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Abstract

Extremely long-lived, time-dependent, spatially-bound scalar field configurations are shown to exist ind spatial dimensions
for a wide class of polynomial interactions parameterized asV (φ) = ∑h

n=1
gn

n! φn. Assuming spherical symmetry and ifV ′′ < 0
for a range of values ofφ(t, r), such configurations exist if: (i) spatial dimensionality is below an upper-critical dimensiondc;
(ii) their radii are above a certain valueRmin. Both dc andRmin are uniquely determined byV (φ). For example, symmetri
double-well potentials only sustain such configurations ifd � 6 andR2 � d[3(23/2/3)d − 2]−1/2. Asymmetries may mod
ify the value ofdc. All main analytical results are confirmed numerically. Such objects may offer novel ways to pro
dimensionality of space.
 2004 Elsevier B.V.Open access under CC BY license. 
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1. Introduction

It is well known that many physical systems m
be efficiently modeled in a reduced number of s
tial dimensions. In particular, certain static solutio
of nonlinear classical field equations exhibiting so
tonic behavior have been used to describe a wide
riety of phenomena, ranging from hydrodynamics a
condensed matter physics[1] to relativistic field theo-
ries [2]. At the opposite extreme, the possibility th
the four fundamental interactions may be unified
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theories with extra spatial dimensions has trigge
research on the existence of static nonperturbative
lutions of nonlinear field theories in more than thr
spatial dimensions[3,4]. These extra dimensions ma
be compact and much smaller than the usual th
dimensions of space, as in Kaluza–Klein (KK) th
ories [5], or they may be infinitely large, as in th
recent Randall–Sundrum (RS) proposal, where g
ity (and possibly other fields) can leak into the e
tra dimension transverse to the 3-dimensional br
where matter and gauge fields propagate[6]. There
have been many variants of the RS proposal[7], in-
cluding some with more than one brane[8] or with
more than a single large extra dimension[9]. In either
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the KK or the RS scenarios, there is plenty of m
tivation to studyd-dimensional nonperturbative fie
configurations with a large number of quantaN , even
if their direct production in particle colliders is prob-
ably exponentially suppressed as∼ exp[−N]. There
has been much interest recently in the possibility t
extra dimensions could produce signatures observ
in collider experiments[10–15]. Although I will not
examine if the objects of the present work could
produced in future collider experiments, the possibi
should be kept in mind, especially with more realis
models involving couplings between several fields.

In this work, I argue that long-lived time-depende
d-dimensional scalar field lumps—oscillons—can ex-
ist in a wide class of models, much wider than th
static (solitonic) counterparts. Furthermore, I sh
that they exist only below a certain critical number
spatial dimensions, which is uniquely determined
the field’s self-interactions. If the fundamental grav
scale isM, the associated length scale of the extra
mensions isRKK � (MPl/M)2/(d−3)M−1. (d − 3 � 1
is the number of extra dimensions.) Thus, ifM ∼
1 TeV,RKK ∼ 1032/(d−3) × 10−17 cm. Ford � 5, this
scenario is still acceptable by current tests of Newto
gravitational law[7]. Even though oscillons ultimatel
decay, their lifetimes are long enough to produce s
nificant effects: their demise occurs in very short tim
scales and hence would appear, in the scenario
large but compact extra dimensions, as a sudden b
of particles from a small region. If these particles a
quanta of the scalar field, their masses would sat
assuming maximally-symmetric internal dimensio
pµpµ + n2/R2

KK = V ′′(φv)
1/2, whereµ = 0,1,2,3,

and V ′′(φv)
1/2 is the tree-level mass of vacuum e

citations satisfying thed-dimensional Klein–Gordon
equation. The key point here is that since the m
and size ofd-dimensional oscillons are uniquely dete
mined by the number of spatial dimensions and th
interaction potential, they can serve as probes to
dimensionality of space. Ad-dimensional oscillon hy
pothetically appearing at the TeV energy scale w
have a typical size of orderd TeV−1 ∼ 10−17 cm, al-
ways much smaller thanRKK .

So far, most work in either a reduced or increas
number of spatial dimensions has focused onstatic
solutions involving real scalar fields or scalar fie
coupled to other fields. A recent example is the w
by Bazeia et al., whered-dimensional spherically
t

symmetric topological defects were found for mod
with potentialU(x2;φ) = f (x2)V (φ) [16]. The par-
ticular choice of potential is needed to evade Derric
theorem, which forbids the existence of non-trivial s
tic solutions for real scalar fields in more than one s
tial dimension[17]. When time-dependence is intr
duced, it is often as a general phase of a complex sc
field, φ(x, t) = ϕ(x)exp[−iωt], such that the equa
tions still allow for localized solutions with static sp
tial profiles. Nontopological solitons[18] andQ-balls
[19] are well-known examples of such configuratio
There are exceptions, though. Breathers in one dim
sion[20], and oscillons in two[21–23]and three[24–
28] are spatially-bound, time-dependent scalar fi
configurations which are remarkably long-lived. Th
are found in many physical systems and models,
cluding vibrating grains, Josephson junctions, non
ear Schrödinger equations, Ginzburg–Landau mod
and certain relativisticφ4 models, to name a few ex
amples. As will be seen, they also exist in high
dimensional models for a wide class of polynom
interactions.

2. Scalar field dynamics in d dimensions

The line element for flat(d + 1)-dimensional
spacetime isds2 = ηMNdxMdxN , where M,N =
0,1,2, . . . , d andηMN = diag(+,−,−, · · · ,−). I am
only concerned here with objects which may exist
the full d dimensions. Thus, their typical sizeRmin
will have to satisfyRmin � RKK , whereRKK is the
linear size of the extra dimensions.

Since any deformation away from spherical sy
metry leads to more energetic configurations[19,23],
I will consider only spherically-symmetric configu
rations, φ(t, r). As such, thed-dimensional spatia
volume element can be written asddx = cdr(d−1)dr,
wherecd = 2πd/2/Γ (d/2) is the surface area of ad-
dimensional sphere of unit radius. The Lagrangian
be written as

(1)L = cd

∫
r(d−1)dr

(
1

2
φ̇2 − 1

2

(
∂φ

∂r

)2

− V (φ)

)
,

where a dot means time derivative.
Previous results ind = 2 and d= 3 have shown

that oscillons are well-approximated by configuratio
with a general Gaussian profile[21,22,25]. In fact,
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oscillons can be viewed as localized configuratio
modulated by nonlinear oscillations on the field’s a
plitude. I will thus treat the amplitude as a function
time, keeping the radiusR constant. The fact that th
analytical results to be obtained are verified num
cally to great accuracy confirms that this approxim
tion is adequate for this work’s purpose. Oscillons
thus modeled as

(2)φ(t, r) = [
φc(t) − φv

]
exp

[−r2

R2

]
+ φv,

whereφc(t) is the core value of the field [φ(t, r = 0)],
andφv is its asymptotic value at spatial infinity, dete
mined byV (φ). Thus, one condition onV (φ) is that
∂2V/∂φ2|φv > 0. Note also that the equation of m
tion forφ(t, r) imposes thatφ′(r = 0) = 0, a condition
satisfied by the Gaussian ansatz above.

Since many applications involve polynomial pote
tials, we will writeV (φ) as

(3)V (φ) =
h∑

j=1

gj

j ! φ
j − V (φv),

where thegj s are constants. The vacuum ene
V (φv) is subtracted from the potential to avoid sp
rious divergences upon spatial integration.

Substituting the ansatz of Eq.(2) into Eq.(1), one
may perform the spatial integrations to obtain,

L[A,R, Ȧ] =
(

π

2

)d/2

Rd

[
Ȧ2

2
− d

2R2A2

(4)−
h∑

n=2

(
2

n

)d/2 1

n!V
n(φv)A

n

]
,

whereV n(φv) ≡ ∂nV (φv)/∂φn, and I introduced the
amplitudeA(t) ≡ φc(t) − φv . Note that the sum in th
last term starts atn = 2. This is due to the fact that, b
definition,∂V (φv)/∂φ = 0.

3. Upper critical dimension for oscillons

From the Lagrangian in Eq.(4) one obtains the
equation of motion forA(t):

(5)Ä = − d

R2A −
h∑

n=2

(
2

n

)d/2 1

(n − 1)!V
n(φv)A

n−1.
If V (φ) = 0, the amplitude undergoes harmonic o
cillations with constant frequencyω2 = d/R2. This
behavior is due to the surface term that resists any
placement from equilibrium,A = 0. Note that since
the Lagrangian was integrated over all space,
model cannot describe the fact that the configura
decays by radiating its energy to spatial infinity. If
needed, one could include a phenomenological t
γ Ȧ in order to mimic this effect (such asγ ∼ t−3/2

in d = 3 [25]), although this is not relevant for th
present work.

To examine the stability of the motion, I expa
the amplitude asA(t) = A0(t) + δA(t). Linearizing
Eq.(5),

δÄ = −
[

d

R2
+

h∑
n=2

(
2

n

)d/2 1

(n − 2)!V
n(φv)A

n−2
0

]
δA

(6)≡ −ω2(R,A0)δA,

where I introduced the effective frequencyω2 in the
last line. Instabilities occur ifω2 < 0. Long-lived os-
cillons are only possible if the oscillations above t
vacuum with amplitudeA(t) probe regions ofV ′′ < 0
for a sustained period of time[24,25]. This requires
ω2 < 0 for oscillons to exist.

I proceed by deriving several results from the e
pression forω2. First, it is useful to write it fully as,

ω2(R,A0) = d

R2
+ V ′′(φv) +

(
2

3

)d/2

V ′′′(φv)A0

+
(

1

2

)d/2

V IV (φv)A
2
0

(7)+
(

2

5

)d/2 1

3!V
V (φv)A

3
0 + · · · .

Note that sinceA0 is a function of time, Eq.(6) is in
the form of a Mathieu equation. Although the time d
pendence is crucial in the study of oscillon dynam
(cf. Ref.[22]), it will not be relevant here.

3.1. Quadratic potentials

If V (φ) is quadratic, only the first two terms o
the r.h.s. of Eq.(7) contribute toω2. ForV ′′(φv) > 0,
ω2 > 0 and no instability occurs[25]. The field will
simply undergo damped oscillations aboutA = 0. If
V ′′(φv) < 0, instabilities are possible only ford/R2 <
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|V ′′(φv)| or

(8)R �
(

d

|V ′′(φv)|
)1/2

.

This is the well-known spinodal instability bound[29],
where the critical wavelengthλc is related to the ini-
tial size of the configuration,R, by R = (

√
d/2π)λc.

When the condition for instability is satisfied, the a
plitudeA(t) will grow without bound as the field roll
down the potential. This behavior will depend on t
damping term, that is, on the rate at which the lump
diates energy to spatial infinity. If the condition Eq.(8)
is not satisfied, the amplitude will describe damp
oscillations about the origin. Note that this can on
happen in a field theory, since the gradient term
needed to allow forω2 > 0 even ifV ′′(φv) < 0. In ef-
fect, the gradient term stabilizes what would have b
an unstable configuration. This mechanism is favo
asd increases, as one would expect.

Gaussian-shaped bubbles with quadratic poten
are thus short-lived, not a surprising result[25]: os-
cillons owe their longevity to nonlinearities in the p
tential. Furthermore, as it is proven next, a necess
condition for their existence is that the potential s
isfies V ′′(A) < 0 for at least a range of amplitude
This is also true for solitons, which do not exist for p
tentials with positive concavity, e.g.,V (φ) = φ2 + φ4.
This necessary condition, however, is not sufficien
guarantee the existence of oscillons.

3.2. Cubic potentials

If V (φ) is cubic, the first thing to notice is that sinc
parity is broken,V (φ) will always have an inflection
point atφinf = −g2/g3. The choice of vacuum will de
pend on the sign ofg2: for g2 > 0, φv = 0; for g2 < 0,
φv = −2g2/g3. In either case, the conditionω2 < 0
will be satisfied wheneverA0 has opposite sign tog3
and for values ofR � Rmin as summarized inTable 1.

Table 1
Values ofR2

min for different couplings ofthe cubic potential mode

g3 > 0 g3 < 0

g2 > 0 d

g3[(2/3)d/2|A0|+φinf ]
d

|g3|[(2/3)d/2A0−φinf ]
g2 < 0 d

g3[(2/3)d/2|A0|−φinf ]
d

|g3|[(2/3)d/2A0+φinf ]
SinceR2 > 0, the amplitudes must satisfy, for an
of the cases inTable 1,

(9)|A0| �
(

3

2

)d/2

|φinf|,
showing that only fluctuations probing deep into t
spinodal region of the potential will be able to sust
long-lived oscillons. It is also clear that the higher t
dimensionality the larger the amplitudes need to
However, for cubic potentials, as long as the con
tions above are satisfied, long-lived oscillating lum
can exist in any number of dimensions. This res
does not hold for arbitrary polynomial potentials,
we see next.

3.3. Quartic potentials

For quartic potentials, the condition for the ex
tence of oscillating lumps becomes,

ω2(R,A0) � d

R2
+ V ′′(φv) +

(
2

3

)d/2

V ′′′(φv)A0

(10)+ 1

2

(
1

2

)d/2

V IV (φv)A
2
0.

Results are sensitive to the sign ofV IV (φv) = g4. Let
me first examine the case forg4 > 0: ω2 is a parabola
with positive concavity. Thus, ifω2 < 0 at its mini-
mum, the condition is satisfied for a range of amp
tudes. The minimum is at̄A0 = −(4/3)d/2V ′′′/V IV ,
and

(11)ω2(R, Ā0) = d

R2 + V ′′ −
(

2

3

)d

2(d−2)/2(V ′′′)2

V IV
.

Forω2 < 0,

(12)R2 � d

[1
2(23/2

3 )d (V ′′′)2

V IV − V ′′]
.

So, as in the case for cubic potentials, oscillat
lumps can only exist for radii above a critical size. This
has been observed numerically for double-well pot
tials in d = 2 [21] and d = 3 [24]. Notice also that
since the denominator must be positive definite,
condition imposes both a restriction on the poten
and an upper critical dimension for oscillons:

(13)d � Int

[ ln2V ′′V IV

(V ′′′)2

ln(23/2
)

]
,

3
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where Int means the integral part of. Equality defin
the upper critical dimension for the existence of os
lons,dc. Since 23/2/3 < 1, the potential must satisfy

(14)2
V ′′V IV

(V ′′′)2 < 1,

for the bifurcation instability on the radius to occ
and, thus, for oscillating lumps to exist.

If g4 < 0, φv = 0 for stability. In this case,g2 > 0
(the sign ofg3 is irrelevant) and there will always b
an amplitude|A0| large enough so thatω2 < 0,

A0 = 2d/2
(

2

3

)d/2
g3

|g4|

(15)

×
[
1±

(
1+ 3d2−3d/22

(
g2 + d

R2

) |g4|
g2

3

)]
.

Comparing this amplitude with the value for the i
flection point,φinf = g3/|g4|[1± (1+ 2g2|g4|/g2

3)], it
is easy to see that|A0| > |φinf|, that is, oscillons only
exist if the amplitudes go beyond the inflection poin

4. Application: symmetric and asymmetric
double-well potentials in d-dimensions

For a symmetric double-well (SDW) potential wi

g4 > 0, V (φ) = λ
4

(
φ2 − φ2

v

)2
, the coefficients of

the general expression Eq.(3) areh = 4, g1 = g3 =
0, g2 = −λφ2

v, g4 = 6λ, and thus the various deriva
tives atφv areV ′(φv) = 0,V ′′(φv) = 2λφ2

v,V
′′′(φv) =

6λφv,V
IV (φv) = 6λ. The necessary conditio

Eq. (14) is satisfied, 2V ′′V IV /(V ′′′)2 = 2/3 < 1.
From Eq.(12), oscillons will exist if the radius is large
than (the radius can be made dimensionless with
scalingR = R′/

√
λφv for anyd)

(16)R2 � d

[3(23/2

3 )d − 2]
.

For d = 2, Rmin = √
3 [21]. For d = 3, Rmin � 2.42

[25]. The expression predicts that, e.g., ford = 6,
Rmin � 7.5. Note also that the SDW has an upp
critical dimension ofdc = 6: from Eq. (13), d �
Int[ln(2/3)/ ln(23/2/3)] = 6.

I have confirmed these results numerically, us
a leap-frog method fourth-order accurate in spa
The lattice spacing wasδr = 0.01 and the time ste
Fig. 1. Time evolution of the energy within a shell of radi
Rshell = 10R in d = 4. From left to right: continuous lines are fo
Reff = 3.17,3.29,4.81,4.93; dashed lines are forReff = 5.87,5.17.
The plateaus denote oscillons.

δt = 0.001. Energy was conserved to better than
part in 105. The program solves thed-dimensional
Klein–Gordon equation in spherical coordinates w
initial condition set to be a Gaussian bubble with
dius R and φc = 1 and φv = −1. One can vary the
initial profile and parameters at will; if the condition
for the appearance of oscillons are satisfied, the fi
will evolve into an oscillon configuration, since it
an attractor in field-configuration space[23,25]. Fur-
thermore, oscillons have been shown to emerge e
from thermal initial states[22]. The program repro
duced results from Refs.[21,24] in d = 2 and d= 3,
respectively. InFig. 1, I show the energy within a she
of radiusRshell= 10R as a function of time ford = 4
(Rmin � 3.29). The approximately flat plateaus den
oscillons in 5-dimensional spacetime. As ind = 2 and
d = 3, there is a range of values ofR that lead to oscil-
lons: larger values produce configurations that deca
without settling into an oscillon.

The effective radius of the configuration, the o
checked against the predictions of Eq.(16), is com-
puted as the normalized first moment of the ene
distribution,

(17)Reff =
∫

rd dr[1
2φ̇2 + 1

2φ′2 + V (φ)]∫
r(d−1) dr[1

2φ̇2 + 1
2φ′2 + V (φ)] .

In Fig. 2, I show similar results ford = 6, again con-
firming the prediction of Eq.(16). The very narrow
low-energy plateaus seen inFig. 2 seem to be a pe
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Fig. 2. Time evolution of the energy within a shell of radi
Rshell = 10R in d = 6. The labels specify the initial value ofReff.
Continuous lines are for oscillons; dashed lines are for failed c
figurations.

culiarity of thed = 6 case. Given that this feature
irrelevant for the main arguments of this work, I w
not investigate it further. Ford = 7 and larger, I was
unable to find any oscillons, confirming thatdc = 6
for SDW potentials.

For an “upside–down” SDW,g4 < 0. Writing the
potential asV (φ) = 1

2m2φ2 − 1
4!φ

4, and scaling the
field asX = φ/φv , with φv = √

6/λm, oscillons will
exist as long as the amplitude of oscillations sa
fies X2 > 2d/2

(
1+ d/R2

)
X2

inf . Xinf is the inflection
point.

For asymmetric double-well potentials the situat
changes. From Eq.(13) it is easy to see that the up
per critical dimensiondc can vary as a function of th
asymmetry: the larger the absolute value of the as
metry, the higherdc. As an illustration, consider th
potential

(18)V (φ) = 1

2
φ2 − α

3
φ3 + 1

4
φ4,

where α > 0 and the variables are all dimensio
less. Oscillons with lifetimes of order 104 m−1 have
been found for this model withd = 3 [25]. The
necessary condition(14) gives α2 > 3, which is the
same that guarantees an inflection point forV (φ).
The condition for upper critical dimension reads,d �
Int[ln(3/α2)/ ln(23/2/3)]. For example,α2 = 9/2,
equivalent to a SDW, givesdc = 6 as it should.α2 = 5
givesdc = 8. Thus, asymmetries may relax (but n
eliminate) the bound on the upper critical dimens
for oscillons.

For SDW potentials, one can introduce dimensi
less variablesr ′ ≡ √

λφvr, t ′ ≡ √
λφvt , X = φ

φv
such

that the energy scales asE[φ] = λ(2−d)/2|φv|4−dE[X].
From the numerical results obtained, a rough (with
factor of 2) estimate of their energies ind dimensions
is E[X] ∼ (π

2 )d/2 1
2dd−1. Of course, it is always pos

sible to obtain accurate results numerically, as sho
in Figs. 1 and 2(in units of cd ) for d = 4 andd = 6,
respectively: an oscillon in 5-dimensional spaceti
would have an energy ofE/c5 � 20λ−1. The char-
acteristic length-scale ofd-dimensional oscillons is
determined by Eq.(16). Again, a rough estimate give
Rmin ∼ d√

λφv
. It is straightforward to extend these a

guments to arbitrary potentials.
The results of this work have established that

potential can support oscillons, they will have a we
defined set of properties which are dimensiona
dependent: their energies, the approximately flat
teaus ofFigs. 1 and 2and their average radii. Also, th
minimum radius for the initial configurations that le
to oscillons is determined by the dimensionality
space, as seen for the SDW potential in Eq.(16). Thus,
one can envision that if such configurations were
be observed, and if the interactions were known, th
energies and sizes would uniquely determine the
mensionality of space. In the example ofFig. 2above
(d = 6), with a vacuum scale of 1 TeV, a typical osc
lon will have a radiusReff ∼ 10−17 cm, whileRKK ∼
5 × 10−7. In this case, a flat space approximati
such as the one used here would be quite accept
and the observed masses would receive only sl
corrections from the extra dimensions. A next s
would be to examine if these configurations exist
models with several interacting fields, including tho
carrying Abelian and non-Abelian quantum numbe
It may be possible to find long-livedd-dimensional
Q-balls inϕ4 models. Ifd = 3, this includes the Stan
dard Model and its supersymmetric extensions. A
an estimate of the oscillon lifetime and its depende
on spatial dimensionality is still lacking. (Note ho
d = 6 oscillons live four to five time longer than tho
in d = 4.)

Relaxing the constraint of having static, spatial
localized solutions to the equations of motion ope
many avenues for further investigation: as was sho
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in this work, long-lived time-dependent localized co
figurations are supported by a wide class of mod
They may not only be observed ind = 3 but also offer
a new window into the extra dimensions, in case t
exist.
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