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Abstract

Min–Max optimization is often used for improving robustness in Model Predictive Control (MPC). An analogy to this optimiza-
tion could be the BDU (Bounded Data Uncertainties) method, which is a regularization technique for least-squares problems that
takes into account the uncertainty bounds. Stability of MPC can be achieved by using terminal constraints, such as in the CRHPC
(Constrained Receding-Horizon Predictive Control) algorithm. By combining both BDU and CRHPC methods, a robust and stable
MPC is obtained, which is the aim of this work. BDU also offers a guided method of tuning the empirically tuned penalization
parameter for the control effort in MPC.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The Least-Squares (LS) method is used for solving problems such as Ax ≈ b for some known matrix A ∈ R
m×n

(with m � n), being x ∈ R
n an unknown vector and b ∈ R

m the measurement vector. The approximation arises because
A and b are never perfectly known, and so they present uncertainty. The LS criterion considers that matrix A is known
exactly, and all the errors and uncertainties occur only in b, meaning, b + δb, and δb being the uncertainty. So vector
x̂ is estimated by solving

min
x

‖Ax − b‖2 (1)

being ‖.‖2 the Euclidean norm of its vector argument. The solution x̂, denoting A+ the pseudoinverse matrix of A, is

x̂ = [
AT A

]−1AT b = A+b. (2)

A disadvantage of the LS method is its sensitivity to data error. More specifically, a design that is based on given data
(A,b) can perform poorly if the true data happens to be the perturbed version (A+ δA,b+ δb) for some unknown δA

* Corresponding author. Fax: +34 96 3879579.
E-mail addresses: cramos@isa.upv.es (C. Ramos), mmiranzo@isa.upv.es (M. Martínez), jsanchis@isa.upv.es (J. Sanchis), xblasco@isa.upv.es

(J.M. Herrero).
URL: http://ctl-predictivo.upv.es (C. Ramos).
0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.12.073

https://core.ac.uk/display/82398998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1004 C. Ramos et al. / J. Math. Anal. Appl. 342 (2008) 1003–1014
and δb. The Regularized LS is a variant method used for combating much of the ill-conditioning that arises in pure
LS problems [11,12,30], and can provide a more robust solution (less sensitive to data errors). So the matrix inversion
results easier and more accurate, and the system is more robust. Regularization consists of choosing in advance a
positive parameter λ (regularization parameter) and selecting x̂ by solving

min
x

[‖Ax − b‖2
2 + λ‖x‖2

2

]
(3)

being the solution

x̂ = [
AT A + λI

]−1AT b. (4)

The disadvantage is that λ is chosen in an intuitive way, so if it results too high (over-regularization), an overly
conservative design is obtained, and if it results too low (under-regularization), the design becomes sensitive to errors.
The regularization obtains more robust, but less accurate solutions, that is to say, it introduces a bias, providing lower
values for ‖x̂‖2, which provide smoother and more robust control actions from the control point of view.

The desire for a more mathematically rigorous method for posing robust problems led to the development of the
Min–Max problem, or BDU (Bounded Data Uncertainties) [5], also called Robust LS [10]. This is used in iden-
tification and estimation problems [21,23,24,28,29,31], but rarely applied to process control [17,18,21]. The BDU
technique uses information about bounds on the sizes of the uncertainties to obtain the regularization parameter λ,
and so its selection is neither intuitive nor arbitrary.

From the process control context, Model Predictive Control (MPC) can be found in a wide variety of industrial
applications [15,16]. It integrates optimal control, that is to say, control actions are calculated by a cost function opti-
mization along the prediction horizon (using the receding horizon concept). The cost function considers a penalization
parameter for the control effort, which usually results in a diagonal and constant matrix ρI. The parameter both pre-
vents the control actions from being too large and abrupt, and improves the system robustness. But the main drawback
is that the parameter is generally tuned by empirical criteria, without the objective of improving the robustness, which
is a fundamental matter in MPC when there is a mismatch between model and process due to model uncertainty and/or
noise. A technique for improving robustness in MPC is the Min–Max optimization [3,13], which, in the presence of
uncertainty, can be stated as a BDU problem. So, the main objective of this work is to use the BDU technique for
tuning, in a guided way, the penalization parameter in MPC when uncertainty is present.

From a popular MPC algorithm such as GPC (Generalized Predictive Control) [1,6,7], a new controller GPC–BDU
is stated [19], where the penalization parameter is tuned via BDU to improve system robustness.

Stability has also been considered by using a GPC variant, the constrained receding-horizon predictive control
(CRHPC) [8], which imposes constraints on output, so that the reference and the output coincide on a horizon beyond
the prediction horizon. So the cost function is forced to be monotonic and decreasing [26].

This work focuses on the CRHPC, because it covers a variety of differing stabilizing schemes [20]. The CRHPC
ensures nominal closed-loop stability under certain conditions, but it cannot be ensured when a mismatch between
process and model appears. To improve the system robustness, the CRHPC tuned via BDU is presented as the
CRHPC–BDU, and this results in a robust and stable variant of GPC.

The structure of the work is the following: in Section 2 the fundamentals of BDU are presented, in Section 3 the
CRHPC is shown, while the CRHPC–BDU is stated in Section 4. Section 5 shows the results, and finally in Section 6
the conclusions and future work are stated.

2. Fundamentals of BDU

The Bounded Data Uncertainties problem, BDU [4,5,14,21–24,29], the so-called Min–Max problem, or Robust
Least-Squares (RLS) [10], was proposed and solved, via the secular equation in [5], and via Linear Matrix Inequalities
(LMI) in [9]. With LMIs, the computational burden is smaller, although this is only noticeable when constraints are
present in the problem, but otherwise the secular equation is simpler. The BDU problem seeks a solution x̂ that
performs best in the worst-possible scenario inside a bounded region. There are several statements of the BDU problem
[23,24], but one that is very useful in the context of identification and control is the following

min
x

max
‖δA‖2�ηA

[∥∥[A + δA]x − [b + δb]∥∥2
2 + ρ‖x‖2

2

]
, (5)
‖δb‖2�ηb
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where (A,b) represents the nominal model, and (A + δA,b + δb) the unknown perturbed model, because δA and δb
are unknown, but a bound of them is known, ηA and ηb, such as ‖δA‖2 � ηA and ‖δb‖2 � ηb and ρ is the penalization
parameter for the minimization variable x. Eq. (5) can be reduced, defining the residual J , as

min
x

max
‖δA‖2�ηA‖δb‖2�ηb

J (x, δA, δb), (6)

which can be regarded as a constrained two-player game problem, with the designer trying to pick an x that minimizes
the residual J , while the opponents δA and δb try to maximize the residual. The goal consists of determining the
solution x̂ whose maximum residual J , being ‖δA‖2 � ηA and ‖δb‖2 � ηb , is the smallest possible. A nonzero
solution x̂ is obtained if the following condition holds [5]

ηA <
‖AT b‖2

‖b‖2
. (7)

Also in [5] it is shown that the Min–Max problem with constraints in (5), is equivalent to the following minimization
problem without constraints

min
x

[[‖Ax − b‖2 + ηA‖x‖2 + ηb

]2 + ρ‖x‖2
2

]
. (8)

It is noticeable that if δA = 0 and δb = 0 in (5), the original solution to the Regularized Least-Squares problem (3)

x̂ = [
AT A + ρI

]−1AT b (9)

is obtained, being ρ the empirical regularization parameter in the absence of uncertainty. Nevertheless, when uncer-
tainty is present, a new regularization parameter λ, which takes into account more information, is obtained

x̂ = [
AT A + λI

]−1AT b, (10)

λ = ηA‖Ax̂ − b‖2

‖x̂‖2
+ ρ‖Ax̂ − b‖2

‖Ax̂ − b‖2 + ηA‖x̂‖2 + ηb

. (11)

The solution is obtained by solving the non-linear equations system formed by (10) and (11), being (11) the non-linear
secular equation which depends on λ, A, b, ρ, ηA and ηb . Defining F(λ) as

F(λ) = ηA‖Ax̂ − b‖2

‖x̂‖2
+ ρ‖Ax̂ − b‖2

‖Ax̂ − b‖2 + ηA‖x̂‖2 + ηb

− λ (12)

a unique solution λ̂ > 0 exists, so that F(λ̂) = 0, which can be determined, for example, by employing a bisection-type
algorithm [5].

3. CRHPC

The CRHPC [8] is a variant of the standard GPC which guarantees the closed-loop stability under certain conditions
by imposing constraints on the output, so that the reference and the output coincide on a horizon beyond the prediction
horizon (see Fig. 1, where y(k+ i|k) predicts the output at instant k+ i being at k). In fact, some degrees of freedom of
the controller are used in the constraints, while the rest are used in the cost function minimization along the prediction
horizon. In this statement, the Controlled Auto-Regressive and Integrated Moving Average (CARIMA) model from
GPC is used

y(k) = B(z−1)z−1

A(z−1)
u(k) + T(z−1)

�A(z−1)
ξ(k), (13)

where y(k) and u(k) are the system output and control actions, respectively, ξ(k) represents the disturbance, � =
(1 − z−1), T(z−1) is a noise stochastic characteristic, and B(z−1)z−1 and A(z−1) are the numerator and denominator
of the discrete model.

The prediction model is stated as [2]

y(k + i|k) = Gi

(
z−1)�u(k + i − 1) + f (k + i|k), (14)
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Fig. 1. Terminal constraint.

which predicts the output at instant k+ i being at k, being f (k+ i|k) the free response prediction, and Gi (z
−1)�u(k+

i − 1) the forced response prediction, based on the future control actions. Applying (14) for instant i = 1, . . . ,N , the
prediction in a matrix form is obtained assuming �u(k + Nu) = �u(k + Nu + 1) = · · · = �u(k + N − 1) = 0 (being
N and Nu the prediction and control horizon, respectively)

y1N×1 = G1N×Nu
�uNu×1 + f1N×1 , (15)

where matrix G1 is formed by the gi coefficients from the unitary step response [2]. If the prediction is extended for
m instants beyond the prediction horizon (i = N + 1, . . . ,N + m) results in

y2m×1 = G2m×Nu
�uNu×1 + f2m×1 , (16)

where

G2 =

⎡
⎢⎢⎢⎣

gN gN−1 · · · gN+1−Nu

gN+1 gN · · · gN+2−Nu

...
...

. . .
...

gN+m−1 gN+m−2 · · · gN+m−Nu

⎤
⎥⎥⎥⎦ . (17)

The CRHPC statement is the same as in GPC,

min
�u

[
N2∑

i=N1

αi

[
y(k + i|k) − w(k + i)

]2 +
Nu∑
j=1

ρj

[
�u(k + j − 1)

]2

]
(18)

but in this case, subject to y(k + N + i) = w(k + N), i ∈ [1, . . . ,m], where N1, N2 are the minimum and maximum
cost horizons, N = N2 − N1 + 1, Nu is the control horizon (degrees of freedom),

∑N2
i=N1

αi[y(k + i|k) − w(k + i)]2

weights the error between the output y and the reference w,
∑Nu

j=1 ρj [�u(k + j − 1)]2 weights the control effort. The
minimization and the constraint can be expressed as

min
�u

[[y1 − w1]T A[y1 − w1] + �uT P�u
]

s.t. y2 = w2, (19)

where AN×N = diag(α1, . . . , αi, . . . , αN), PNu×Nu = diag(ρ1, . . . , ρj , . . . , ρNu) are usually diagonal constant matri-
ces P = ρI and A = αI, being

w1 = [
w(k + 1), . . . ,w(k + N)

]T
, w2 = [

w(k + N), . . . ,w(k + N)
]T

. (20)

Assuming A = I, for the sake of simplicity, and denoting error as the difference between the reference and the free
response prediction e1 = w1 − f1, e2 = w2 − f2, expression (19) can be stated as
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min
�u

[‖G1�u − e1‖2
2 + ρ‖�u‖2

2

]
s.t. G2�u = e2. (21)

An analytical solution to this minimization problem can be calculated by solving two linear equations systems, the
terminal constraint

G2m×Nu
�u = e2m×1 (22)

and the following regularized least-squares problem

min
�u

[‖G1�u − e1‖2
2 + ρ‖�u‖2

2

]
(23)

for the remaining degrees of freedom, obtaining

�û = M̃GT
1 e1 + [

I − M̃
[
GT

1 G1 + ρI
]]

G+
2 e2, (24)

M̃ = H
[
HT

[
GT

1 G1 + ρI
]
H

]−1HT . (25)

The CRHPC guarantees the closed-loop stability under the following conditions [25,32]: (i) αi � 0, ρj � 0,
(ii) m = na , (iii) Nu � m, (iv) N � Nu + max(nb, na) − na , where na = deg(A(z−1)�) and nb = deg(B(z−1)),
with the assumption that A(z−1)� and B(z−1) have no unstable common factor. So na is the minimum number of
terminal constraints that must be taken into account. It is not useful to consider a higher number of constraints be-
cause the higher the number is, the larger the computational burden results. If condition Nu � m holds as Nu = m,
then G2 results in a square matrix, and therefore, solution (24) can be stated as �û = G−1

2 e2, because the Nu degrees
of freedom are used for satisfying the constraint (22), and there are no additional degrees for the minimization. Due
to the receding horizon concept in MPC, the previous problem must be solved at each sample time instant.

4. CRHPC–BDU

Most of the results obtained in MPC in general, and in CRHPC in particular, are based on the idea that model and
process are the same, and disturbances are not present, but, in reality, there is always a mismatch between model and
process [27]. The CRHPC ensures the nominal stability, but this is not the case when mismatch appears. Since the
BDU can be used for tuning the GPC (the so-called GPC–BDU [19]) to improve the system robustness, the CRHPC
can also be tuned via BDU (CRHPC–BDU) with the same aim.

Assuming the true matrices G1, G2 and vectors e1, e2 to be G1 +δG1, G2 +δG2 and e1 +δe1, e2 +δe2, respectively,
where δG1, δG2, δe1, δe2 are unknown, but a bound of them is known ηG1 , ηG2 , ηe1 and ηe2 , the control law can be
obtained by solving the following BDU problem subject to the terminal constraint for the worst-case

min
�u

max
‖δG1‖2�ηG1‖δe1‖2�ηe1

[∥∥[G1 + δG1]�u − [e1 + δe1]
∥∥2

2 + ρ‖�u‖2
2

]

s.t. max
‖δG2‖2�ηG2‖δe2‖2�ηe2

∥∥[G2 + δG2]�u − [e2 + δe2]
∥∥

2 = 0, (26)

which can be stated as the solution to two linear equation systems. The terminal constraint for the worst-case, as a
BDU problem

min
�u

max
‖δG2‖2�ηG2‖δe2‖2�ηe2

∥∥[G2 + δG2]�u − [e2 + δe2]
∥∥

2, (27)

and the following cost function (BDU problem) is optimized for the remaining degrees of freedom

min
�u

max
‖δG1‖2�ηG1‖δe1‖2�ηe1

[∥∥[G1 + δG1]�u − [e1 + δe1]
∥∥2

2 + ρ‖�u‖2
2

]
. (28)
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4.1. Obtaining the particular solution

First of all, the BDU problem (27) is solved for �u = �up , resulting in

�ûp = GT
2

[
G2GT

2 + λG2I
]−1e2, (29)

λG2 = ηG2‖G2�ûp − e2‖2

‖�ûp‖2
. (30)

By having the solution, it is possible to express the uncertainty for the worst-case δ̂G2 and δ̂e2 as [21]

δ̂G2 = ηG2

[G2�ûp − e2]
‖G2�ûp − e2‖2

�ûT
p

‖�ûp‖2
, (31)

δ̂e2 = −ηe2

[G2�ûp − e2]
‖G2�ûp − e2‖2

, (32)

in such a way that the Min–Max problem subject to constraints (BDU) is stated as a minimization problem without
constraints

min
�up

∥∥[G2 + δ̂G2]�up − [e2 + δ̂e2]
∥∥

2. (33)

On the other hand, the general solution �û can contain all the possible solutions as{
�û ∈ R

Nu
∣∣ [G2 + δ̂G2]�û = [e2 + δ̂e2]

} = {
�ûp + z

∣∣ z ∈N
([G2 + δ̂G2]

)}
, (34)

where

• �ûp is a particular solution to the equations system.
• z is the general solution to the homogeneous equations system

N
([G2 + δ̂G2]

) = {
z ∈ R

Nu
∣∣ [G2 + δ̂G2]z = 0

}
(35)

being N ([G2 + δ̂G2]) the null space of matrix [G2 + δ̂G2].

So, if [e2 + δ̂e2] = [G2 + δ̂G2]�ûp and z ∈ N ([G2 + δ̂G2]), then

[e2 + δ̂e2] = [G2 + δ̂G2][�ûp + z] (36)

so z represents the remaining degrees of freedom in the solution to (27). If the singular value decomposition (SVD) of
matrix [G2 + δ̂G2] is taken into account [G2 + δ̂G2] = UΣVT , it is possible to calculate the null space N ([G2 + δ̂G2])
from the vectors [vm+1, . . . ,vNu ] of matrix VNu×Nu (being vi the ith vector of matrix V), which are related to the null
singular values. That is to say, any control action vector �u which satisfies [G2 + δ̂G2]�u = 0 can be expressed as the
linear combination of vectors vi , [G2 + δ̂G2]vi = σiui = 0, ∀i ∈ [m+ 1, . . . ,Nu]. So, assuming H = [vm+1, . . . ,vNu ]
the null space defined in (35) can be stated as z = H�uf where the vector �uf represents the remaining degrees of
freedom from the solution to (27), which can be used for minimizing the cost function (28).

4.2. Obtaining the homogeneous solution

Once both the particular solution �ûp and matrix H are obtained, the general solution (�ûp +H�uf ) is substituted
in the index (28)

min
�uf

max
‖δG1‖2�ηG1‖δe1‖2�ηe1

[∥∥[G1 + δG1][�ûp + H�uf ] − [e1 + δe1]
∥∥2

2 + ρ‖�ûp + H�uf ‖2
2

]
(37)
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and assuming the change of variables

G → G1H, e → e1 − G1�ûp,

δG → δG1H, δe → δe1 − δG1�ûp,

ηG → ηG1‖H‖2, ηe → ηe1 + ηG1‖�ûp‖2

results in

min
�uf

max
‖δG‖2�ηG‖δe‖2�ηe

[∥∥[G + δG]�uf − [e + δe]∥∥2
2 + ρ‖�ûp + H�uf ‖2

2

]
. (38)

Substituting the maximization by using (8), the problem is stated as

min
�uf

[[‖G�uf − e‖2 + ηG‖�uf ‖2 + ηe

]2 + ρ‖�ûp + H�uf ‖2
2

]
, (39)

where the minimization provides the �uf variables, which assuming scalar values λ1, λ2 (see Appendix A), and
through the changes of variables results in

�ûf = [
HT

[
GT

1 G1 + λ1I
]
H

]−1[HT GT
1 [e1 − G1�ûp] − λ2HT �ûp

]
. (40)

4.3. Obtaining the control law

The final control law can be stated as

�û = �ûp + H�ûf = �ûp + H
[
HT

[
GT

1 G1 + λ1I
]
H

]−1HT
[
GT

1 e1 − [
GT

1 G1 + λ2I
]
�ûp

]
(41)

which results in equations from (42) to (48) by taking into account �ûp (29) and the changes of variables for λ1 and
λ2 in G, e, ηG and ηe

�û = ∗
M GT

1 e1 + [
I − ∗

M
[
GT

1 G1 + λ2I
]]

�ûp, (42)

�ûp = GT
2

[
G2GT

2 + λG2I
]−1e2, (43)

λG2 = ηG2‖G2�ûp − e2‖2

‖�ûp‖2
, (44)

∗
M = H

[
HT

[
GT

1 G1 + λ1I
]
H

]−1HT , (45)

λ1 = ηG1‖H‖2‖G1H�ûf − [e1 − G1�ûp]‖2

‖�ûf ‖2
+ ρ‖G1H�ûf − [e1 − G1�ûp]‖2[

‖G1H�ûf − [e1 − G1�ûp]‖2

+ηG1‖H‖2‖�ûf ‖2 + [ηe1 + ηG1‖�ûp‖2]

] , (46)

λ2 = ρ‖G1H�ûf − [e1 − G1�ûp]‖2[
‖G1H�ûf − [e1 − G1�ûp]‖2

+ηG1‖H‖2‖�ûf ‖2 + [ηe1 + ηG1‖�ûp‖2]

] , (47)

�ûf = [
HT

[
GT

1 G1 + λ1I
]
H

]−1[HT GT
1 [e1 − G1�ûp] − λ2HT �ûp

]
. (48)

Again, if condition Nu � m holds as Nu = m, then G2 results in a square matrix, and therefore the solution can be
stated as

�û = �ûp = GT
2

[
G2GT

2 + λG2I
]−1e2, (49)

because the Nu degrees of freedom are used for satisfying the terminal constraint and there are no additional degrees
for the cost function minimization.

It is noticeable that if uncertainty is not present, the CRHPC–BDU control law is transformed into the CRHPC
one. So, assuming ηG1 = ηG2 = ηe1 = ηe2 = 0 the following values are obtained λG2 = 0, λ1 = λ2 = ρ and equations
from (42) to (48) coincide with Eqs. (24) and (25).



1010 C. Ramos et al. / J. Math. Anal. Appl. 342 (2008) 1003–1014
Table 1
GPC and CRHPC tuning parameters

Controller N1 N2 m Nu T(z−1) ρ

GPC 1 6 – 4 1 1
CRHPC 1 6 3 4 1 1

If m = 0 then �ûp = 0 and H = I, and the control law coincides with the GPC–BDU one [19]

�û = ∗
M GT

1 e1, (50)
∗

M = [
GT

1 G1 + λ1I
]−1

, (51)

λ1 = ηG1‖G1�û − e1‖2

‖�û‖2
+ ρ‖G1�û − e1‖2

‖G1�û − e1‖2 + ηG1‖�û‖2 + ηe1

. (52)

5. Examples

5.1. GPC versus CRHPC

This example shows the stabilizing effect of the terminal constraint. A GPC will not be able to stabilize a particular
process when process and model coincide, but the CRHPC will. Assuming the non-minimum phase discrete time
system from [32], where the value of one pole has been changed, and the rest have been slightly modified

G(z) = z − 1.4

(z − 0.8)(z − 0.7)
, (53)

and the GPC tuning parameters of Table 1, the system becomes unstable (see Fig. 2). On the other hand, a CRHPC
with the tuning parameters shown in Table 1 (being na = deg(A(z−1)�) = 3 = m, nb = deg(B(z−1)) = 1) stabilizes
the system (see Fig. 2).

5.2. CRHPC versus CRHPC–BDU

This example shows how the stabilizing effect of the CRHPC can vanish when a mismatch between process and
model appears, due to the fact that the CRHPC only ensures nominal stability. In comparison, the CRHPC–BDU
increases the system robustness and can provide a better performance. Assuming the same model G(z) as the previous
example, but in this case, the process results slightly different

Gp(z) = z − 1.4

(z − 0.8)(z − 0.75)
, (54)

when the CRHPC tuned as in the previous example, the system becomes unstable (see Fig. 3). For the CRHPC–BDU
controller, a bound for uncertainty δG1 and δG2 must be obtained. From the unitary step response of both model
and process, matrices G1 and G2 (which are considered for the controller tuning) and matrices G1p and G2p (from
the real process) are obtained, and δG1 and δG2 can be calculated as the difference δG1 = G1p − G1 and δG2 =
G2p − G2. Their bounds ηG1 and ηG2 are calculated as ηG1 = ‖δG1‖2 and ηG2 = ‖δG2‖2, resulting in ηG1 = 0.11
and ηG2 = 0.25, assuming ηe1 = ηe2 = 0.

With the CRHPC–BDU the stable response of Fig. 3 is obtained. Fig. 4 shows the adaptive tuning of the regular-
ization parameters λG2 , λ1 and λ2, for facing the mismatch.

6. Conclusions and future work

The penalization parameter in MPC avoids control actions that are too abrupt, and at the same time improves system
robustness. The main drawback is the fact that it is tuned by empirical criteria, without the objective of improving
robustness.
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Fig. 2. System response with GPC and CRHPC when process and model coincide.

Fig. 3. System response with CRHPC and CRHPC–BDU when mismatch is present.
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Fig. 4. Adaptive tuning of λG2 , λ1 and λ2.

From another point of view, MPC can be stated as a least-squares problem, but its main drawback is that the method
is sensitive to data errors (ill-conditioning) which can be improved by the empirically tuned regularization parameter λ

(which is similar to the penalization parameter for the control effort in MPC).
The BDU (Bounded Data Uncertainties) is a regularization technique for least-squares problems, which designs

the regularization parameter λ taking into account the bound of the system uncertainty, and the problem is stated as
a Min–Max optimization. It is possible to establish an analogy between BDU and the Min–Max problem in robust
MPC, and the main objective consists in using BDU for tuning λ in a guided way to improve system robustness.
Focusing on the GPC algorithm, the GPC–BDU can be stated in which λ is chosen automatically depending on the
desired uncertainty bound. Another objective is to ensure stability. From the stabilizing GPC version (CRHPC or
Constrained Receding-Horizon Predictive Control), which ensures nominal stability, the CRHPC–BDU is stated, and
improves system robustness when discrepancies between model and process are present. Therefore, the CRHPC–BDU
is a stable and robust GPC which constitutes the objective of this work.

Future work consists of constraints consideration in the MPC problem via LMIs, as well as application to non-linear
systems and a real process.
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Appendix A. The homogeneous solution

From the problem (39) the minimization provides the �uf variables,

∇J = 2
[‖G�uf − e‖2 + ηG‖�uf ‖2 + ηe

][GT [G�uf − e]
‖G�uf − e‖2

+ ηG�uf

‖�uf ‖2

]
+ 2ρHT [�ûp + H�uf ]. (A.1)
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The equation ∇J (�ûf ) = 0 results in

[‖G�ûf − e‖2 + ηG‖�ûf ‖2 + ηe

][GT [G�ûf − e]
‖G�ûf − e‖2

+ ηG�ûf

‖�ûf ‖2

]
+ ρHT [�ûp + H�ûf ] = 0, (A.2)

GT G�ûf − GT e
‖G�ûf − e‖2

+ ηG

�ûf

‖�ûf ‖2
+ ρHT �ûp

‖G�ûf − e‖2 + ηG‖�ûf ‖2 + ηe

+ ρHT H�ûf

‖G�ûf − e‖2 + ηG‖�ûf ‖2 + ηe

= 0, (A.3)

GT G�ûf − GT e + ηG‖G�ûf − e‖2

‖�ûf ‖2
�ûf + ρHT H‖G�ûf − e‖2�ûf

‖G�ûf − e‖2 + ηG‖�ûf ‖2 + ηe

+ ρHT ‖G�ûf − e‖2�ûp

‖G�ûf − e‖2 + ηG‖�ûf ‖2 + ηe

= 0. (A.4)

Assuming the scalar values λ1 and λ2

λ1 = ηG‖G�ûf − e‖2

‖�ûf ‖2
+ ρ‖G�ûf − e‖2

‖G�ûf − e‖2 + ηG‖�ûf ‖2 + ηe

, (A.5)

λ2 = ρ‖G�ûf − e‖2

‖G�ûf − e‖2 + ηG‖�ûf ‖2 + ηe

, (A.6)

and by taking into account HT H = I the solution is obtained

�ûf = [
GT G + λ1I

]−1[GT e − λ2HT �ûp

]
, (A.7)

which through the changes of variables results in (40).
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