where X,=0 for i>r. 

Before we analyse in detail the subalgebras M(k,, k2, . . . , k,) qua relations, 
we consider the B,, duality for small values of n. 

When tz = 1 there is only the single partition, (1): so that, as in [ll] and [12], 
we obtain a duality with just one relation. When IZ = 2 we have two partitions, 
(1.1) and (2). Th e corresponding subalgebras are those given for B3 in [ 11, 121. 

Figs. 4 and 5 show the duals of the necessary maximal subalgebras in case IZ = 3 
and II= 4. For rz = 3 the associated subalgebras are shown alongside. 

For rz equal to 1 or 2 the relational structorz of & given in [I I] and [12] 
included a partial order. different from the partial order of I_‘,,. This happens for 
every value of N. Consider the partition (1, 1, . . . , 1). The associated subalgebra 
is 

M(1, 1,. . . . 1) = {(a. a) 1~1 E f’,,} U {(d, T)}. 

This corresponds to the partial order on P,, in which the only non-trivial 
comparability is d < T. 

In [ll] the relation for B2 corresponding to the partition (2) was described as 
an *almost order’-an antisymmetric, transitive relation which satisfies the 
reflexivity condition only on certain elements. The case fz = 2 is too special to 
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reveal the general pattern. It turns out that the subalgebras M(k,, kZ, . . . , k,), as 
relations, are best described as digraphs. In what follows we exclude the special 
partition (1, I,. . . , l), which we have already considered. 

Fix (k,, k2, . . . , k,)f(l, 1, . . . , 1) and regard p = M(k,, k2, . . . , k,) as a 
digraph G = (cl, p). We shall show that P,, \ { T} splits into the union of two 
disjoint connected subgraphs, G, and G,, each of which is almost a tree, in a 
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se.lse to be made precise. Moreover the components G, and G, turn out to be 

isomorphic, so that each is of size 2”-‘. We define 

GI = {A E Y({ 1, 2,. . . , [I}) 1 1 $A}, 

G, = {A E .Y({l, 2,. . . , tz}) 1 1 EA). 

Certainly c, = G, U G, W {T} with IG,l = IG,( = Y-‘. The following proposition 

describes G. 

Proposition 4.:. -4 wme that p = M(k, , k, , . . . , 

u purtitiorz p of II other than (l, I. . . . , 
k,) is the r-e&k-m detemitwd by 

digruph. I et A E k,,. Then : 
1) md let G = (e, , p) he the ussociuted 

(i) (4 T) up, 
(ii) there is u loop ut A if utzd otzl_v if A E ( _L , d, T }. 
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(iii) If (A, d) E p then (A, T) E p. 
(iv) The digraph G is the disjoint union of the subgraphs G, and G, U ( T }. 
(v) If the loops at I, d and T are deleted and, for all A with (A, d) E p, the 

edge (A, T) E p is deleted, then G, and G, become trees. Moreover the map 
A-(1,2,. . . , n > \A is an isomorphism between the tree G, and the tree G,. 

Proof. Since 0 is not maximal in YP, we may take A = max YP to obtain 
(d, d) = (Al, AT) E p. Since 0 < 0, taking A = max y, U {ii} gives (d, T) = 
(Al, AT) E p. It is trivial that (I, _I_) and (T, 7.) are in p. 

Since p#(l, 1,. . . , l), we have { 1, 2) E X,. It follows that if A is a proper 
non-empty upper set in $, then A1 f A I. Thus the only loops occur at 1. d and 
T. 

Assume that (A, d) E p. Then there exists /I E Yr with U4 = A and U7 = d. 
Thus6$Uwhilemax6={1,2,...,r}cL/. Hence V:=UU{6} isan upperset 
and yields (A, T) = (Vl, VI) E p. 

Now let A E P,,\{T} with 1 CA. Then we claim that there is a path 
A =A,, AZ,. . . , A, - T from A to T in G,. Since there is an edge from d to 1 in 
T, we may assume that A 5 { 1, 2, . . . } = d. We construct a path from A to d. Let 
A, =A and, for all i a 1, define Aj+, = A!. (This is well defined since Ai c max Y 
implies A! c max Y, whence Ai is an upper set.) As 1 E A = Ai and 1 E XI, it 
follows that 1 E Ai for all i. By construction we have (Ai, A,,,) E p (because 
0 $A;, so that A/ = Ai). Since { 1, 2) c X1, it foliows t!lat if (1, 2, . . . , s} &f-ii, 

then { 1, 2, . . . , s, s + l} c Af = A ;+: _ Consequently for some I we have A, = d. 
Note that the path from A to d is unique, from which it follows that G, is a tree. 

We now take A E P,, with 1 $ A. We claim that there is a path A = 
A,,A2,. . . ,A,= I (=0) in G, . Again the path is uniquely given by .4,+, = Al. 
Since 1 $ A, the least element of A = Al is greater than 1. We know that 
{ 1, 2) E X,. Thus if the least element of Ai is k, then the least element of 

A;+, = A,! is at least k + 1. Eventually the least element of Ai will be at least 
r + 1, in which case Ai+, = 0. Since G, is connected and the path from A E G, to 
_I_ is unique, we conclude that G, is a tree. 

It is clear that complementation is a graph-isomorphism between the trees G, 
and G,. Finally, since each elemenl ot G, U 6, other than I and d has a unique 
upper cover, it follows that G is the disjoint union of G, and G, U {T}. 0 

We can now see the extent to which the relation induced by a partition (other 
than (l,l,. . . , 1)) fails to be a partial order. We have (A, A) E p in G, U G, if 
andonlyifAE(I,d,T}. GivenA,B,CEP,,such that (A,B)E~, (B,c)~p, 
A # B and B # C, we have B = d and C = T. Consider the associated trees drawn 
with their roots uppermost. In G, we have reflexivity only at the top level, and 
no nontrivial transitivity. In GT we have reflexivity at the top two levels, and 
nontriviai transitivity restrictei to the top three levels. Fig. 6 shows the tree 
structures obtained in the case n = 4. 
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IS. 1) q,=2. 
(4.2) -3 

YI--* 

(3.3) q1=2. 
(4. 1. 1) ‘1, = 2. 

(3.2. 1) q1=2. 
(2.2.2) q, = 3. qz = 2, 
(3. 1. 1. 1) q, = 3. qz = 2. 
(2.2. 1. 1) ‘I, = 3. qz = 2. 

(2. 1. 1. 1. 1) q,=s. q-=4. qz=3. q-I=2. ___ 

We conclude with an explicit description of the tree (3, which uniquely 

determines M(kl, kz, . . . , k,), +a digraph. As usual we shall assume that 

(k,, kz, . . . , k,) is a partition of :z with kl > 1 (or, equivalently, r < H). Note that. 

sinceeachki~landk,>l, wehavek,+.-.+k,_,+lsr+l, whence 

X&{r+l*...,n}. 

In case r > I, we now define 

integers in the following way: 

q,,=r+ 1, qs =2, 

asequence r+1=qo>q,>.-.>qli_,>qli=2cllf 

q,=min{i)X,s(q,_, ,..., ra}} Car lsjsk. 

We interpose some simple illustrations befbxe giving our characterisation of the 

trees associated with partitions. For both of the partitions (3, I) and (22) of t$e 

integer 4 we have k = 1 and q, = 2. Now consider partitions of 6. We obtain tl:e 

sequences shown in Table 1. 

We adopt the following additional notation. Given a set A we write Y’(A) for 

9(A)\(0) and let 5@(A) be the family of sets of the form B U C, where C GA. 

Finally,for0#J~{l,..., n),letX,=Cj{~~~IiEJ}. 

The statements in Proposition 4.2 supplement those in Proposition 4.1. All 

follow from Proposition 4.1 and the formula 

M(k,, kz, . . . , k,) = {(Zi. Zr) 1 Z E ‘!I( Y)}. 

Proposition 4 3 .C- implies that the sequence of integers q,), q, , . . . , q, derived from 

the partition (k,, k?. . . . , k,) uniquely determines up tu isomorphkm the trees 

associated with M(ki, k:, . . . , k,). 

Proposition 4.2. Let G L be as in Proposition 4. I. Assume that 1 < r < n arld let 

J,= (r+ I,. . . , rz}. For I cj<k. lcr 

(ij The vertices of G, are the elements of .Y( (2, . . . , n)). rvlth fd us the root. 

(iii Tke ,ret of vcnices at depth I is !Y(l,,). 
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(iii) The height of the tree is k + 1; the depth of S f 0 is 

max{i/SnI~#0}+ 1. 

(iv) The nonleaves, other than the root, are precisely the sets of the form X, for 
some non-empty subset J of (1, . . . , r> . If the smallest integer in J is i and i E lj, 
then the depth of X, is j. The descendants of X, are the members of $!‘(I,,). 

If r = n, the tree G, has height I; the empty set is the root and all non-empty 
subsets of (2, . . . ,tt ) are leaves. 
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