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SUMMARY

Serotonin and dopamine are major neuromodula-
tors. Here, we used amodified rabies virus to identify
monosynaptic inputs to serotonin neurons in the dor-
sal and median raphe (DR and MR). We found that
inputs to DR and MR serotonin neurons are spatially
shifted in the forebrain, and MR serotonin neurons
receive inputs from more medial structures. Then,
we compared these data with inputs to dopamine
neurons in the ventral tegmental area (VTA) and sub-
stantia nigra pars compacta (SNc). We found that
DR serotonin neurons receive inputs from a remark-
ably similar set of areas as VTA dopamine neurons
apart from the striatum, which preferentially targets
dopamine neurons. Our results suggest three major
input streams: a medial stream regulates MR seroto-
nin neurons, an intermediate stream regulates DR
serotonin and VTA dopamine neurons, and a lateral
stream regulates SNc dopamine neurons. These re-
sults provide fundamental organizational principles
of afferent control for serotonin and dopamine.

INTRODUCTION

Serotonin and dopamine are major neuromodulators essential

for flexible behavior. Both are released from small populations

of neurons in the midbrain and brainstem. A unique feature of

these neurons is that they receive and integrate inputs from

many brain areas, and broadcast their outputs through long

axons to many brain areas (Jacobs and Azmitia, 1992). Despite

the importance of these neurotransmitters in normal behav-

iors and psychiatric disorders, their regulation remains poorly

understood.

Forebrain-projecting serotonin neurons are found in the dorsal

raphe (DR) and median raphe (MR). They are thought to be

involved in diverse functions including the regulation of sleep-

wake cycles (Lydic et al., 1983; McGinty and Harper, 1976), mo-

tor facilitation (Jacobs and Fornal, 1997), defensive behavior

(Deakin and Graeff, 1991), behavioral inhibition (Soubrie, 1986),
Cel
learning from negative reinforcement (Daw et al., 2002; Dayan

and Huys, 2008; Deakin and Graeff, 1991; den Ouden et al.,

2013), processing reward value (Nakamura et al., 2008; Seymour

et al., 2012), and temporal discounting (Doya, 2002; Miyazaki

et al., 2011). Although it is known that DR andMRproject to over-

lapping, yet distinct forebrain structures (Azmitia and Segal,

1978; Vertes and Linley, 2008; Vertes et al., 1999), experimental

manipulations in DR and MR have yielded equivocal results, and

how serotonin neurons in these areas function remains elusive.

Forebrain-projecting dopamine neurons are mainly found in

the ventral tegmental area (VTA) and the substantia nigra pars

compacta (SNc). Neurophysiological recordings in behaving an-

imals have demonstrated that many putative dopamine neurons

signal the discrepancy between actual and expected reward,

that is, reward prediction error (Bayer and Glimcher, 2005; Mat-

sumoto and Hikosaka, 2009; Schultz et al., 1997). Although VTA

and SNc contain diverse cell types forming complex circuits,

recent studies have clarified the regulation and functional roles

of dopamine neurons (Cohen et al., 2012; Lammel et al., 2012;

Steinberg et al., 2013; Tan et al., 2012; Tsai et al., 2009; van Zes-

sen et al., 2012). Furthermore, monosynaptic inputs to dopamine

neurons in VTA and SNc were identified from the whole brain us-

ing a rabies-virus-based transsynaptic tracing method (Watabe-

Uchida et al., 2012). These studies have provided a foundation of

our understanding of the anatomy and physiology of dopamine

neurons as well as their diversity (Lammel et al., 2013; Roeper,

2013).

Compared to dopamine, our understanding of serotonin has

been limited. One reason is that DR and MR contain a diverse

collection of cell types (Hioki et al., 2010). It has thus been diffi-

cult to identify serotonin neurons while recording in behaving an-

imals (Allers and Sharp, 2003; Kocsis et al., 2006; Nakamura

et al., 2008; Ranade and Mainen, 2009). Furthermore, although

previous studies identified afferents to the DR and MR (Aghaja-

nian and Wang, 1977; Gervasoni et al., 2000; Marcinkiewicz

et al., 1989; Peyron et al., 1998; Soiza-Reilly and Commons,

2011; Vertes and Linley, 2008), technical limitations of conven-

tional tracers havemade it difficult to distinguish between synap-

tic inputs to serotonin versus nonserotonin neurons.

To understand the organizing principles of afferents to seroto-

nin neurons, we applied a rabies-virus-based tracing method

(Watabe-Uchida et al., 2012; Wickersham et al., 2007) to identify
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Figure 1. Identification of Monosynaptic Inputs to Serotonin Neurons with Rabies Virus and Sert-Cre Mice

(A–C) Injection site in the raphe nuclei of DR-targeted and MR-targeted Sert-Cre mice brains in low- (A), middle- (B), and high-magnification images (C). Bregma:

�4.65 mm. The EGFP expression and immunoreactivity to mCherry and serotonin are shown in green, red, and blue, respectively. The white rectangles indicate

the magnified regions. White arrowheads point at neurons that are triple-positive for EGFP, mCherry, and serotonin (starter neurons that are serotonergic), and

(legend continued on next page)
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monosynaptic inputs to DR and MR serotonin neurons

throughout the brain. We then compared the distributions of in-

puts to DR and MR serotonin neurons.

In addition, dopamine and serotonin are thought to be involved

in related functions such as processing reward and punishment

and are thought to interact (Boureau and Dayan, 2011; Kapur

and Remington, 1996). However, little is known about the

anatomical basis of these interactions. We therefore compared

the data obtained for serotonin with those obtained for dopamine

neurons in a previous study (Watabe-Uchida et al., 2012). These

results provide foundational information as to the global organi-

zation of monosynaptic inputs to subdivisions of the serotonin

and dopamine systems.

RESULTS

Whole-Brain Mapping of Monosynaptic Inputs to
Serotonin Neurons
To demonstrate monosynaptic inputs to DR and MR serotonin

neurons, we used a retrograde transsynaptic tracing system

based on a modified rabies virus (SADDG-EGFP(EnvA); Wicker-

sham et al., 2007). This virus is pseudotyped with an avian virus

envelope protein (EnvA), so that, in mammalian brains, initial

infection is restricted to cells that are engineered to express a

cognate receptor (TVA protein). In addition, this rabies virus lacks

the gene encoding the rabies virus envelope glycoprotein (RG),

which is required for transsynaptic spread. This allows for the

restriction of transsynaptic spread only from cells that exoge-

nously express RG (thus, only mono-, but not polysynaptic,

inputs are labeled). To express TVA andRG in serotonin neurons,

we injected two helper viruses that express TVA and RG under

the control of Cre recombinase (AAV5-FLEX-TVA-mCherry and

AAV8-FLEX-RG; Watabe-Uchida et al., 2012) into mice express-

ing Cre specifically in serotonin neurons (Sert-Cre mice; Zhuang

et al., 2005). Injections were targeted to either DR or MR. After

14 days, we injected SADDG-EGFP(EnvA) into the same area,

and analyzed the brains 7 days later.

Here, neurons that express TVA are labeled by a red fluores-

cent protein, mCherry. Neurons that are infected by the rabies

virus express an enhanced green fluorescent protein, EGFP.
magenta arrowheads indicate EGFP-positive but mCherry- and serotonin-nega

serotonergic neurons. Scale bars represent 1 mm in (A), 0.2 mm in (B), and 10 mm

mice. Red, Nissl stain. Green, EGFP. Bregma: �4.5 mm. Scale bar represents 1

(D and E) Centers of injection sites from individual animals. Geometric means are

orange, MR-targeted animals. Scale bar in (D) represents distance from bregma.

from seven animals in DR-targeted group (DR1, DR3, DR4, DR5, DR6, DR7, andDR

(F) Numbers of starter neurons.

(G) Numbers of transsynaptically labeled neurons (‘‘input neurons’’).

(H) Relationship between numbers of starter and input neurons.

(I) Proportions of labeled neurons in each of the serotonin-neuron containing nucle

nucleus of the raphe; Pn, pontine reticular nucleus; IPL, interpeduncular nucleus

median raphe.

(J) Coronal sections for DR- and MR-targeted cases (DR4 and MR5, respective

nucleus; DB diagonal band of Broca; VP, vental pallidum; BNST, bed nucleus of

preoptic area; Pa, paraventricular hypothalamic nucleus; SLE, sublenticular exten

habenula; LHb, lateral habenula; PSTh, parasubthalamic nucleus; LH, lateral h

tegmental area; IPN, interpeduncular nucleus; SC, superior colliculus; PAG, periaq

caudal (coordinates: Bregma, 0.7, 0.14, ‒0.88, ‒2.00, ‒3.28, ‒4.00, ‒4.30, and ‒

Cel
We identified starter neurons based on coexpression of mCherry

and EGFP (Figures 1A–1I). Almost all double-positive neurons

(95.8%) were found to be serotonin neurons (Figure 1C), by cos-

taining of an antibody against serotonin. Near the center of injec-

tion sites, 30.5% of serotonin neurons were double positive for

mCherry and EGFP. We found a small number of mCherry- and

EGFP-double-positive neurons in neighboring serotonin-con-

taining nuclei: the pontine reticular nucleus (Pn), mesencephalic

reticular formation (mRt), caudal linear nucleus of the raphe

(CLi), and parts of the interpeduncular nucleus (IPN). However,

these neurons made up a small fraction of total starter neurons

in most animals (Figure 1I). Starter neurons tiled almost the entire

DR or MR (see Supplemental Experimental Procedures). Across

animals, the number of EGFP-positive neurons was roughly pro-

portional to the number of starter neurons (Input = a $ Starter + b;

a = 8.2, p < 0.05; b = 1075, p = 0.42; Figures 1F–1H).

These results, together with previous studies (Miyamichi et al.,

2013; Wall et al., 2013; Watabe-Uchida et al., 2012; Wickersham

et al., 2007), indicate that EGFP-positive neurons outside injec-

tion sites represent transsynaptically labeled monosynaptic in-

puts to serotonin neurons. Because there was slight nonspecific

labeling in serotonergic nuclei adjacent to injection sites, we

excluded data from these areas for the following analysis. IPN

is located just anterior to MR, and the caudal apical and caudal

ventrolateral subnuclei of IPN (IPA and IPVL/IPL; Hale and Lowry,

2011) contain some serotonin neurons (Groenewegen and Stein-

busch, 1984). IPA and IPL contained a small number of starter

neurons but other IPN subnuclei did not. Therefore, we counted

input neurons in IPN after excluding IPA and IPL. The following

analysis uses twelve animals, seven with preferential injections

into DR and five with preferential injections into MR (Figure 1I).

All results reported below were further verified using the two or

three animals with highest specificity for either DR or MR.

For both DR and MR serotonin neurons, EGFP-positive neu-

rons (which we refer to as ‘‘input neurons’’) were distributed

throughout the brain (Figure 1J). However, they were mostly

found at relatively ventral portions of the forebrain and in

midbrain and brainstem structures close to DR andMR. Interest-

ingly, although DR and MR are both midline structures, inputs to

DR serotonin neurons were generally more lateral than inputs to
tive neurons (input neurons). The yellow arrowheads point at EGFP-negative

in (C). (A, control) Low-magnification image of the injection site (DR) in wild-type

mm.

shown by circles (D) or crosses (E, mean ± SEM). Green, DR-targeted animals;

Cyan and magenta crosses in (E) are mean ± SEM of centers of injection sites

8) and five animals inMR-targeted group (MR3,MR4,MR5,MR12, andMR13).

i. DR, dorsal raphe; mRt, mesencephalic reticular formation; CLi, caudal linear

lateral subnucleus; IPA, interpeduncular nucleus apical subnucleus; and MR,

ly). Scale bar represents 1 mm. Acb, nucleus accumbens; MS, medial septal

the stria terminalis; DS, dorsal striatum; LS, lateral septal nucleus; LPO, lateral

ded amygdala; SO, supraoptic nucleus; RS, retrosplenial cortex; MHb, medial

ypothalamus; Ce, central amygdala nucleus; ZI, zona incerta; VTA, ventral

ueductal gray; and RRF, retrorubral field. Left to right corresponds to rostral to

4.60 mm).
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MR serotonin neurons. This roughly matches their axonal projec-

tion patterns; MR neurons project mainly to midline structures

and the hippocampus whereas DR neurons project to a broader

array of regions, including more lateral areas (Azmitia and Segal,

1978; Vertes and Linley, 2008; Vertes et al., 1999).

Comparison between Inputs to DR and MR
Serotonin Neurons
To quantify the distributions of monosynaptic inputs, we identi-

fied areas based on a standard mouse atlas (Franklin and Paxi-

nos, 2008). We then registered the locations of labeled neurons

to standard anatomical coordinates. To correct for variability in

the total number of neurons (Figure 1G), the data were normal-

ized by the total number of input neurons in each animal (Figures

2, S1, and S2).

We found striking differences in rostral forebrain areas, partic-

ularly in the basal ganglia and septum (Figure 2): inputs to DR

serotonin neurons were distributed widely across the basal

ganglia, whereas many fewer inputs to MR serotonin neurons

were found there. For instance, DR serotonin neurons received

many inputs from the ventral pallidum (VP), globus pallidus

(GP), dorsal striatum (DS), and nucleus accumbens (Acb),

although labeled neurons in the latter two structures may be

‘‘spill-over’’ from the VP andGP (Figures 2 and 3). That is, labeled

neurons were very sparse in the center of DS and Acb, but some

were found at the periphery of DS and Acb, bordering VP and

GP. DR serotonin neurons also received many inputs from areas

in the extended amygdala, such as the interstitial nucleus of the

posterior limb of the anterior commissure (IPAC), the bed nu-

cleus of the stria terminalis (BNST), the sublenticular extended

amygdala (SLE; Figures 2 and 3), and the central nucleus of

the amygdala (Ce; Figures 2 and S3). In contrast, MR serotonin

neurons received very few inputs from these areas; they received

inputs frommoremedial structures (Figure 3), such as themedial

and lateral portions of the septum (mainly the medial septum,

MS) and the diagonal band of Broca (DB).

We also observed many inputs in the hypothalamus. Indeed,

the largest numbers of inputs from the forebrain to both DR

and MR serotonin neurons came from the lateral hypothalamus

(LH; Figures 2 and S3). MR serotonin neurons received more in-

puts from the medial and lateral preoptic areas (MPA and LPO),

which are medial to the areas that contain inputs to DR, such as

VP and the extended amygdala (Figure 3). Other midline struc-

tures, such as the paraventricular hypothalamic nucleus (Pa)

and supramammillary nucleus (SUM), provided moderate levels

of input toMR serotonin neurons, whereas DR serotonin neurons

received preferential inputs from the subthalamic nucleus (STh)

and the parasubthalamic nucleus (PSTh; Figures 2 and S3).

There were very few inputs from the thalamus to either MR or

DR serotonin neurons. However, in the epithalamus, both the

lateral and medial habenula (LHb and MHb) provided dense in-

puts to MR serotonin neurons, with sparser projections to DR

serotonin neurons (Figures 2 and 4).

In the midbrain and brainstem, IPN, the laterodorsal teg-

mentum (LDTg), and Pn provided many inputs to MR, but fewer

to DR. VTA, the retrorubral field (RRF), SNc, and substantia nigra

pars reticulata (SNr) preferentially projected to DR versus MR

serotonin neurons (Figure 2). The periaqueductal gray (PAG)
1108 Cell Reports 8, 1105–1118, August 21, 2014 ª2014 The Author
projected to both DR and MR, although its ventrolateral part

preferentially projected to DR serotonin neurons (Figure S3).

The superior colliculus (SC), the pedunculopontine tegmental

nucleus (PPTg), and mRt projected strongly to both DR and

MR serotonin neurons. The parabrachial nucleus (PB) had a

slight preference to DR whereas the raphe magnus nucleus

(RMg) preferentially projected to MR (Figure 2).

Fewer EGFP-positive neurons were found in the neocortex

(Figure 2). However, there were significant differences in the dis-

tributions of inputs to DR versus MR serotonin neurons. MR se-

rotonin neurons received more inputs from more medial cortical

areas, such as the cingulate (Cg) and retrosplenial cortices (RS),

whereas DR serotonin neurons received more from the orbito-

frontal cortex (in particular, its lateral part, LO) and somatosen-

sory cortex (S; Figure 4).

To quantify the similarity in the distributions of inputs to DR and

MR serotonin neurons, we calculated the correlation coefficient

between the numbers of input neurons across areas (Figure 5A;

r = 0.71, p < 0.001). In the scatter plot, each point represents one

area, and the diagonal represents the line of unity. Areas repre-

sented by points close to the diagonal provided similar numbers

of inputs to DR and MR serotonin neurons, whereas areas far

from the diagonal provided distinct numbers of inputs (significant

differences in red, p < 0.05, corrected for multiple comparisons

using a Bonferroni-correction, n = 7 and 5 for DR andMRgroups,

respectively). DR serotonin neurons received significantly more

inputs from RRF and VP, whereas MR serotonin neurons

received more from Pn, IPN, septum, LHb, SUM, and MHb.

Large common inputs came from LH, PAG, mRt, and SC.

In summary, DR and MR serotonin neurons receive inputs

from largely segregated areas: MR serotonin neurons from

more medial structures, often close to the midline, DR serotonin

neurons from more lateral structures. LH provides many inputs

to both DR and MR serotonin neurons.

Comparison between Inputs to Serotonin and
Dopamine Neurons
We noticed a striking similarity in the inputs to DR serotonin neu-

rons and inputs to VTA dopamine neurons that we obtained in a

previous study (Watabe-Uchida et al., 2012). For instance, areas

in the basal ganglia that were identified as major inputs to VTA

dopamine neurons also provided many inputs to DR serotonin

neurons.

To quantify similarities in the inputs in the four data sets (inputs

to DR and MR serotonin neurons and VTA and SNc dopamine

neurons), we calculated correlation coefficients for all pairs of

areas (Figures 5B–5F). Correlations were higher for within-sero-

tonin or within-dopamine comparisons (that is, larger values

between inputs to DR versus MR serotonin neurons or between

inputs to VTA versus SNc dopamine neurons; r = 0.71 and 0.65,

respectively, p < 0.001; Figures 5A and 5B). It should be noted,

however, that these pairs contained common starter neurons

because viral injections resulted in some labeling of the other,

nontargeted structure (Figure 1I).

In addition to these pairs, we found a remarkable similarity be-

tween inputs to DR serotonin and VTA dopamine neurons (corre-

lation coefficient, r = 0.59, p < 0.001; Figure 5C). This correlation

comes from common inputs from hypothalamus (LH, PSTh, and
s
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Figure 2. Summary of Monosynaptic Inputs to DR and MR Serotonin Neurons, and VTA and SNc Dopamine Neurons

(Left) Monosynaptic inputs toMR andDR serotonin neurons (orange and green, respectively). Mean ±SEM (n = 7 and 5mice for DR andMR groups, respectively).

Asterisks (*) indicate areas that are excluded from the analysis.

(Right) Monosynaptic inputs to VTA and SNc dopamine neuron (blue and red, respectively). Data from Watabe-Uchida et al. (2012).

The values are the percentage of total inputs in each area. Brain areas analyzed for MR and DR inputs are matched to the brain areas analyzed for the VTA- and

SNc-targeted data set (Watabe-Uchida et al., 2012). An analysis containing a more comprehensive set of areas is shown in Figure S2.
zona incerta, ZI), extended amygdala (Ce, BNST, IPAC, and

SLE), basal ganglia (VP, STh, and SNr), and other midbrain and

brainstem structures (SC, PB, mRt, and LDTg). A major differ-
Cel
ence, however, existed in inputs from the striatum (Acb and

DS). For VTA dopamine neurons, Acb and DS provided the

largest number of inputs (Figure 2). In contrast, DR serotonin
l Reports 8, 1105–1118, August 21, 2014 ª2014 The Authors 1109
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Figure 3. Spatial Shift of Input Areas for DR and MR Serotonin

Neurons in the Forebrain

(A–C) Septal and striatal areas. (A) DR-targeted. (B) MR-targeted. Green,

EGFP; Red, fluorescent Nissl staining. (C) The median of the coordinates of all

input neurons. Open circles indicate the medians from individual animals.

Crosses indicate the mean ± SEM of medians in DR- or MR-targeted groups

(n = 7 and 5 mice for DR and MR groups, respectively). Green, DR targeted;

orange, MR-targeted. Scale bar represents 0.5 mm. Bregma: 1.1 mm.

(D–F) Pallidal and hypothalamic areas. (D) DR-targeted. (E) MR-targeted.

Same conventions as (A) through (C). Bregma: 0.14 mm.

Abbreviations as in Figure 1; AcbC, nucleus accumbens core; AcbSh, nucleus

accumbens shell; cc, corpus callosum; Tu, olfactory tubercle; MPA, medial

preoptic nucleus; SIB, substantia innominata basal part; MCPO, magnocel-

lular preoptic nucleus; and IPAC, interstitial nucleus of the posterior limb of the

anterior commissure.
neurons received many fewer inputs from Acb and DS. Upon

removing these two areas (Acb and DS), the correlation value

increased to 0.81 (p < 0.001). On the other hand, DR serotonin

neurons received more inputs from PAG and Pn.

This high similarity between DR serotonin and VTA dopamine

neurons was in contrast to low similarities between other pairs of

neuron populations (Figures 5D–5F). Whereas correlations were

found between inputs to DR serotonin and SNc dopamine neu-

rons (r = 0.21, p < 0.05; Figure 5D) and between inputs to VTA

dopamine and MR serotonin neurons (r = 0.31, p < 0.01; Figure

5E), inputs to SNc dopamine and MR serotonin neurons had
1110 Cell Reports 8, 1105–1118, August 21, 2014 ª2014 The Author
essentially no correlation (r = 0.02, p = 0.83; Figure 5F), suggest-

ing a gradual difference of the input patterns ofMR, DR, VTA, and

SNc (Figure 5G).

To compare the spatial distributions of input neurons across

brains, we transformed each coronal section to match a section

from a standard atlas (Franklin and Paxinos, 2008). The distribu-

tions of EGFP-labeled neurons were then compared by making

horizontal slices using the morphed brains for each population

of neurons (Figure S4). We also generated a flat map representa-

tion (after Swanson, 2000) to indicate the proportion of inputs to

each of the four postsynaptic neuron types, conserving the rough

locations in the anterior-posterior and medial-lateral axes in the

forebrain (Figure 6A) and the dorsal-ventral and medial-lateral

axis on a coronal section at the level of midbrain and brainstem

(Figure 6B). These representations showed that (1) more medial

structures (Cg, RS, Septum, DB, Pa, MHb, LHb, SUM, and IPN)

projected to MR serotonin neurons; (2) intermediate structures

(LO, Acb, VP, BNST, SLE, IPAC, LH, and PSTh) projected to

VTA dopamine and DR serotonin neurons, although Acb did not

project strongly to DR serotonin neurons; and (3) more lateral

and dorsal structures (M2,M1, S, DS, GP, Ce, STh, and SNr) pro-

jected to SNc dopamine neurons. These observations show that

the correlation values mentioned above correspond to spatial

distributions along the medial-lateral axis.

In summary, a similar set of areas projects directly to DR sero-

tonin and VTA dopamine neurons (Figure 5G), with the exception

of the striatum. In contrast, MR serotonin neurons and SNc

dopamine neurons receive different sets of inputs.

Serotonin-Dopamine Interactions
The similar inputs to VTA dopamine and DR serotonin neurons

raise the possibility that these common sources similarly regu-

late the activity of VTA dopamine and DR serotonin neurons. In

addition to these common inputs, previous studies indicated

that interactions between serotonin and dopamine neurons

may play an important role in behavior (Di Giovanni et al.,

2010). Therefore, we examined monosynaptic connections be-

tween serotonin and dopamine neurons.

A previous study showed that VTA (and, to a lesser extent,

SNc) dopamine neurons receive heavy monosynaptic inputs

from DR (Watabe-Uchida et al., 2012). In contrast, both VTA

and SNc dopamine neurons receive many fewer inputs from

MR (Watabe-Uchida et al., 2012). Here, we examined their inter-

actions in the opposite direction: which of the midbrain areas

that contain dopamine neurons (VTA, SNc, and RRF) projects

to serotonin neurons? We found that DR serotonin neurons

received heavy inputs from all three areas (VTA, SNc, and RRF;

Figures 7A–7F). MR serotonin neurons also received heavy in-

puts from VTA but fewer from SNc and RRF. Thus, DR serotonin

neurons have strong reciprocal connections with both VTA

and SNc whereas MR serotonin neurons have a unidirectional

connection from VTA.

The reciprocal connection between DR and VTA has been

reported (Geisler and Zahm, 2005; Vertes et al., 1999) but which

cell types contribute to these interactions is unknown. In partic-

ular, whereas serotonergic regulation of VTA dopamine neurons

was confirmed by multiple methods (Boureau and Dayan, 2011),

projections from dopamine to serotonin neurons have remained
s
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Figure 4. Monosynaptic Inputs from the Cortex and Habenula

(A–F) Distributions of input neurons to DR (A, C, and E) and MR (B, D, and F) serotonin neurons. Scale bar represents 0.5 mm. Abbreviations as in Figure 1. LO,

lateral orbital cortex; M2, secondary motor cortex; Cg, cingulate cortex; and RS, retrosplenial cortex. Bregma: 2.58 mm (A and B), 0.86 mm (C and D), and

�1.70 mm (E and F).

(G) Percent of total inputs in six cortical areas that contained relatively large numbers of input neurons (>0.7% in at least one of the four experimental groups). MR

(orange), DR (green), VTA (blue), and SNc (red). Mean ± SEM (n = 7 and 5 mice for DR and MR groups, n = 4 mice each for VTA and SNc groups, respectively).

**p < 0.01 and *p < 0.05, one-way ANOVA, Tukey-Kramer multiple comparison test.
unclear (Ferreira et al., 2008; Kalén et al., 1988). Our results thus

far have specified postsynaptic cell types (dopamine or seroto-

nin neurons). In the following, we examined presynaptic cell

types by immunostaining in combination with transsynaptic

tracing with the modified rabies virus using Sert-Cre mice and

DAT-Cre mice.

We stained against tyrosine hydroxylase (TH) in sections in

which monosynaptic inputs to DR serotonin neurons were

labeled and against serotonin in sections in which monosynaptic

inputs to VTA dopamine neurons were labeled (Figures 7G and

7H). The results showed that many monosynaptic inputs to

dopamine neurons were serotonergic (54.0%; Figure 7I). In

contrast, few (only 8.1%) monosynaptic inputs to serotonin

neurons were dopaminergic (Figure 7I), consistent with previous
Cel
observations (Kalén et al., 1988). Interestingly, VTA inputs to se-

rotonin neurons clustered in the posterior-ventral-medial part of

the SNc and in the ventral-lateral part of VTA, surrounding the

medial leminiscus (Figures 7A and 7B).

Thus, inputs fromDR to VTA dopamine neurons include a large

number of serotonergic projections, whereas inputs from VTA

(and SNc) to DR serotonin neurons do not contain many dopami-

nergic projections, suggesting a largely unidirectional projection

from serotonin to dopamine neurons (Figure 7J).

DISCUSSION

Using a modified rabies virus, we mapped the whole-brain

monosynaptic inputs to DR and MR serotonin neurons. We
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Figure 5. Comparisons of Monosynaptic

Inputs across Four Groups

(A) Comparison between inputs to DR and MR se-

rotonin neurons. (DR, n = 7 mice; MR, n = 5 mice).

(B) Comparison between inputs to VTA and SNc

dopamine neurons (VTA, n = 4; SNc n = 4).

(C) Comparison between inputs to DR serotonin and

VTA dopamine neurons.

(D) Comparison between inputs to DR serotonin and

SNc dopamine neurons.

(E) Comparison between inputs to MR serotonin and

VTA dopamine neurons.

(F) Comparison between inputs to MR serotonin and

SNc dopamine neurons.

Values are the means of percent of total inputs from

each region. Red circles indicate significant differ-

ences (p < 0.05, Bonferroni-corrected). r: Pearson’s

correlation coefficients.

(G) Summary of similarities between input patterns.

Numbers indicate correlation coefficients. The

thickness of each arrow indicates the similarity.
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Figure 6. Three Input ‘‘Axes’’ for Serotonin and Dopamine

Each pie chart represents the percentage of total inputs for each postsynaptic

neuron type, and are placed at their rough locations in the anterior-posterior

and medial-lateral axes on a horizontal section of the forebrain (A) and the

dorsal-ventral and medial-lateral axes on a coronal section at the level of

midbrain and brainstem (B). Color represents postsynaptic neuron types:

inputs to MR serotonin neurons (orange), DR serotonin neurons (green), VTA

dopamine neurons (blue), and SNc dopamine neurons (red). The size of the pie

charts reflects the sum of the percentages. Colored arrows indicate the main

axes of input streams.
found that MR serotonin neurons receive inputs from more

medial forebrain areas than DR serotonin neurons. We next

compared the distributions of inputs to serotonin neurons with

those to dopamine neurons obtained in a previous study (Wa-

tabe-Uchida et al., 2012). We found a remarkable overall similar-

ity between inputs to VTA dopamine and DR serotonin neu-

rons. This comparison also revealed an important difference:

compared to serotonin neurons, dopamine neurons receive

manymore direct inputs from the striatum. These results demon-

strate a global organizing principle of inputs to two major

ascending neuromodulator systems. There are roughly three

descending input streams: medial areas project to MR serotonin

neurons, intermediate areas project to DR serotonin and VTA

dopamine neurons, and more lateral areas project to SNc dopa-

mine neurons.

Similarity between Inputs to DR Serotonin and VTA
Dopamine Neurons
Comparing the relative numbers of inputs across areas, we

found that DR serotonin and VTA dopamine neurons receive

quantitatively similar patterns of inputs compared to MR seroto-

nin and SNc dopamine neurons (Figure 5G). These findings

notably advance the literature in two ways: first, our analysis is

based on direct inputs to serotonin and dopamine neurons, a

specificity that has been difficult to achieve with conventional

tracers (Wickersham et al., 2007). Second, although differences

in inputs to subareas of either dopamine or serotonin system

have been noted qualitatively in previous studies (Graybiel and

Ragsdale, 1979; Ikemoto, 2007; Vertes and Linley, 2008;

Watabe-Uchida et al., 2012), our analysis is a quantitative com-
Cel
parison between different neurotransmitter systems (here, dopa-

mine and serotonin).

The similarities anddifferencesobservedbetween inputs toDR

serotonin and VTA dopamine neurons may provide insight into

their functions. Serotonin has been proposed to be involved in

diverse functions but it has been difficult to pinpoint any specific

one. Proposed functions of serotonin partially overlap with those

of dopamine, but their roles often appear opposed. For instance,

dopamine is associated with positive reinforcement and promot-

ing approach/exploration behavior, whereas serotonin is associ-

ated with negative reinforcement and behavioral inhibition (Daw

et al., 2002; Dayan and Huys, 2008; Deakin and Graeff, 1991;

den Ouden et al., 2013; Soubrie, 1986). This idea of opponency

between the two systemshasbeen supportedby the observation

that serotonin neurons are activated by noxious stimuli (Mon-

tagne-Clavel et al., 1995; Schweimer and Ungless, 2010)

whereas dopamine neurons are activated by reward. It remains

to be determined how these observations can be reconciled

with recent studies showing that many DR neurons (which likely

included serotonin neurons) were excited by reward (Miyazaki

et al., 2011; Nakamura et al., 2008; Ranade and Mainen, 2009).

These results suggest that the way DR serotonin neurons

respond during behavior bears some similarity to that of dopa-

mine neurons, although critical differences may exist. Our study

showed that LH provided extremely dense input to DR serotonin

and VTA dopamine neurons. Given that some LH neurons signal

subjective values (Onoet al., 1986), it is possible that LHunderlies

the similarity of their responses during appetitive events.

A striking difference between inputs to DR serotonin and VTA

dopamine neurons is the much smaller number of direct inputs

from the striatum (Acb and DS) to DR serotonin neurons. For

both VTA and SNc dopamine neurons, the largest number of

inputs comes from the striatum (Watabe-Uchida et al., 2012).

In contrast, DR serotonin neurons receive more inputs from

pallidal/extended amygdala structures and from LH. Dopamine

neurons receive inputs from the striatum both directly and

indirectly through pallidal and hypothalamic structures (Wa-

tabe-Uchida et al., 2012). Our results suggest that DR serotonin

neurons receive primarily indirect inputs from the striatum. It has

been proposed that striatal neurons provide reward expectation

signals to directly inhibit dopamine neurons to calculate reward

prediction errors (Doya, 1999; Houk et al., 1995), although the

functional role of this input remains to be clarified. The small

number of direct inputs from the striatum to DR serotonin neu-

rons might be related to the observation that DR serotonin

neurons respond to reward even when reward is expected (Na-

kamura et al., 2008). In addition to the striatum, serotonin neu-

rons do not receive inputs from other areas to which they project,

such as hippocampus, thalamus, and amygdala. In contrast,

dopamine neurons receive inputs from most of their projection

sites (that is, they have reciprocal connections). This may explain

the longer timescale responses in serotonin neurons because of

the lack of immediate negative feedback as found in dopamine

neurons (Haber et al., 2000).

Forebrain-Habenula-Raphe Serotonin Pathways
The habenula (Hb) has long been considered a node of major

descending pathways to serotonin neurons emanating from
l Reports 8, 1105–1118, August 21, 2014 ª2014 The Authors 1113
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various forebrain regions. Whereas the MHb-IPN-raphe route

conveys information from the hippocampal system to serotonin

neurons, the LHb-raphe route conveys different kinds of infor-

mation from the basal ganglia and hypothalamus to serotonin

neurons (Herkenham and Nauta, 1979). We found two major dif-

ferences between Hb inputs to DR versus MR serotonin neurons

as described below.

We found that LHb sends strong monosynaptic inputs to MR

serotonin neurons, consistent with previous findings (Behzadi

et al., 1990). On the other hand, although LHb projects strongly

to DR (Vertes et al., 1999), we found that DR serotonin neurons

(and VTA and SNc dopamine neurons) receive few monosyn-

aptic inputs from LHb. Recent studies found that the rostrome-

dial tegmental nucleus (RMTg) relays inputs from LHb to DR as

well as to dopamine neurons (Jhou et al., 2009). Because most

LHb neurons are excitatory and RMTg neurons are inhibitory,

our data suggest that activation of LHb neurons can exert oppo-

nent control over MR and DR serotonin neurons. That is, LHb

neurons directly excite MR serotonin neurons and, at the same

time, inhibit DR serotonin neurons (and dopamine neurons) via

RMTg.

Although previous studies indicated that IPN projects to both

MR and DR (Groenewegen et al., 1986), our results showed that

IPN projects preferentially to MR, over DR, serotonin neurons.

Most inputs originate from rostral IPN (Figures 7A–7D), which re-

ceives strong projections from MHb. We also found that MHb

projects directly to MR (Figures 2 and 4F). These results show

that MR serotonin neurons receive strong inputs directly and

indirectly (via IPN) from MHb (Figure S5).

Previous studies found that MR receives input from extended

amygdala (e.g., BNST) and basal ganglia (e.g., VP) (Marcinkie-

wicz et al., 1989; Vertes and Linley, 2008). However, our data

showed few monosynaptic inputs from these areas to MR sero-

tonin neurons. Recent studies showed that these areas project

to RMTg, which is adjacent to MR (Jhou et al., 2009). Other

studies using anterograde tracers indicated that Acb and VP

project to the lateral part of MR but not to the midline where

most serotonin neurons reside (Behzadi et al., 1990). These re-

sults suggest that differences between studies can be explained

by the higher specificity of labeling in the present study.

Hierarchical Organization between Dopamine
and Serotonin
Serotonin and dopamine systems are thought to interact (Bour-

eau and Dayan, 2011; Kapur and Remington, 1996). Our data
Figure 7. Interactions between Serotonin and Dopamine Neurons

(A–F) Distributions of input neurons to DR (A, C, and E) andMR (B, D, and F) seroto

Scale bar represents 0.5 mm. Bregma: �3.40 mm (A and B), �3.64 mm (C and D

(G)Monosynaptic inputs to DR serotonin neurons stained against tyrosine hydroxy

the right. White arrowhead indicates a TH-positive input neuron. Scale bars r

�3.52 mm.

(H) Monosynaptic inputs to VTA dopamine neurons stained against serotonin. Wh

(I) Percentage of dopamine (among all VTA and SNc inputs) or serotonin (among a

neurons, and n = 2 animals each).

(J) Summary of monosynaptic connections between serotonin and dopamine

dopaminergic, estimated by multiplying the percent of inputs from each area by

neurons. Arrow thickness reflects the number of connections. Dotted lines indica

Cel
showed that both DR serotonin and VTA dopamine neurons

receive a large number of monosynaptic inputs from VTA and

DR, respectively. However, although inputs from DR to VTA

dopamine neurons included many serotonin neurons, inputs

from VTA (and SNc) to DR serotonin neurons did not contain

many dopamine neurons. These results indicate a largely one-

directional information flow from DR serotonin neurons to VTA

and SNc dopamine neurons (Figure 7J).

It is interesting that, although both DR serotonin and VTA and

SNc dopamine neurons project to the striatum, the striatum

sends back massive projections primarily to dopamine (Wa-

tabe-Uchida et al., 2012), and not serotonin neurons (present

study). Therefore, serotonin could also control dopamine neu-

rons by regulating striatal activity (Kapur and Remington, 1996)

but not vice versa. This suggests a hierarchical relationship be-

tween DR serotonin and VTA and SNc dopamine neurons; over-

all, serotonin is in a stronger position to control dopamine than

vice versa both through direct and indirect connections. Our

data match observations that lesions of DR or MR or pharmaco-

logical manipulations of serotonin affect dopamine release

(Boureau and Dayan, 2011; Di Giovanni et al., 1999; Hervé

et al., 1979). This serotonin-dopamine interaction is important

for understanding neural circuits for reinforcement learning. It

has been proposed that serotonin adds affective tone by inhibit-

ing dopamine signals (Boureau and Dayan, 2011; Daw et al.,

2002). Moreover, drugs for psychiatric disorders such as schizo-

phrenia, depression, and addiction act directly or indirectly on

both serotonin and dopamine (Kapur and Remington, 1996).

The anatomical basis of serotonin-dopamine interactions

analyzed in the present study can provide insight into normal

reward processing as well as brain disorders.

Three Axes of Descending Control of Dopamine
and Serotonin
Our data suggest that three axes of descending projections con-

trol serotonin and dopamine (Figure 6). The most medial axis

originates from the septo-hippocampal system and controls

MR serotonin neurons. The intermediate axis originates from

the ventral basal ganglia/extended amygdala and LH and con-

trols VTA dopamine and DR serotonin neurons. The most lateral

axis originates from the dorsal part of the basal ganglia and the

subthalamic nucleus and controls SNc dopamine neurons. In

addition to these subcortical descending projections, we also

observed direct projections from the neocortex that follow

similar segregation: somatosensory and motor cortices to SNc
nin neurons. Abbreviations as in Figure 1; SNr, substantia nigra pars reticulata.

), and �4.04 mm (E and F).

lase (TH). White square indicates the location of the high-magnification view on

epresent 0.5 mm and 50 mm (low and high-magnification images). Bregma:

ite arrowheads indicate serotonin-positive input neurons. Bregma: �4.72 mm.

ll DR inputs) neurons in EGFP positive neurons. Mean ±SEM (n = 39 ± 15, 54 ± 4

neurons. Numbers indicate percent of total inputs that are serotonergic or

the percent of dopamine- or serotonin positive-neurons among EGFP-labeled

te weak (<0.5%) connections.
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dopamine neurons, orbitofrontal cortex to VTA dopamine and

DR serotonin neurons and medial cortical areas such as the

Cg and RS to MR serotonin neurons (Figure 4G).

In this study, we observed global afferent control for serotonin

anddopamine systems.Our results demonstrate that threeparal-

lel pathways form largely segregated control systems for these

two neuromodulators. Across andwithin these pathways, DR se-

rotoninneuronsappear to exert hierarchically greater control over

VTA and SNc dopamine neurons than vice versa. We compared

serotonin and dopamine systems because they are thought to

interact. Similar comparisons with other neuromodulators may

provide insight into the global organization of brain connectivity.

EXPERIMENTAL PROCEDURES

Viral Injections

We used 14 adult (2–6 months old) female Sert-Cre mice (Slc6a4tm1(cre)Xz;

Zhuang et al., 2005) that express Cre recombinase under the transcriptional

control of the serotonin transporter gene. These mice were backcrossed

with C57BL/6J mice. For some control experiments, C57BL6 mice were

used. All procedures were in accordance with Harvard University Institutional

Animal Care and Use Committee.

To demonstrate monosynaptic inputs to DR and MR serotonin neurons, we

used a transsynaptic tracing system based on the modified rabies virus (Wa-

tabe-Uchida et al., 2012; Wickersham et al., 2007). First, 0.3–0.5 ml of AAV8-

FLEX-RG (2 3 1012 particles/ml) and 0.3–0.5 ml AAV5-FLEX-TVA-mCherry (4

3 1012 particles/ml) were stereotaxically injected into the DR or MR (4.5 mm

and 4.2 mm posterior to the bregma, 0 mm and 0 mm to the midline, and

2.1 mm and 3.6mm ventral to the dura, respectively) using amicromanipulator

with a pulled glass needle. Fourteen days later, 0.8–1 ml of pseudotyped rabies

virus, SADDG-EGFP(EnvA) (5 3 107 plaque-forming units [pfu] per milliliter;

Wickersham et al., 2007) was injected into the same area. All surgeries were

performed under aseptic conditions with animals under ketamine/medetomi-

dine (60 and 0.5 mg/kg, intraperitoneally [i.p.], respectively) or isoflurane

(1%–3% at 600 ml/min) anesthesia. Analgesia (ketofen 5 mg/kg, i.p., bupre-

norphine, 0.1 mg/kg, i.p.) was administered postoperatively. The data for

monosynaptic inputs to VTA and SNc dopamine neurons were obtained using

a similar method using DAT-Cre mice (Watabe-Uchida et al., 2012).

Histology

One week after injection of rabies virus, mice were perfused with PBS followed

by 4% paraformaldehyde (PFA) in PBS. After 1 day of postfixation in 4% PFA,

100-mm-thick coronal slices were prepared using a vibratome. Every third sec-

tion was counterstained with NeuroTrace Fluorescent Nissl Stains (Molecular

Probes). To identify starter neurons infected by the rabies virus, immunohisto-

chemistry was performed. TVA-mCherry signal was detected using either anti-

mCherry mouse monoclonal antibody (1:100; Clontech) or anti-DsRed rabbit

polyclonal antibody (1:200; Rockland Immunochemicals), with Alexa Fluor

594 goat anti-mouse secondary antibody, or Alexa Fluor 555 goat anti-rabbit

secondary antibody (1:200; Molecular Probes). Serotonin neurons were iden-

tified using an antiserotonin rabbit polyclonal antibody (1:200; Sigma-Aldrich),

or antiserotonin rat monoclonal antibody (1:100; Millipore), with biotinylated

goat anti-rabbit secondary antibody (1:200; Jackson ImmunoResearch),

streptavidin-conjugated Alexa Fluor 405, or Alexa Fluor 633 goat anti-rat sec-

ondary antibody (1:200; Molecular Probes). Slices were permeabilized with

0.5% Triton X-100, and incubation with antibodies and washing was done

with 0.05% Triton X-100. Whole-section mosaics of low-magnification images

were taken semiautomatically with AxioImager Z2, Axio Scan Z1, or LSM 700

Inverted Confocal microscope (Zeiss), and assembled using software (Axiovi-

sion or Zen, Zeiss). High-magnification images were taken by an LSM 510 or

LSM 700 inverted confocal microscope (Zeiss). Starter neurons were identified

based on coexpression of EGFP and mCherry (Figures 1C, 1F, and 1I).

For identification of cell types of rabies-infected neurons, we used

antiserotonin and anti-TH rabbit polyclonal (1:200; Millipore) antibodies. We

performed the following control experiments to quantify the specificity of
1116 Cell Reports 8, 1105–1118, August 21, 2014 ª2014 The Author
these antibodies. We first crossed Sert-Cre and DAT-Cre mice

(B6.SJLSlc6a3tm1.1(cre)Bkmn/J, Jackson Lab; Bäckman et al., 2006) with tdTo-

mato-reporter mice (Gt(ROSA)26 Sortm9(CAG-tdTomato)Hze, Jackson Laboratory)

to express tdTomato in serotonin and dopamine neurons, respectively. After

fixation in 4% PFA/PBS and slicing, immunohistochemistry was performed.

In Sert-Cre/tdTomato brain slices, 90.75 ± 4.2% (mean ± SEM, n = 3 animals)

of tdTomato-positive neurons were labeled with the antiserotonin antibody. In

DAT-Cre/tdTomato brain slices, 95.7 ± 3.2% (mean ± SEM, n = 2 animals) of

tdTomato-positive neurons were labeled with anti-TH antibody.

To quantify the specificity of initial infection of starter neurons by the rabies

virus, AAV5-FLEX-TVA-mCherry and pseudotyped rabies virus, SADDG-EGF-

P(EnvA), were injected without AAV8-FLEX-RG into DR of Sert-Cre mice.

Immunohistochemistry using the anti-serotonin antibody showed that 90.77

± 1.9% (mean ± SEM, n = 3 animals) of EGFP-positive neurons were labeled

by the antiserotonin antibody, which is close to the efficiency at which the anti-

body can label serotonin neurons.

Image Analysis

The locations of labeled neurons and the outlines of brain areas were manually

registered using custom software written in MATLAB (Mathworks) and R

(http://www.r-project.org/). Nomenclature, abbreviations, and outlines of brain

areas are according to a standard atlas (Franklin and Paxinos, 2008). Starter

and input neurons in Figures 1F–1H were counted from both hemispheres,

but other data for quantitative analysis were from one hemisphere. Centers

of injection sites were calculated as the arithmetic mean of the coordinates of

EGFP- andmCherry-double-positive neurons in each animal. Positions of neu-

rons were measured using the center of the aqueduct as the landmark in each

brain slice.

For quantitative comparisons of input neurons between DR and MR, we

used seven brains from the DR group and five brains from the MR group

that contained relatively large numbers of starter neurons and transsynapti-

cally labeled neurons, and that had highest specificities of starter neurons

(DR1, DR3, DR4, DR5, DR6, DR7, and DR8; and MR3, MR4, MR5, MR12

and MR13; Figure 1I). The numbers of input neurons were normalized by the

total number of inputs (excluding the injection sites) in each animal to obtain

the percentage of total inputs. Because the data for inputs to dopamine neu-

ronswere based on brain areas anterior to bregma�5.34mm (Watabe-Uchida

et al., 2012), for themain analyses, we used data from the corresponding areas

for inputs to serotonin as well. Analyses including more caudal areas are

shown in Figure S2. The data for monosynaptic inputs to VTA and SNc dopa-

mine neurons were reported previously (Watabe-Uchida et al., 2012). The four

brains from VTA and SNc groups that were used in the previous report were

also used for the analysis here (VTA: v001, v004, v009, and v010; SNc:

s001, s003, s004, and s006).

To compare distributions of input neurons in the forebrain (Figure 3), the

median of the coordinates of input neurons except those in the cortex was ob-

tained. To superimpose results from different animals onto a standard atlas,

positions of neuronswere normalized by three landmarks: the corpus callosum

at the midline, the most ventral part of the midline, and the most lateral part of

the dorsal striatum.

For statistical analysis of cortical inputs (Figure 4G), multiple group compar-

isons were assessed with a one-way ANOVA followed by post hoc Tukey-

Kramer tests.

For statistical comparisons of the number of inputs between the different

starter groups (Figure 5), areas that contained <1% of the total inputs in

both of the starter groups were excluded. Corrections for multiple compari-

sons were performed using Bonferroni corrections based on the number of

all of these areas used for statistical comparisons. To quantify the similarity

in input patterns, we calculated Pearson’s correlation coefficients without

excluding any area.
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