
Discrete Applied Mathematics 211 (2016) 183–203

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The assignment problem with nearly Monge arrays and
incompatible partner indices
C. Weiß a, S. Knust b, N.V. Shakhlevich a,∗, S. Waldherr b
a School of Computing, University of Leeds, Leeds LS2 9JT, UK
b University of Osnabrück, Institute of Computer Science, 49069 Osnabrück, Germany

a r t i c l e i n f o

Article history:
Received 27 April 2015
Received in revised form 8 March 2016
Accepted 18 April 2016
Available online 1 June 2016

Keywords:
Assignment problem
Monge property
Monge array

a b s t r a c t

In this paper we study the d-dimensional assignment problem in which entries of the
cost array satisfy the Monge property, except for ∞-entries, which may violate it. We
assume that the ∞-entries are incurred by incompatible partner indices and their number
is bounded by an upper bound λ for each index.We show that the problem can be solved in
linear time for fixed d and λ, and it becomes strongly NP-hard if d or λ is part of the input.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The assignment problem is an important combinatorial optimization problem with many applications in different areas
(see, e.g., [4]). In this problem the objective is to assign n items from one set I = {1, . . . , n} to n items of another set
J = {1, . . . , n}, where I may represent a set of workers, jobs, transmitting devices, and J may correspond to machines,
rooms, receivers, etc. In the linear assignment problem, additionally an n × n weight (cost) matrix W = (wij) is given, and
the goal is to find an assignment with minimum total weight.

An assignment S may be represented by a set of n pairs, S = {(i1, j1), . . . , (in, jn)} with {i1, i2, . . . , in} = {j1, j2, . . . , jn} =

{1, 2, . . . , n} and it is characterized by the weight

w(S) =


(i,j)∈S

wij.

An assignment S is also called a solution and a solution S∗ with minimum weight is called an optimal solution.

∗ Corresponding author.
E-mail addresses: mm12cw@leeds.ac.uk (C. Weiß), sknust@uni-osnabrueck.de (S. Knust), N.Shakhlevich@leeds.ac.uk (N.V. Shakhlevich),

swaldher@uni-osnabrueck.de (S. Waldherr).

http://dx.doi.org/10.1016/j.dam.2016.04.019
0166-218X/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82398781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.dam.2016.04.019
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2016.04.019&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:mm12cw@leeds.ac.uk
mailto:sknust@uni-osnabrueck.de
mailto:N.Shakhlevich@leeds.ac.uk
mailto:swaldher@uni-osnabrueck.de
http://dx.doi.org/10.1016/j.dam.2016.04.019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

184 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

An alternative representation of the assignment problem uses binary decision variables xij indicating the assignment of
i-items to j-items:

min
n

i=1

n
j=1

wijxij

s.t.
n

j=1

xij = 1, 1 ≤ i ≤ n,

n
i=1

xij = 1, 1 ≤ j ≤ n,

xij ∈ {0, 1}, 1 ≤ i, j ≤ n.

Clearly, there exists a one-to-one correspondence between any solution S and the binary solution matrix XS = (xij) with
xikjk = 1 for every pair (ik, jk) ∈ S, 1 ≤ k ≤ n. The linear assignment problem can be solved in polynomial time, e.g., by the
Hungarian algorithm [21], which can be implemented to run in O(n3) time [4].

The extension of the linear assignment to the multi-dimensional case gives rise to the so called axial d-dimensional
assignment problem (d ≥ 2): given a d-dimensional n × · · · × n weight array W = (wi1...id), an assignment S is a set of
n d-tuples {


i11, . . . , i

1
d


,

i21, . . . , i

2
d


, . . . ,


in1, . . . , i

n
d


} with {i1ℓ, . . . , i

n
ℓ} = {1, . . . , n} for all ℓ = 1, . . . , d, and its weight is

w(S) =


(i1,...,id)∈S

wi1...id .

The formulation in terms of the binary decision variables xi1...id is as follows:

min


i1,...,id

wi1...idxi1...id

s.t.

i1,...,id
s.t. iℓ=k

xi1...id = 1, 1 ≤ ℓ ≤ d, 1 ≤ k ≤ n,

xi1 i2 ...id
∈ {0, 1}, 1 ≤ i1, i2, . . . , id ≤ n.

(1)

The associated solution array XS = (xi1...id) has a 1-entry xi1...id = 1 for every d-tuple (i1, . . . , id) =

ik1, . . . , i

k
d


∈ S, where

1 ≤ k ≤ n. Note that in any solution XS , the number of 1-entries is n, while the remaining nd
− n entries are 0. Unlike the

two-dimensional version, the d-dimensional assignment problem is strongly NP-hard for each fixed d ≥ 3, see, e.g., [19].
The assignment problem is strongly related to the transportation problem. In its usual, continuous form, the d-

dimensional transportation problem is formulated as follows:

min


i1,...,id

wi1...idxi1...id

s.t.

i1,...,id
s.t. iℓ=k

xi1...id = aℓ
k, 1 ≤ ℓ ≤ d, 1 ≤ k ≤ n,

xi1 i2 ...id
≥ 0, 1 ≤ i1, i2, . . . , id ≤ n.

Here aℓ
k are given non-negative supply/demand-values satisfying

n
k=1 a

1
k =

n
k=1 a

2
k = · · · =

n
k=1 a

d
k . The assignment

problem is the special case of the integer version of the transportation problem, with aℓ
k = 1 for all k = 1, . . . , n and

ℓ = 1, . . . , d.
It is well known that many combinatorial optimization problems, including the assignment problem and the

transportation problem, can be solved faster (by a greedy algorithm) if the weight matrix is a Monge matrix. We remind
here the main definitions and results following the survey paper [5]. An n × n matrix W = (wij) is called a Monge matrix if
for all row indices 1 ≤ i < r ≤ n and all column indices 1 ≤ j < s ≤ n the so-called Monge property is satisfied:

wij + wrs ≤ wis + wrj. (2)

An optimal solution to the assignment problem with a Monge matrix is given by the n pairs (1, 1), (2, 2), . . . , (n, n).
More generally, an n × · · · × n array W = (wi1...id) is called a (d-dimensional) Monge array if for all iℓ, jℓ ∈ {1, . . . , n},

ℓ = 1, . . . , d, we have

ws1s2...sd + wt1t2...td ≤ wi1i2...id + wj1j2...jd , (3)

where sℓ = min {iℓ, jℓ} and tℓ = max {iℓ, jℓ} for ℓ = 1, . . . , d. An optimal solution to the multi-dimensional assignment
problem with a Monge array is given by the n d-tuples (1, . . . , 1), (2, . . . , 2), . . ., (n, . . . , n).

A number of typical scenarios with Monge and Monge-like arrays are discussed in the survey papers [3] and [5]. Several
practical applications give rise to ∞-entries in the weight array W . The purpose of infinity entries is to model forbidden

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 185

assignments, i.e., if wij = ∞, then i cannot be assigned to j. In this situation, a+∞ = ∞ for all a ∈ R ∪ {∞} and a < ∞ for
all a ∈ R. Depending on the position of the ∞-entries, the Monge property may still be satisfied, so that a greedy solution
to the assignment and transportation problem remains optimal. For example, if in a Monge matrix all entries in the lower
triangle are replaced by ∞ (wij = ∞ for all i > j) or if all entries in the upper triangle are replaced by ∞ (wij = ∞ for all
i < j), then the resulting matrix still satisfies the Monge property.

In the multi-dimensional case, transportation and assignment problems remain greedily solvable in the presence of
forbidden entries, if the incurred ∞-entries do not destroy the Monge property. This is shown, e.g. in [26], which exploits
the relationship between multi-dimensional Monge arrays (with and without infinities) and submodular functions. Note
that the requirement of [26] that the finite entries form a sublattice implies that ∞-entries do respect the Monge property.

In general, however, an arbitrary introduction of ∞-entries may destroy the Monge property in a matrix that initially
satisfied it. In [9] so-called incomplete Monge matrices are studied where some values in the matrix are not specified and
the Monge property must only hold for any four specified entries wij, wrs, wis, wrj. In the following we introduce a related
concept where unspecified entries are replaced by infinity, which implies that these assignments are forbidden. We call
a weight matrix W nearly Monge if all quadruples of finite entries wij, wrs, wis, wrj satisfy the Monge property (2), while
quadruples with∞-entriesmay violate it. Similarly, in themulti-dimensional case, a d-dimensional arrayW is called nearly
Monge if condition (3) is satisfied for all finite entries.

In this paper, we study an important subclass of suchmatrices and arrays where∞-entries are incurred by incompatible
partner indices. In the two-dimensional case, if two indices i = i∗, j = j∗ are incompatible, we call them incompatible
partners. Then the corresponding cost is wi∗j∗ = ∞ to make the assignment (i∗, j∗) forbidden. We assume that a parameter
λ ≤ n is given which denotes an upper bound on the number of incompatible partners for every row index i = i∗ and every
column index j = j∗. This implies that there are at most λ forbidden entries in each row and in each column of the matrix
W .

In the multi-dimensional assignment problem, denoted by AP(d, λ), each pair of incompatible partners iu = i∗u , iv = i∗v
incurs forbidden entries for all d-tuples of the form


i1, . . . , i∗u, . . . , i

∗
v, . . . , id


, where all indices, except iu and iv , take all

possible values from {1, . . . , n}. Each d-tuple that contains at least one pair of incompatible partners is forbidden; the
corresponding w-value is ∞. Again we assume that we have an upper bound λ, which limits for each index iu = i∗u the
number of incompatible partners for each v ≠ u. This means that for each value i∗u and each v ≠ u at most λ values
i∗v,1, i

∗

v,2, . . ., i
∗

v,λ exist such that all assignments (i1, . . . , iu−1, iu = i∗u, iu+1, . . . , iv−1, iv = i∗v,µ, iv+1, . . . , id) are forbidden for
µ = 1, 2, . . . , λ. Hence, in this case the total number of incompatible partners for iu = i∗u is at most

Ω = λ(d − 1). (4)

Example 1. As an example of problem AP(3, 1) consider the nearly Monge array W with n = 3 where all entries are equal
to 1 except for the ∞-entries. If the first pair of incompatible partners is i∗1 = 2, i∗2 = 3, then all assignments (2, 3, i3) with
i3 ∈ {1, 2, 3} are forbidden, i.e. the ∞-entries are w2,3,1 = w2,3,2 = w2,3,3 = ∞. The incompatible pair i∗1 = 1, i∗3 = 3 leads
to the ∞-entries w1,1,3 = w1,2,3 = w1,3,3 = ∞. The incompatible pair i∗2 = 3, i∗3 = 3 incurs w1,3,3 = w2,3,3 = w3,3,3 = ∞.
This situation corresponds to λ = 1.

An example of problem AP(3, 2) with λ = 2 can be obtained from the previous example of AP(3, 1) by adding more
incompatible pairs. If, for example, the pair i∗1 = 1, i∗3 = 2 is added, the index i∗1 = 1 gets a second incompatible partner for
v = 3. Note that if instead we add the incompatible pair i∗1 = 1, i∗2 = 2, then λ = 1 remains unchanged, as the index i∗1 = 1
did not have an incompatible partner for v = 2 before.

Applications of assignment problems with incompatible partners are typical for scenarios where items from different
sets have to be matched, but there is a certain number of combinations that are forbidden. For example, in timetabling the
allocation of certain classes to some classrooms or time slots has to be avoided. In scheduling problemswith unit processing
times and arbitrary release dates and deadlines (which can be modeled as an assignment problem), it is not allowed to
allocate a job to a time slot before its release date or after its deadline. In scheduling problemswithmultiple machines there
can be additional constraints that do not allow some job–machine pairs. In transportation scheduling, allocations of certain
types of vehicles to some routes can be forbidden; in addition there may be restrictions on drivers’ allocation.

Assignment problems with nearly Monge arrays defined by incompatible partners arise for example in applications
related to satellite communication or in synchronous open shop scheduling. There also exists a close relation to the
well-known max-weight edge coloring problem on bipartite graphs. We discuss the two applications in more detail in
Section 2 and the relation to max-weight edge coloring in Section 3.

The remainder of the paper is organized as follows. In Section 2 we present two applied scenarios that can be modeled
as problem AP(d, 1) with nearly Monge arrays. In Section 3 we show that problem AP(d, λ) is strongly NP-hard if one of
the parameters, d or λ, is part of the input. Following that, in Section 4 we present some basic properties of nearly Monge
matrices. In Sections 5 and 6 we study the problem with fixed d and λ, which is a typical assumption in applications. In
Section 5we formulate a ‘‘corridor property’’ that characterizes the structure of an optimal solution. It implies that 1-entries
of an optimal solution array belong to a corridor of limited width around the main diagonal. Based on that property, in
Section 6 we present an efficient algorithm that solves problem AP(d, λ) in linear time for fixed d and λ, and in FPT time
for the parameters d and λ. This has new implications for the complexity of the applications in satellite communications,

186 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

synchronous open shop scheduling and max-weight edge coloring. In Section 7 the corridor property for other versions of
the assignment problem is discussed. Finally, conclusions are presented in Section 8.

2. Applications

In this section we describe two applications related to satellite communication and synchronous open shop scheduling
that can be modeled as problem AP(d, λ) with a d-dimensional nearly Monge weight array and λ = 1.

In both applications, there are given d n-tuples Γ ℓ
=

γ ℓ
1 , γ ℓ

2 , . . . , γ ℓ
n


, 1 ≤ ℓ ≤ d, and the associated assignment

problems have a cost arrayW of the form

wi1...id = max

γ 1
i1 , γ

2
i2 , . . . , γ

d
id


. (5)

If the numbers in each n-tuple Γ ℓ are listed in non-decreasing order, then W is a Monge array [2]. This can be seen as
follows. If we choose wi1 i2 ...id

, wj1 j2 ...jd
, ws1s2 ...sd

and wt1t2 ...td
as in the definition of the multi-dimensional Monge property (3),

then due to the maximum-definition and the ordering at least one of the entries wi1 i2 ...id
or wj1 j2 ...jd

is at least as large as
wt1t2 ...td

. Furthermore, again due to the maximum-definition and the ordering, each entry wi1 i2 ...id
and wj1 j2 ...jd

is at least as
large as ws1s2 ...sd

.
The assignment problem that arises in the context of satellite communication has been under study since the 80s, see,

e.g., [15,20,27,28]. In this problem a bipartite graph G = (V1 ∪ V2, E) is given where the vertex sets V1 and V2 correspond
to senders and receivers and the edges E model transmissions. We assume |V1| = d, |V2| = n with d ≤ n. For any
transmission (ℓ, i) ∈ E from sender ℓ ∈ V1 to receiver i ∈ V2, there is given a transmission time tℓi. Each sender can
send at most one message at any time, and each receiver can receive at most one message at any time, while independent
senders/receivers can perform transmissions in parallel. Switches in traffic are made simultaneously, so that a feasible
solution can be characterized by a set of periods, each of which does not involve the same sender or the same receiver more
than once. Hence, each period is described by at most d pairs (ℓ, i) denoting messages from senders ℓ ∈ V1 to receivers
i ∈ V2 that can be sent simultaneously. A feasible solution consisting of κ periods is a partition E1 ∪ E2 ∪ · · · ∪ Eκ of the
edge set E such that no two edges of the same set Eq are incident to the same vertex. The duration of a period q ∈ {1, . . . , κ}

corresponds to the longest transmission of that period, i.e.

w(Eq) = max{tℓi | (ℓ, i) ∈ Eq},

and the total transmission time is equal to
κ

q=1 w(Eq).
We now model this problem as an assignment problem. Each period can be described by d pairs (1, i1), . . . , (d, id)

denoting that for ℓ = 1, . . . , d, messages are sent from ℓ ∈ V1 to iℓ ∈ V2. For simplicity we assume here that each sender
sends a message in every time period; the general case, where senders are allowed to be idle in some periods, will be
discussed at the end of Section 3. The entries of the cost array W correspond to the durations of the periods, i.e. for any
selection of d receivers i1, i2, . . . , id ∈ V2 we define

wi1...id =


max


t1,i1 , t2,i2 , . . . , td,id


, if all receivers i1, i2, . . . , id are different,

∞, otherwise.

Note that wi1...id = ∞ if and only if ij = ik for some 1 ≤ j ≠ k ≤ d, i.e., if the same receiver is activated simultaneously by
two different senders j and k in one period. Thus, each index in theW -matrix has exactly one incompatible partner in each
other dimension, which means that λ = 1 is an upper bound on the number of incompatible partner indices.

In order to achieve the Monge property for finite entries of the array W = (wi1...id), we define for each sender ℓ the
n-tuple Γ ℓ

=

γ ℓ
1 , γ ℓ

2 , . . . , γ ℓ
n


by the durations tℓi of the messages to be sent from ℓ to all receivers i ∈ V2, and renumber

the γ -values so that

γ ℓ
1 ≤ γ ℓ

2 ≤ · · · ≤ γ ℓ
n . (6)

Then the array Ŵ of weights

ŵi1...id =


max


γ 1
i1 , γ

2
i2 , . . . , γ

d
id


, if all messages corresponding to γ 1

i1 , . . . , γ
d
id have different receivers,

∞, otherwise,
(7)

is a permutation ofW of type (5), apart from the infinities, and therefore all finite entries satisfy the Monge property.

Example 2. Consider an example with d = 2 senders, n = 4 receivers, and the following transmission times tℓi for senders
ℓ ∈ V1 = {1, 2} and receivers i ∈ V2 = {1, 2, 3, 4}:

ℓ \ i 1 2 3 4
1 5 2 7 3
2 4 2 3 6

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 187

Fig. 1. A feasible transmission schedule for Example 2.

Then the associated matrixW is of the form

W =


(2, 1) (2, 2) (2, 3) (2, 4)

(1, 1) ∞ 5 5 6
(1, 2) 4 ∞ 3 6
(1, 3) 7 7 ∞ 7
(1, 4) 4 3 3 ∞

 ,

where pairs (ℓ, i) denote the messages. Notice that matrixW is not nearly Monge.
Consider matrix Ŵ obtained from W using Γ 1

= (t12, t14, t11, t13) = (2, 3, 5, 7) and Γ 2
= (t22, t23, t21, t24) =

(2, 3, 4, 6):

Ŵ =


(2, 2) (2, 3) (2, 1) (2, 4)

(1, 2) ∞ 3 4 6
(1, 4) 3 3 4 ∞

(1, 1) 5 5 ∞ 6
(1, 3) 7 ∞ 7 7

 .

Matrix Ŵ is nearly Monge, but not Monge.
A feasible solution is given by E1 = {(1, 2), (2, 3)}, E2 = {(1, 4), (2, 2)}, E3 = {(1, 1), (2, 4)} and E4 = {(1, 3), (2, 1)}.

The corresponding schedule is shown in Fig. 1; its total transmission time is 3 + 3 + 6 + 7 = 19, which can be shown to be
optimal.

As described above, λ = 1 corresponds to the situation that messages to the same receiver are incompatible, i.e. cannot
be sent simultaneously. In a more general setting, also messages to receivers in close proximity to each other may be
incompatible, e.g., due to interference. If, for example, for each receiver one or two ‘neighbors’ are affected, we get problems
with λ = 2 or λ = 3.

As a second application we consider the synchronous open shop scheduling problem, which is a counterpart of the
synchronous flow shop problem studied in [31] and [33]. In this problem there are given dmachinesM1, . . . ,Md and n jobs,
where job i consists of d operations O1i,O2i, . . . ,Odi. Operation Oℓi has to be processed without preemption on machine
Mℓ for pℓi time units. In a feasible schedule each machine processes at most one operation at any time, and each job is
processed on at most one machine at any time. The processing is organized in synchronized cycles where jobs have to be
moved synchronously to the machines of the next cycle. This means that in a cycle all current jobs start at the same time on
the corresponding machines, and those with smaller processing times have to wait until the longest operation of the cycle
is finished. Afterwards, all jobs are replaced simultaneously. As a consequence, the processing time of a cycle is determined
by the maximum processing time of its operations. The goal is to assign all nd operations to n cycles so that the completion
time of the last cycle is minimized.

Any feasible schedule can be characterized by n cycles (i11, . . . , i
1
d), (i

2
1, . . . , i

2
d), . . . , (i

n
1, . . . , i

n
d) where each cycle k ∈

{1, . . . , n} is described by d job indices (ik1, . . . , i
k
d), assuming that in cycle k job ikℓ is allocated tomachineMℓ for ℓ = 1, . . . , d.

Similar to the previous problem, the problem of allocating jobs to machines within n cycles can be modeled as an
assignment problem with costs wi1...id for d-tuples (i1, . . . , id) defined by

wi1...id =


max


p1,i1 , p2,i2 , . . . , pd,id


, if all job indices i1, i2, . . . , id are different,

∞, otherwise.

Here∞-entries prohibit the allocation of two operations of the same job to one cycle. Since for eachmachine–job pair (ℓ, iℓ)
exactly one incompatible partner (ℓ′, iℓ) exists, for each other machine ℓ′, ̸ℓ = ℓ′, we have λ = 1.

As in the previous application, in order to achieve the Monge property for finite entries of the array W = (wi1...id), we
define for each machine Mℓ the n-tuple Γ ℓ

=

γ ℓ
1 , γ ℓ

2 , . . . , γ ℓ
n


by the processing times pℓi of operations Oℓi (1 ≤ i ≤ n)

that have to be processed on that machine, and renumber the γ -values so that (6) holds. Then the array Ŵ of weights

ŵi1...id =


max


γ 1
i1 , γ

2
i2 , . . . , γ

d
id


, if all job indices corresponding to γ 1

i1 , γ
2
i2 , . . . , γ

d
id are different,

∞, otherwise,
(8)

is of type (5), apart from the infinities, and therefore all finite entries satisfy the Monge property.

188 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

Example 2 can be reformulated to define an instance of the synchronous open shop problem, replacing ‘‘senders’’ and
‘‘receivers’’ by ‘‘machines’’’ and ‘‘jobs’’, respectively. The entries of matrices W and Ŵ remain the same. In the schedule
shown in Fig. 1, the sets E1, E2, E3 and E4 have now the meaning of cycles, while pairs (ℓ, i) represent now operations Oℓi.

In addition to the introduced versions of the two applications, in the subsequent sections we will consider their
generalized versions as well, where some senders or machines are allowed to stay idle so that less than d activities may
occur. Notice that there are instances for which an optimal solution with idle times may outperform any solution without
idle times.

3. NP-hardness of problem AP(d, λ)

In this section we establish a link between problem AP(d, λ) and the max-weight edge coloring problem in graphs and
use that link to show that problem AP(d, λ) with arbitrary d and fixed λ is strongly NP-hard, even for λ = 1. Furthermore,
we discuss the complementary result that AP(d, λ) with arbitrary λ and fixed d is strongly NP-hard, even if d = 3.

Both applications described in Section 2 can be modeled as special cases of the well-known Max-weight Edge Coloring
problem (MEC). Originated in the area of satellite communication [27], problem MEC has attracted considerable attention
of researchers, see e.g., [11,22,23]. The related max-weight vertex coloring problemMVCwas studied in [8,10,13]. Since the
problem MEC on a graph G is equivalent to coloring the vertices of the line graph L(G), any algorithm for MVC can also be
applied to MEC.

In the MEC problem we are given a graph G = (V , E) with vertex set V and edge set E. A feasible edge coloring of Gwith
κ colors is a partition E1 ∪ E2 ∪ · · · ∪ Eκ of the edge set E with an assignment of a color c to every subset Ec , 1 ≤ c ≤ κ , such
that no two edges of the same color c are incident to the same vertex. Additionally, the edges e ∈ E have weights w(e), and
the weight of a feasible edge coloring is defined as

κ
c=1 w(c), where w(c) is the maximum weight among the edges that

have color c ,

w(c) = max{w(e)|e ∈ Ec}. (9)

The objective is to find an edge coloring of minimumweight. Note that when introduced in this way, the number of colors is
not of importance and we are allowed to use a greater than necessary number of colors if this improves the objective value.

In the following we consider the version of MEC defined on a complete bipartite graph G = Km,n known to be NP-hard
in the strong sense [10,27], if bothm and n are part of the input. In graph Km,n, the vertex set V is partitioned into V1 and V2
with |V1| = m, |V2| = n, and the edges E connect every vertex from V1 with every vertex from V2. We denote this problem
byMEC(Km,n). It is easy to see that the following observation holds (for satellite communication this has already been noted
in, e.g., [10]).

Observation 1. The problems of scheduling satellite transmissions or synchronous open shops, with idle senders or machines
allowed, are equivalent toMEC(Kd,n) and therefore they are NP-hard in the strong sense, if both d and n are part of the input.

We now turn to the main problem AP(d, λ).

Theorem 1. Problem MEC(Km,n) reduces to problem AP(d, λ) with d = m and λ = 1,

MEC(Km,n) ∝ AP(m, 1). (10)

Proof. Without loss of generality we assume that m ≤ n. Clearly, the number of colors κ in any feasible solution to
MEC(Km,n) satisfies n ≤ κ ≤ nm, and the number of edges that get the same color c ∈ {1, . . . , κ} may vary from 1 to
m.

We present the proof for m = 2 first and then generalize it for an arbitrary m. In order to prove (10) for m = 2, we
create an auxiliary problemMEC2n(K2,2n) which corresponds to the MEC for the bipartite graph K2,2n with exactly 2n colors
allowed. We show that

MEC(K2,n) ∝ MEC2n(K2,2n) (11)

and

MEC2n(K2,2n) ∝ AP(2, 1). (12)

Given a bipartite graph G = (V1 ∪ V2, E) for the original problem MEC(K2,n), create the extended bipartite graphG =

(V1 ∪V2,E) for the auxiliary problemwith unchanged first set of vertices V1, while the second set of vertices V2 is extended
by adding n additional vertices so that |V2| = 2n. The edge setE is extended accordingly, to include mn = 2n new edges
connecting all vertices from V1 with the n auxiliary vertices from V2, the weights of those edges being set to 0. Clearly,
any feasible solution to MEC(K2,n) that uses κ colors can be extended to a feasible solution to MEC2n(K2,2n) that uses 2n
colors without changing the objective value such that κ colors contribute to the weight function, while 2n − κ colors carry
0-weight. Conversely, if we have a solution toMEC2n(K2,2n), we simply drop all auxiliary edges (having weight 0) and obtain
a feasible solution with the same objective value for MEC(K2,n). Thus, reduction (11) holds.

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 189

In what follows we reformulate problem MEC2n(K2,2n) as an assignment problem which finds for every edge (1,vi) a
mate


2,vj


with {1, 2} ⊆ V1 and

vi,vj


⊆ V2, such that both edges can get the same color, contributing to the objective
function the amount max


w (1,vi) , w


2,vj


.

Create two sequences of edges

1,v1

1


,

1,v2

1


, . . . ,


1,v2n

1


and


2,v1

2


,

2,v2

2


, . . . ,


2,v2n

2


each consisting of 2n

edges listed in non-decreasing order of their weights:

w

1,v1

1


= w


1,v2

1


= · · · = w


1,vn

1


≤ w


1,vn+1

1


≤ · · · ≤ w


1,v2n

1


,

w

2,v1

2


= w


2,v2

2


= · · · = w


2,vn

2


≤ w


2,vn+1

2


≤ · · · ≤ w


2,v2n

2


.

Here the first n terms of each list correspond to the edges incident to auxiliary vertices which have 0-weights. We define
the matrixW with 2n rows and 2n columns as follows:
• each row i, 1 ≤ i ≤ 2n, corresponds to the edge ei1 = (1,vi

1);
• each column j, 1 ≤ j ≤ 2n, corresponds to the edge ej2 = (2,vj

2);
• the weight-value wij corresponds to the weight of assigning the same color to the pair of edges ei1 and ej2,

wij =


max{w(ei1), w(ej2)}, ifvi

1 ≠vj
2,

∞, otherwise.
(13)

Thematrixwith entriesmax{w(ei1), w(ej2)} is the two-dimensional case of (5) and therefore satisfies theMonge property.
Thus, matrixW defined by (13), where∞-entries correspond to incompatible pairs of edges ei1, e

j
2, is a nearly Mongematrix

with λ = 1 incompatible partner for every i = i∗ or j = j∗.
It is easy to see that for any feasible solution to problemMEC2n(K2,2n) there exists a feasible solution to problem AP(2, 1)

with the same (finite) weight and vice versa. Thus, reduction (12) holds.
Consider now the case of an arbitrarym ≤ n. Given problemMEC(Km,n), introduce the extended problemMECmn(Km,mn)

by adding (m − 1)n auxiliary vertices to V2 and introducing edges of weight 0 that connect them with m vertices from V1.
As before, any feasible solution to MEC(Km,n) with κ colors can be extended to a feasible solution of MECmn(Km,mn) withmn
colors (and vice versa) such that κ colors contribute to the weight function, whilemn − κ colors carry 0-weight. Thus,

MEC(Km,n) ∝ MECmn(Km,mn). (14)

In order to reduce MECmn(Km,mn) to AP(m, 1), create m sequences of edges

h,v1

h


,

h,v2

h


, . . . ,


h,vmn

h


each listed in

non-decreasing order of the weights, 1 ≤ h ≤ m. The array W is m-dimensional, with each dimension h corresponding to
edges eih =


h,vi

h


incident to h, the number of entries in each dimension being mn. The weight-value wi1...im corresponds

to the weight of assigning the same color tom edges ei11 = (1,vi1
1), ei22 = (2,vi2

2), . . . , eimm = (m,vim
m),

wi1...im =


max
1≤h≤m

{w(eihh)}, if all verticesvi1
1 ,vi2

2 , . . . ,vim
m are different,

∞, otherwise.
(15)

Again, the arraywith entriesmax1≤h≤m{w(eihh)} satisfies theMonge property, see (5). Therefore, the arrayW defined by (15),
where ∞-entries correspond to incompatible pairs of edges, is a nearly Monge array with λ = 1 incompatible partner for
every ih = i∗h . Thus, similar to the two-dimensional case, we have

MECmn(Km,mn) ∝ AP(m, 1), (16)

which together with (14) proves the theorem. �

In the proof of Theorem 1 we have developed reduction (11), which is useful for handling the generalized versions of
the two applications, scheduling satellite transmissions and synchronous open shop problems. These two problems were
introduced in Section 2 under the assumption that exactly d activities should be assigned in each period/cycle. Both problems
were modeled as AP(d, 1) by defining for each sender or machine ℓ, 1 ≤ ℓ ≤ d, the n-tuple Γ ℓ

=

γ ℓ
1 , γ ℓ

2 , . . . , γ ℓ
n


, where

γ -values are in the non-decreasing order (6), and by setting up the cost array Ŵ of the form:

ŵi1...id =


max


γ 1
i1 , γ

2
i2 , . . . , γ

d
id


, if all activities corresponding to γ 1

i1 , . . . , γ
d
id are compatible,

∞, otherwise,
(17)

see (7) and (8). If fewer than d activities per period/cycle are allowed, then using Observation 1 and reduction (14) together
with (16), the two applications are modeled as AP(d, 1) with n actual receivers/jobs and (d− 1)n auxiliary ones. We set the
γ -values for the auxiliary receivers/jobs to 0. Then each extended dn-tuple Γ ℓ is of the form

Γ ℓ
=

 0, 0, . . . , 0  
d(n−1) elements

, γ ℓ
1 , γ ℓ

2 , . . . , γ ℓ
n  

n elements

 .

190 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

This results in the extended cost array W with entries of type (17) defined fordn receivers/jobs rather than forn. If parameters
d and λ are fixed, then the O(n)-time algorithm of Section 6 solves the associated applied problems in linear time, after
sorting the input data in order to achieve (6).

We now turn to complexity aspects of problem AP(d, λ) with one parameter fixed and another one being part of the
input. If λ = 0, then the weight array of problem AP(d, 0) is Monge rather than nearly Monge, and an optimal solution is
of the diagonal structure [5]. For the case of λ = 1 we use Theorem 1 and the NP-hardness result known for MEC(Km,n)
from [10,27] to make the following conclusion.

Observation 2. Problem AP(d, 1), where d ≥ 2 is part of the input, is NP-hard in the strong sense, even if there are only three
distinct finite weights.

Note that the restriction related to three weight values, except for ∞’s, follows from the reduction presented in [27],
which uses only three distinct weights. Interestingly, problemMEC(Kn,n)with two distinct weights is solvable in polynomial
time, as shown in [10,27].

Consider now the counterpart of AP(d, λ) with fixed d and an arbitrary λ. If d = 2, then problem AP(2, λ) can be solved
in O(n3) time by the Hungarian algorithm [4,21] that finds an optimal solution to the assignment problemwith an arbitrary,
not necessarily Monge-like matrix. If d = 3, then problem AP(3, λ) becomes NP-hard in the strong sense.

Observation 3. Problem AP(3, λ) is NP-hard in the strong sense, even if all finite weights are equal.

To justify Observation 3 we establish a link between problem AP(3, λ) and the 3-DIMENSIONAL MATCHING problem
(3-DM) known to be stronglyNP-complete. Recall that in 3-DM, there are given three disjoint setsX , Y and Z , with n elements
in each, and a set of triplesM ⊆ (X ×Y ×Z); the goal is to find a perfect matching, i.e. a setM ′

⊆ M , with |M ′
| = n such that

no element from X , Y or Z appears in more than one triple in M ′, see [14]. Any instance of problem AP(3, λ) with all finite
weights equal to 0 can be treated as an instance of problem 3-DM, where the set M consists of all triples excluding those
with incompatible partner indices. We denote this special case of 3-DM by 3-DM(λ). Conversely, any instance of problem
3-DM(λ) can be treated as an instance of problem AP(3, λ) where all finite weights are 0. Clearly, there exists a perfect
matching for an instance of 3-DM(λ) if and only if there exists an assignment of cost 0 for the corresponding instance of
AP(3, λ). Thus,

3-DM(λ) ∝ AP(3, λ).

In order to demonstrate the NP-completeness of 3-DM(λ), consider the known NP-completeness proof for 3-DM. It is
based on the reduction 3-SAT∝ 3-DM presented, e.g., in [14]. Without changing the structure of the instance of 3-DM used
in the proof, one can re-define it as an instance of 3-DM(λ) with λ = n − 1, so that the reduction from [14] becomes 3-
SAT∝ 3-DM(λ), see the Online Supplement to this paper (Appendix A). for an example of such a re-definition. Thus, we get
the chain of reductions

3-SAT ∝ 3-DM(λ) ∝ AP(3, λ),

which proves Observation 3.
The complexity results discussed in this section are summarized in Table 1 in the Conclusions.

4. Some properties of nearly Monge matrices with incompatible partner indices

In this and in the subsequent sections we consider problem AP(d, λ) with fixed d and λ. Prior to discussing algorithmic
aspects, we first demonstrate in Section 4.1 that the existing results known for the assignment problem with ∞’s are
generally inapplicable. Then in Sections 4.2–4.3 we address several typical questions that arise in the context of matrices
with ∞’s or with unspecified entries.

4.1. Nonexistence of a Monge sequence

As explained before, the introduction of ∞-entries into a Monge matrix may destroy the Monge property. In the
literature on Monge-like structures it is then suggested to verify whether a non-Monge matrix possesses a so-called Monge
sequence. Such a sequence guides greedy algorithm towards finding an optimal solution to the assignment or transportation
problem [5,18]. It considers the variables in the order they appear in a Monge sequence and assigns the highest possible
values to them without violating the constraints of the problem. Formally, a Monge sequence of an n × n matrix W = (wij)

is defined as a sequence of n2 index pairs (i1, j1), . . . , (in2 , jn2) such that whenever (i, j) precedes both (i, s) and (r, j) in the
sequence, condition

wij + wrs ≤ wis + wrj (18)

holds (cf. [18]).
A Monge sequence, if one exists, is a powerful tool for solving problems with matrices which do not satisfy the Monge

property for all quadruples.Models of this type arise for example in the scheduling context. The scheduling problems studied

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 191

in [16,17] can be modeled as transportation problems with non-Monge matrices. In some cases Monge sequences can
be found efficiently; in others a Monge sequence does not exist, and this calls for a development of special tailor-made
algorithms, as in the case of the generalized (weighted) version of the problem from [17].

Even for the simplest version of our problem AP(d, λ) with d = 2 and λ = 1 the matrices in general do not possess a
Monge sequence. Consider the two applications discussed in Section 2 with a cost matrix of type (5). If the w-values are
defined as

wij =


max{i, j}, if i ≠ j,
∞, otherwise,

and the matrix is at least of size 3 × 3, then a Monge sequence does not exist. Indeed, whichever element is selected as the
first element of a Monge sequence, the sequence cannot be completed to satisfy (18). For any selected entry there always
exists an ∞-entry that is not in the same row and not in the same column, while the other two entries of the associated
quadruple are finite. Clearly, condition (18) is violated for such a quadruple. For a more general case, a similar example can
be found in [30], where finite entries ofW are arbitrary.

Observation 4. In general, nearly Monge arrays with incompatible partners do not give rise to Monge sequences even for λ = 1
and d = 2.

4.2. Recognizing nearly Monge arrays

Given a weight matrix W , it is easy to verify whether the Monge property (2) is satisfied for finite entries. A straight-
forward way to do so is to check (2) for all pairs of finite entries of the form (wij, wrs) with i < r and j < s, which takes
no more than O(n4) checks. This method can also be generalized to recognize d-dimensional nearly Monge arrays, in which
case it takes no more than O(n2d) checks. Note that a d-dimensional nearly Monge array consists of nd entries.

The applications discussed in Section 2 and the MEC problem of Section 3 deal with a weight array W of form (5) with
∞-entries introduced for incompatible partners. Even if initially W is not nearly Monge, that property can be achieved
by ordering the γ -values of lists Γ ℓ, which is equivalent to sequencing the sets I and J of the assignment problem, or
permuting the rows and columns of W . In general, however, recognizing a permuted nearly Monge array is a non-trivial
task, as discussed below. Array W is a permuted nearly Monge array if its index sets can be permuted to make the array
nearly Monge.

Observation 5. For an arbitrary λ, it is NP-complete to decide whether a given array with at most λ incompatible partners (for
every index) is permuted nearly Monge, even for d = 2 (i.e. the matrix case).

This observation follows from a similar result in [9] formulated for a permuted incomplete Monge matrix, which is
equivalent to a nearly Monge matrix with an arbitrary λ. Notice that recognizing a permuted Monge matrix can be done
in O(n2) time [5], and recognizing a special incomplete Monge matrix, namely a Supnick matrix, which is a symmetric
Monge matrix with unspecified diagonal entries, can be done in O(n2 log n) time [9].

In the nearly Monge case, if the number of incompatible partners λ is fixed, recognition of permuted nearly Monge
matrices remains open. If a polynomial-time algorithm could be developed, it would be beneficial to achieve a time
complexity smaller than O(n3), beating the time complexity of solving a general assignment problem.

Further difficulties arise in recognition of nearlyMonge arrays for higher dimensions d ≥ 3. It is known that in the absence
of ∞’s, a d-dimensional array W is a Monge array if and only if every two-dimensional submatrix is a Monge matrix [1].
This property can then be efficiently used in recognizing d-dimensionalMonge arrays [29]. Unfortunately this necessary and
sufficient condition no longer holds for nearly Monge arrays, even if λ = 1. Consider for example a three-dimensional array
W = (wijk) with n = 3, λ = 1, incompatible partners (1, 2, ∗), (2, 1, ∗), (1, ∗, 3), (2, ∗, 2), (3, ∗, 1), (∗, 1, 2), (∗, 2, 3), two
1-entries w111 = w333 = 1 and all remaining finite entries being 0’s. The two-dimensional submatrices are listed below,
and all of them are nearly Monge. However, because of w111 + w333 = 2 > 0 = w131 + w313, the array W is not a nearly
Monge array.

i = 1 : i = 2 : i = 3 : 1 ∞ ∞

∞ ∞ ∞

0 0 ∞

 
∞ ∞ ∞

0 ∞ ∞

0 ∞ 0

 
∞ ∞ 0
∞ 0 ∞

∞ 0 1


j = 1 : j = 2 : j = 3 : 1 ∞ ∞

∞ ∞ ∞

∞ ∞ 0

 
∞ ∞ ∞

0 ∞ ∞

∞ 0 ∞

  0 0 ∞

0 ∞ 0
∞ 0 1


k = 1 : k = 2 : k = 3 : 1 ∞ 0

∞ 0 0
∞ ∞ ∞

 
∞ ∞ 0
∞ ∞ ∞

∞ 0 0

 
∞ ∞ ∞

∞ ∞ 0
0 ∞ 1



192 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

Observation 6. Even if every two-dimensional submatrix of a d-dimensional array W with λ = 1 is a nearly Monge matrix, the
whole array W is not necessarily a nearly Monge array.

4.3. Completing nearly Monge arrays

An interesting question related to arrays with unspecified or ∞-entries is the possibility of completing them by intro-
ducing finite values in order to achieve Monge arrays. Such an approach works, for example, for incomplete matrices of
Supnick type, as shown in [9], but unfortunately, it does not work for nearly Monge matrices. Consider the following nearly
Monge matrix with λ = 1:

0 0 1 ∞ 0
1 0 0 0 ∞

4 2 ∞ 0 1
6 ∞ 2 0 0
∞ 6 4 1 0

 .

Attempting to complete that matrix without permuting rows and columns, we have to satisfy the following two contradict-
ing conditions for w14:

w14 + w23 ≥ w13 + w24, or equivalently w14 ≥ 1,
w14 + w35 ≤ w15 + w34, or equivalently w14 ≤ −1.

Attempting to permute and complete the above matrix, the only suitable permutation of rows and columns that preserves
the Monge property for finite entries is the one which reverses the orders of rows and columns (notice that all quadruples
with finite entries satisfy theMonge property as strict inequalities). The arguments for entryw14 can be re-usedwith respect
to the entry w52 in the permuted matrix, justifying that completing cannot be done.

Observation 7. In general, a nearly Monge matrix with incompatible partners cannot be completed into a Monge matrix by
replacing ∞-entries by finite values even for λ = 1.

If permutations of rows and columns are fixed, producing a completed Monge matrix, if one exists, can be done in
polynomial time by solving the following system of linear inequalities:

ŵij + ŵi+1,j+1 ≤ ŵi,j+1 + ŵi+1,j, 1 ≤ i, j < n,
ŵij = wij, 1 ≤ i, j < n, wij ≠ ∞,
ŵij ∈ R.

Here ŵij are real-valued variables representing the target values of wij. Notice that for a Monge matrix it is sufficient to
achieve the Monge property for quadruples defined by adjacent pairs of rows and columns [5].

If a feasible solution satisfying the above inequalities exists, real values are assigned to all∞-entries, so that the resulting
Monge matrix Ŵ is a completion of W . In the case of infeasibility, either the matrix W is not nearly Monge (i.e. not all
quadruples of finite entries satisfy the Monge property) or the matrixW is not completable to a Monge matrix.

Notice that in the applications, which arise in scheduling satellite transmissions or synchronous open shops, nearly
Monge arrays are completable if the formulae for w’s (7) and (8) are modified accordingly, namely, by assigning finite
values max


γ 1
i1
, γ 2

i2
, . . . , γ d

id


to all d-tuples (i1, i2, . . . , in), ignoring the condition that all receivers or all jobs should be

different. Also, formula (9) for MEC

Km,n


can be adjusted to replace ∞’s by values max{w(e)|e ∈ Ec} for any combinations

of m edges with different origins in V1, even if there are repeated vertices in V2. Due to the sorting and the max-definition
(5), the resulting array is Monge.

5. The corridor property for problem AP(d, λ)

In this section we consider the assignment problem AP(d, λ) with a d-dimensional nearly Monge weight arrayW and at
most λ incompatible partners for every index.We show that there exists an optimal solution Ŝ such that all non-zero entries
xi1,...,id = 1 of the solution matrix XŜ lie in a corridor of a certain width ξ around the main diagonal,

|iℓ − i1| ≤ ξ for all ℓ = 1, . . . , d, (19)

where

ξ = d(d − 1)λ. (20)

We refer to the above condition as the corridor property. Based on it, in the next section we develop a linear-time algorithm
to solve problem AP(d, λ) for fixed d and λ. Note that AP(d, λ) is strongly NP-hard, if d or λ is part of the input, see Section 3.

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 193

Theorem 2. For problem AP(d, λ) there exists an optimal solution Ŝ = {(ı̂11, ı̂
1
2, . . . , ı̂

1
d), . . . , (ı̂

n
1, ı̂

n
2, . . . , ı̂

n
d)} such that every

d-tuple (i1, i2, . . . , id) = (ı̂k1, ı̂
k
2, . . . , ı̂

k
d), 1 ≤ k ≤ n, satisfies (19) with ξ defined by (20).

Proof. Startingwith an optimal solution S =

(i11, i

1
2, . . . , i

1
d), . . . , (i

n
1, i

n
2 . . . , ind)


that violates the corridor property (19) we

perform a series of exchange steps, each of which does not increase the cost, eventually producing a solution that satisfies
(19). We assume that w(S) < ∞, i.e., none of the d-tuples in S contains a pair of incompatible partners; otherwise S can be
replaced by the diagonal solution, which has the desired property and no higher cost.

For the exchange step, we take a d-tuple (i1, i2, . . . , id) of the current solution that violates (19), select a special
companion d-tuple (j1, j2, . . . , jd) from the current solution and replace that pair by (s1, s2, . . . , sd) and (t1, t2, . . . , td)
defined by

sℓ = min {iℓ, jℓ} , tℓ = max {iℓ, jℓ} , ℓ = 1, . . . , d. (21)

SinceW is nearly Monge, the inequality

ws1s2...sd + wt1t2...td ≤ wi1i2...id + wj1j2...jd

holds, if none of the four entries is∞. With an appropriate choice of the companion d-tuple (j1, j2, . . . , jd), we eliminate the
violation related to (i1, i2, . . . , id) without increasing the cost.

We distinguish between two types of violations:

Type I(iℓ) violation : iℓ > i1 + ξ for i1 ≤ n − ξ − 1,
Type II(iℓ) violation : iℓ < i1 − ξ for i1 ≥ ξ + 1,

and use the terms ‘‘d-tuple of Type I(iℓ)’’ and ‘‘d-tuple of Type II(iℓ)’’ for violating d-tuples.
First we eliminate Type I(i2) violations for the second index. We start with the d-tuple of Type I(i2) with the smallest

first index i1 and then we proceed with other d-tuples of Type I(i2) considering them in increasing order of i1. After that
we eliminate all Type II(i2) violations, starting with the d-tuple of Type II(i2) with the largest first index i1, proceeding then
with other d-tuples of Type II(i2) considered in decreasing order of i1.

Having eliminated all Type I(i2) and Type II(i2) violations for the second index, we proceed with violations for the third
index.We handle them in the same order, fixing first Type I(i3) violationswith d-tuples of Type I(i3) considered in increasing
order of i1, and then Type II(i3) violationswith d-tuples of Type II(i3) considered in decreasing order of i1. For these exchanges
we demonstrate that no new violations of Type I(i2) and Type II(i2) for second indices are created. The same approach is
then applied to the remaining indices i4, . . ., id.

Eliminating violations of Type I(i2). Among all d-tuples with violations of Type I(i2), select the d-tuple

i1, i2, . . . , id


with the

smallest first index i1, so that

i2 > i1 + ξ . (22)

Note that the choice of i1 implies that no Type I(i2) violations happen for i1 < i1. For the violating d-tuple

i1, i2, . . . , id


select a companion d-tuple (j1, j2, . . . , jd) with

j1 > i1 and j2 ≤ i1 + ξ (23)

such that
(a) xj1j2...jd = 1 in the current solution (recall that the associated value of wj1j2...jd cannot be ∞ then),
(b) the induced d-tuples (s1, s2, . . . , sd), (t1, t2, . . . , td) defined by (21) correspond to finite entries inW , i.e. do not contain

two incompatible partner indices.
For violation (22) the required d-tuple (j1, j2, . . . , jd) exists since, as we show below, there are ξ + 1 candidate 1-entries

with indices j1 and j2 satisfying (23). Clearly, at least one of those ξ + 1 candidates has all indices compatible with the
indices from


i1, i2, . . . , id


. If this was not the case, i.e., if there was at least one incompatible index between


i1, i2, . . . , id


and each of the ξ + 1 candidate entries, then the total number of incompatible partner indices for


i1, i2, . . . , id


would be

equal to ξ + 1 = d(d − 1)λ + 1, a contradiction to the assumption that for any index iu = iu, 1 ≤ u ≤ d, there are at most
Ω = λ (d − 1) incompatible partners, see (4).

We now justify that there are indeed ξ + 1 candidate 1-entries with indices j1 and j2 satisfying (23). We start with the
2-dimensional case, with the binary solution matrix XS = (xi1 i2) illustrated in Fig. 2(a). The symbol ‘‘×’’ in Fig. 2 is used to
mark compulsory 0’s in the solution matrix, caused by incompatible partner indices.

Consider the first (i1 + ξ) columns of the associated matrix XS , marked by a rounded rectangle in Fig. 2(a). Since every
column of XS contains one 1-entry, the selected part contains (i1 + ξ) 1-entries. By the assumption, there are no violations
of Type I(i2) for the first (i1 − 1) rows; therefore the first (i1 − 1) rows of the selected part contain (i1 − 1) 1-entries in
columns 1, 2, . . ., i1 + ξ − 1, and they do not contain 1-entries in column i1 + ξ . Thus, the remaining part of the selection,
corresponding to rows i1 + 1, . . ., n and columns 1, 2, . . ., i1 + ξ , contains

i1 + ξ

−

i1 − 1


= ξ + 1

1-entries.

194 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

Fig. 2. Eliminating Type I(i2) violation.
(a) Solution matrix XS with the violating d-tuple (i1, i2, . . . , id) of Type I(i2).
(b) Modified solution matrix X ′

S with Type I(i2) violation in row i1 eliminated.

It is easy to see that the same arguments are applicable for the multi-dimensional case. Fig. 2 can be treated as a
‘projection’ of the d-dimensional case into the space of the first two indices with

xi1 i2 =


i3,...,id

xi1i2i3...id .

Replacing

i1, i2, . . . , id


, (j1, j2, . . . , jd) by (s1, s2, . . . , sd), (t1, t2, . . . , td) eliminates the Type I(i2) violation for i1 = i1.

Note that it does not matter whether the companion d-tuple (j1, j2, . . . , jd) is violating or not; that d-tuple is removed
from the solution as a result of the exchange step. It also does not matter whether (s1, s2, s3, . . . , sd) =


i1, j2, s3, . . . , sd


or (t1, t2, . . . , td) =


j1, i2, t3, . . . , td


are violating: a possible violation for (s1, s2, . . . , sd) can only be of Type II(i2), as

s2 = j2 ≤ i1 + ξ by (23), and it is repaired at a later stage; a possible violation for (t1, t2, . . . , td) may be of any type, but due
to t1 = j1 > i1 it is also repaired at a later stage.

Proceeding with each next smallest index i1, for which violation of Type I(i2) occurs, all Type I(i2) violations are repaired
in a similar way, resulting in a solution where no Type I(i2) violations remain.

Eliminating violations of Type II(i2). Among all d-tuples with violations of Type II(i2), select the d-tuple

i1, i2, i3, . . . , id


with

the largest first index i1, so that the corridor property is satisfied for the second index for any i1 > i1 and the violation under
consideration is of the form

i2 < i1 − ξ, (24)

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 195

Fig. 3. Eliminating Type II(i2) violation.
(a) Solution matrix XS with the violating d-tuple (i1, i2, . . . , id) of Type II(i2).
(b) Modified solution matrix X ′

S with Type II(i2) violation in row i1 eliminated.

see Fig. 3. The required companion d-tuple (j1, j2, . . . , jd) should satisfy

j1 < i1 and i1 − ξ ≤ j2 ≤ i1 + ξ, (25)

together with properties (a)–(b) formulated for Type I(i2) violations.
For violation (24) the required d-tuple (j1, j2, . . . , jd) exists since, as we show below, there are ξ + 1 candidate 1-entries

with indices j1 and j2 satisfying

j1 < i1 and i1 − ξ ≤ j2 ≤ i1 + ξ − 1, (26)

which is in fact a stronger condition than (25). Again, at least one of those ξ + 1 entries has all indices compatible with the
indices from


i1, i2, . . . , id


, so that the exchange step with the induced d-tuples (s1, s2, . . . , sd), (t1, t2, . . . , td) achieves its

goal.
To justify that there exist ξ +1 candidate 1-entries with indices j1 and j2 satisfying (26), consider first the 2-dimensional

case. Since XS does not contain Type I(i2) violations, all

i1 − 1


1-entries of the


i1 − 1


first rows belong to the areamarked

by the larger rounded rectangle in Fig. 3(a) with j2 ≤ i1 + ξ − 1. Moreover, the part of the selected area j2 ≤ i1 − ξ − 1,

196 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

marked by the smaller rounded rectangle in Fig. 3(a), contains no more than

i1 − ξ − 1


1-entries. In fact it contains no

more than

i1 − ξ − 2


1-entries since the 1-entry in column i2 does not belong to the selected area. Thus, the remaining

part of the selection, corresponding to rows 1, 2, . . . , i1 − 1 and columns i1 − ξ, . . . , i1 + ξ − 1 contains
i1 − 1


−

i1 − ξ − 2


= ξ + 1

1-entries, which all satisfy (26). Again it is easy to see that the same arguments hold for the d-dimensional case.
Replacing


i1, i2, . . . , id


, (j1, j2, . . . , jd) by (s1, s2, . . . , sd), (t1, t2, . . . , td) eliminates violation (24), so that the corridor

property is now achieved for the second index for any i1 ≥ i1. Note that (t1, t2, . . . , td) =

i1, j2, t3, . . . , td


satisfies the

corridor property, while (s1, s2, s3, . . . , sd) =

j1, i2, s3, . . . , sd


may violate it. The possible violation is of Type II(i2) with

s1 < i1, and it is repaired at a later stage.
Proceedingwith each next largest index i1, for which a violation of Type II(i2) occurs, all Type II(i2) violations are repaired

in a similar way, resulting in a solution where no violations of any type remain for the second index.
After all violations of Type I(i2) and Type II(i2) are eliminated, we start eliminating violations for the third index, ensuring

that no new violations are created for the second index. We use the same approach:

• first eliminate all violations of Type I(i3), starting with a violating d-tuple with the smallest i1, and proceeding then with
other violating d-tuples considered in increasing order of i1;

• next eliminate all violations of Type II(i3), starting with a violating d-tuple with the largest i1, and proceeding with other
violating d-tuples considered in decreasing order of i1.

The existence of the d-tuple (j1, j2, . . . , jd) needed for the exchange step can be proven in the same way as above. We
only need to demonstrate that the induced d-tuples (s1, s2, . . . , sd), (t1, t2, . . . , td), defined in accordance with (21), do not
create new violations in the previously repaired second index, while repairing violations in the third one.

Consider the exchange step based on (i1, i2, . . . , id) and (j1, j2, . . . , jd) with

i1 < j1. (27)

Since in this stage violations for the second index have been already repaired, we have

−ξ ≤ i2 − i1 ≤ ξ, (28)
−ξ ≤ j2 − j1 ≤ ξ . (29)

If i2 < j2, then the induced d-tuples are of the form (i1, i2, s3 . . . , sd), (j1, j2, t3 . . . , td), and by (28)–(29) no new violation
appears for the second index. Alternatively, if

i2 > j2, (30)

then for the induced d-tuple (i1, j2, s3 . . . , sd) there is no violation for the second index since

j2 − i1 > −ξ by (27) and by the first inequality from (29),
j2 − i1 < ξ by (30) and by the second inequality from (28).

For the induced d-tuple (j1, i2, s3 . . . , sd) there is also no violation for the second index since

i2 − j1 > −ξ by (30) and by the first inequality from (29),
i2 − j1 < ξ by (27) and by the second inequality from (28).

It is easy to verify that if instead of (27) condition i1 > j1 holds, then similar arguments are applicable. Thus, repairing
violations related to the third index in the described way cannot create violations related to the second one.

Using the same approach repeatedly, we eliminate violations with respect to each index iℓ, ℓ = 4, . . . , d. Each time,
when eliminating violations for iℓ, we do not create new violations for indices i2, i3, . . . , iℓ−1. This completes the proof of
Theorem 2. �

6. A linear-time algorithm for problem AP(d, λ) with fixed d and λ

In this section we consider problem AP(d, λ) with fixed d and λ and develop a linear-time algorithm for it. We start with
the two-dimensional problem AP(2, λ).

By Theorem 2, we can restrict the search to solutions S such that all 1-entries appear inside the corridor, which can be
considered as a combination of themain diagonal, 2λ diagonals above it and 2λ diagonals below it. An example of a solution
matrix XS that satisfies the described property is presented below for λ = 1, d = 2 and n = 10, with the corridor for
1-entries marked by ∗:

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 197

Introduce a layered network L = (s, t, V , A) with the vertex set V consisting of disjoint subsets V (0), V (1) , . . . , V (n),
V (n + 1). Subsets V (0) and V (n + 1) are single-element subsets containing the source V (0) = {s} and the sink
V (n + 1) = {t}. The arcs A have end vertices belonging to two consecutive layers, A = ∪

n
k=0 (V (k) × V (k + 1)). The

vertices of layer V (k), 1 ≤ k ≤ n, characterize the partial solutions consisting of the first k rows and satisfying the corridor
property.

For two vertices vℓ(k) ∈ V (k) and vm (k + 1) ∈ V (k + 1), let Xℓ(k) and Xm (k + 1) be two associated partial solutions. If
Xℓ(k) ⊂ Xm (k + 1), then the arc (vℓ(k), vm (k + 1)) has the cost of assigning the 1-entry to a relevant position in row k+ 1;
that cost is given by wk+1,j, where j is the column with xk+1,j = 1 in Xm (k + 1). Otherwise vℓ(k) and vm (k + 1) are not
connected by an arc. For completeness, introduce auxiliary arcs of cost 0 from every vertex of V (n) to t . Clearly, an optimal
solution corresponds to a shortest path in the network L.

In order to reduce the size of L, we include in V (k) only the vertices corresponding to non-dominated partial solutions:
if Xℓ′(k) and Xℓ′′(k) have 1-entries assigned to the same set of columns and w (Xℓ′(k)) ≤ w (Xℓ′′(k)), where w(X) represents
the cost of the associated solution, then it is sufficient to include in V (k) only one vertex corresponding to Xℓ′(k). This implies
that each vertex of V (k) is characterized by a unique subset of columns which contain 1-entries in the first k rows. In order
to estimate |V (k)|, we prove the following statement.

Statement 1. Any partial solution Xℓ(k) of layer k consists of
(a) α columns 1, 2, . . . , α, each containing one 1-entry, where

α = max {k − 2λ, 0} ,

(b) n − β columns β + 1, . . . , n, each containing 0-entries only, where

β = min {k + 2λ, n} ,

(c) among the columns α + 1, . . . , β there are (k − α) = min {2λ, k} columns, each containing one 1-entry, and (β − k) =

min {2λ, n − k} columns with 0-entries only.

The following example with k = 6, n = 10, λ = 1 illustrates the structure of a partial solution Xℓ(k):

Proof. Conditions (a) and (b) hold since by the corridor property there can be no 1-entry for any combination of i ∈

{k + 1, . . . , n} and j ∈ {1, 2, . . . , α}, and also for any combination of i ∈ {1, 2, . . . , k} and j ∈ {β + 1, . . . , n}.
Condition (c) deals with the remaining entries of Xℓ(k), in rows i ∈ {1, 2, . . . , k} and columns j ∈ {α + 1, . . . , β}. By the

definition of the assignment problem, the total number of 1-entries in the first k rows and n columns is k, α of which appear
in columns j ∈ {1, 2, . . . , α}. Since no 1-entry can appear in columns j ∈ {β + 1, . . . , n}, the number of the remaining
1-entries is k − α. �

198 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

Statement 1 implies that the number of different subsets of columns which may contain 1-entries, and equivalently
|V (k)|, depends on the selection of (k − α) columns out of (β − α) columns in the middle part of the solution matrix. Since
k − α ≤ 2λ and β − α ≤ 4λ, |V (k)| can be bounded by

θ =


4λ
2λ


. (31)

Thus, the described approach reduces the assignment problem AP(2, λ) to the shortest path problem in the layered network
L, where the number of layers is n + 2 and in each layer there are no more than θ vertices. The network can be constructed
in O (|A|) time, where |A| ≤ θ2 (n + 1). An optimal solution can be found by dynamic programming in O (|A|) = O(n) time
as well.

Consider now the d-dimensional problem AP(d, λ) for fixed d ≥ 2 and fixed λ. Statement 1 can be generalized by
replacing 2λ by ξ = d(d − 1)λ, so that

α = max {k − ξ, 0} ,

β = min {k + ξ, n} ,

k − α = min {ξ, k} ,

β − k = min {ξ, n − k} .

Any feasible d-dimensional partial solution Xℓ(k) consists of k 1-entries with i1 ∈ {1, 2, . . . , k}. For each index iz , 2 ≤ z ≤ d,
α of these 1-entries have iz ∈ {1, 2, . . . , α}, 2 ≤ z ≤ d, and the remaining (k − α) 1-entries have iz ∈ {α + 1, . . . , β}. Due
to this, the number of nodes |V (k)| in layer k depends on the selection of (k − α) choices for each index iz , 2 ≤ z ≤ d, out
of (β − α) possible choices. Since k − α ≤ ξ and β − α ≤ 2ξ , |V (k)| can be bounded by Θd−1, where Θ is the amount of
possible combinations for one fixed index iz ,

Θ =


2ξ
ξ


. (32)

There are at most Θ2(d−1) arcs in-between two layers, if each vertex in one layer is connected to every vertex in the next
one. Therefore the total number of arcs |A| is bounded by Θ2(d−1) (n + 1), and this defines the time complexity of solving
the associated shortest path problem by dynamic programming. Observe that a tighter estimate for |A| can be derived with
a more careful analysis of the arc set.

The complexity estimate Θ2(d−1) (n + 1) with Θ defined by (32) implies that problem AP(d, λ) is solvable in O(n) time
if d and λ are fixed, and it is fixed-parameter tractable (FPT), with parameters d and λ.

Going back to the applications discussed in Sections 2–3 we observe that they correspond to the case of d = m and
λ = 1, so that the described approach implies the O(n) time complexity. Since modeling the two applications as AP(d, 1)
incurs sorting the input data in non-decreasing order and extending the instance (as described in Section 3 after the proof
of Theorem 1), we obtain the following corollary.

Corollary 1. The problems of scheduling satellite transmissions or synchronous open shops and problemMEC(Km,n) with m = d
are solvable in O(n log n) time if d is fixed, and they are fixed parameter tractable if d is a parameter.

We conclude this section by analyzing the maximization version of problem AP(d, λ). In that problem incompatible
partners should be modeled by −∞-entries in the weight arrayW , in order to discourage their choice. In the following, we
use the notion of an inverse Monge array W : such an array satisfies the Monge property (3) with ‘‘≤’’ replaced by ‘‘≥’’ [5].
Equivalently, arrayW is inverse Monge if and only if −W is Monge.

The maximization version of problem AP(d, λ) is
(i) solvable in linear time, if d is fixed andW is an inverse nearlyMonge arraywith incompatible partnersmodeled by−∞;
(ii) NP-hard, if d ≥ 3 and W is a nearly Monge array with incompatible partners modeled by −∞’s.

The maximization problem of type (i) with an inverse nearly Monge weight array W is equivalent to the minimization
version of problem AP(d, λ) with the nearly Monge weight array −W ; therefore the linear-time algorithm described above
is applicable.

Themaximization problemof type (ii)with a nearlyMongeweight array is no easier than the version of the sameproblem
with aMonge array; the latter problem is known to be NP-hard (see [5], p. 132, or [6]). The results from [6] are also discussed
in Section 7.1.

7. The corridor property for other versions of the assignment problem

The corridor property that characterizes the structure of an optimal solution and restricts the search to entries around the
diagonal, also holds for other versions of the assignment problem. In the literature, a property of this type was established,
for example, for the three-dimensional assignment problem with decomposable costs and for the planar 3-dimensional
assignment problem. We discuss these two results in Sections 7.1–7.2. Both problems deal with a min-sum objective. An
alternative version, known as the bottleneck assignment problem, dealswith amin–max objective;we generalize our results
for that version of the assignment problem in Section 7.3.

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 199

7.1. Axial three-dimensional assignment problem with decomposable costs

The axial three-dimensional assignment problem with decomposable costs (3AP-DC) is defined as problem (1) with a cost
array W given by wijk = aibjck, where (ai),


bj

and (ck) are three non-decreasing sequences of n positive numbers. Note

that W is an inverse Monge array and therefore the maximization version of problem 3AP − DC is solved by the entries on
the main diagonal [6]. We now focus on the minimization version of 3AP − DC. Although W does not satisfy the Monge
property and in fact 3AP − DC is NP-hard [6], still there exists an optimal solution with a corridor-like structure. As proven
in [6], there exists an optimal solution {(i1, j1, k1), . . . , (in, jn, kn)} to 3AP − DC such that every triple of indices (ig , jg , kg),
1 ≤ g ≤ n, satisfies

n + 2 ≤ ig + jg + kg ≤ 2n + 1.

Belowwe illustrate the structure of solutionmatrices for the two instances of problems AP(3, 1) and 3AP − DCwith n = 15.
We consider one layer for each problem with kg = 5, marking feasible positions for 1-entries by ∗. For problem AP(3, 1),
those positions belong to the corridor along the main diagonal with 1 ≤ i ≤ 11 to satisfy |i − k| ≤ d (d − 1) λ = 6;
additionally they satisfy |i − j| ≤ 6. For problem 3AP − DC positions for 1-entries form a corridor that spans along the
counterdiagonal, such that 17 ≤ i + j + 5 ≤ 31.

The width of the corridor for our model AP(d, λ) is fixed for given d and λ, whichmakes it possible to organize the search
efficiently using dynamic programming. Thewidth of the corridor for 3AP − DCdepends on n, so that dynamic programming
would be of exponential time complexity. Recall that 3AP − DC is NP-hard, unlike the version of problem AP(3, λ) with
a fixed λ. Still the corridor property helps in the development of successful heuristics narrowing the search towards the
corridor area which contains a subset of candidate triples, reduced from n3 to n(n2

− 1)/3, see [6].

200 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

7.2. Planar 3-dimensional assignment problem with a layered Monge matrix

The planar 3-dimensional assignment problem (P3AP) is another example of a model where optimal solutions have a
corridor-like structure, provided each layer of the cost array is a Monge matrix, see [7]. The width of the corridor depends
on the number of layers p, p ≤ n. Formally the p-layer planar3-dimensional assignment problem(p-P3AP) with an n × n × p
cost array C = (cijk) is defined as follows:

min
n

i=1

n
j=1

p
k=1

cijkxijk

s.t.
p

k=1

xijk ≤ 1, 1 ≤ i, j ≤ n,

n
i=1

xijk = 1, 1 ≤ j ≤ n, 1 ≤ k ≤ p,

n
j=1

xijk = 1, 1 ≤ i ≤ n, 1 ≤ k ≤ p,

xijk ∈ {0, 1}, 1 ≤ i, j ≤ n, 1 ≤ k ≤ p.

(33)

Assuming that indices i and j define rows and columns, while index k defines layers, the task is to select np 1-entries xijk = 1
such that

(a) in each layer k, 1 ≤ k ≤ p, there are n 1-entries, one in each row and one in each column, and
(b) among all layers no 1-entry appears more than once for the same pair of indices (i, j).

The problem p-P3AP is NP-hard for every fixed p ≥ 2. However, for the version p-P3APMonge of that problem, with
2-dimensional Monge matrices Ck (ckij = cijk) in every layer k, 1 ≤ k ≤ p, the corridor property holds, and the problem can
be solved in FPT time with respect to parameter p by dynamic programming, see [7]. In particular it is proven in [7] that
there always exists an optimal solution {(igk , j

g
k , k)|1 ≤ g ≤ n, 1 ≤ k ≤ p} to p-P3APMonge, such that

|igk − jgk | ≤ 2p − 2, (34)

for all 1 ≤ g ≤ n and 1 ≤ k ≤ p.
It is not a coincidence that the corridor condition (34) from [7] resembles the corridor condition (19) from Section 5.

As we show below, the three-dimensional problem p-P3APMonge with Monge matrices Ck, 1 ≤ k ≤ p, reduces to the
multi-dimensional problem AP(d, λ) with a nearly Monge arrayW .

Theorem 3. The problem p-P3APMonge reduces to problem AP(d, λ) with d = p + 1 and λ = 1,

p − P3APMonge ∝ AP(p + 1, 1).

Proof. Given an instance of p-P3APMonge, we define an instance of AP(p+1, 1) by introducing variables xij1...jp and the array
W with entries

wij1...jp =


c1i,j1 + c2i,j2 + · · · + cpi,jp , if all indices j1, j2, . . . , jp are different,
∞, otherwise.

(35)

Here, the first index i corresponds to the row index in C , indices jk define the column indices in layers Ck, k = 1, 2, . . . , p, so
that wi,j1...jp is the combined cost of selecting p 1-entries with the fixed first index i as part of the solution to problem (33):

xi,j1,1 = xi,j2,2 = · · · = xi,jp,p = 1 ⇐⇒ xi,j1...jp = 1,
p

k=1

ci,jk,kxi,jk,k = wi,j1,....jpxi,j1,...,jp .

The ∞-entries, which arise for the duplicating j-indices, prohibit assignments of the form xi,ju,u = xi,jv ,v = 1 if ju = jv .
Every feasible solution to p-P3APMonge satisfies properties (a)–(b); thus it defines a finite solution to AP(p + 1, 1) with

the same value of the objective. On the other hand, every finite solution to AP(p + 1, 1) defines a feasible solution to
p-P3APMonge satisfying (a)–(b), also with the same value of the objective; an ∞-solution to AP(p + 1, 1) translates into
an infeasible solution to p-P3APMonge.

It is easy to verify that the finite values ofW satisfy theMonge property, so thatW is a nearly Mongematrix with at most
one incompatible partner for any index ju = j∗u in every dimension corresponding to index jv , v ≠ u. Moreover, there are no
incompatible partners for the first index i. �

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 201

The corridor property (34) derived in [7] for problem p-P3APMonge can be reformulated in terms of the associated problem
AP(p + 1, 1) with variables xi,j1...jp as

|jℓ − i| ≤ 2p − 2 for 1 ≤ ℓ ≤ p.

Notice that the corridor property established in Section 5 for problem AP(d, λ) with d = p + 1 and λ = 1 is weaker,

|jℓ − i| ≤ d(d − 1)λ = (p + 1)p for 1 ≤ ℓ ≤ p.

This discrepancy happens because the finite entries of arrayW defined by (35) satisfy not only themulti-dimensionalMonge
property of the form

ws s1...sp + wt t1...tp ≤ wi j1...jp + wi′ j′1...j
′
p
, (36)

where
s = min


i, i′

, sℓ = min


jℓ, j′ℓ


, ℓ = 1, . . . , p,

t = max

i, i′

, tℓ = max


jℓ, j′ℓ


, ℓ = 1, . . . , p,

but also the condition similar to the 2-dimensional Monge property, namely for i ≤ i′ and every ℓ = 1, . . . , p,

wij1...jℓ−1sℓjℓ+1...jp + wi′j′1...j
′
ℓ−1tℓj

′
ℓ+1...j

′
p

≤ wij1...jℓ−1jℓjℓ+1...jp + wi′j′1...j
′
ℓ−1j

′
ℓ
j′
ℓ+1...j

′
p
, (37)

where the changes affect the indices in bold, the remaining indices staying the same. Note that (37) implies (36), but
not the other way around. The latter can be illustrated by the example with the 3-dimensional array Wmax defined by
wmax

ijk = max{i, j, k}, which satisfies (36) but not (37). Thus, property (37) is stronger than property (36).
In what follows we show that the proof of Theorem 2 can be adjusted to derive a corridor width of ξ ∗

= 2pλ for problem
AP(p+1, λ)with aweight arrayW satisfying property (37).We then use ξ ∗ in order to derive a corridorwidth of ξ ∗∗

= 2p−2
if W is defined by (35), thus matching the result from [7] for problem p-P3APMonge. This justifies our earlier statement that
the discrepancy of the two results is due to the stronger property (37) and illustrates the capabilities of the proof technique
used for Theorem 2.

To prove the corridor width ξ ∗
= 2pλ, first consider a typical exchange step from the proof of Theorem 2 which

deals with a d-tuple

i, j1, . . . , jℓ−1, jℓ, jℓ+1, . . . , jp


with violating jℓ. For the exchange, we select a companion d-tuple

i′, j′1, . . . , j
′

ℓ−1, j
′

ℓ, j
′

ℓ+1, . . . , j
′
p


in order to generate two induced d-tuples without increasing the value of the objective.

As shown in the proof, the corridor of width ξ contains ξ + 1 candidates for a companion d-tuple. The value ξ = d(d − 1)λ
used in Theorem 2, together with the upper bound (4) on the number of incompatible partners, guarantees that at least one
of the candidates is suitable for the exchange step, so that both induced d-tuples do not have incompatible indices. Recall
that the exchange step in the proof of Theorem 2 affects all indices.

Condition (37) makes it possible to define simpler exchanges in comparison with those used in the proof of Theorem 2.
If a d-tuple (i, j1, . . . , jℓ, . . . , jp) is of Type I(jℓ), then the companion d-tuple (i′, j′1, . . . , j

′

ℓ, . . . , j
′
p) should satisfy i′ >

i and j ′ℓ < jℓ. In the exchange step, the d-tuples

i, j1, . . . , jℓ−1, jℓ, jℓ+1, . . . , jp


and


i′, j′1, . . . , j

′

ℓ−1, j
′

ℓ, j
′

ℓ+1, . . . , j
′
p


corresponding to the right-hand side of (37), are replaced by the two induced d-tuples


i, j1, . . . , jℓ−1, j ′ℓ, jℓ+1, . . . , jp


and


i′, j′1, . . . , j

′

ℓ−1, jℓ, j
′

ℓ+1, . . . , j
′
p


, where only two indices jℓ and j ′ℓ are exchanged. The induced d-tuples do

not contain incompatible indices if jℓ is compatible with

i′, j′1, . . . , j

′

ℓ−1, j
′

ℓ+1, . . . , j
′
p


and j ′ℓ is compatible with

i, j1, . . . , jℓ−1, jℓ+1, . . . , jp

. Since there are at most λp incompatible partners for jℓ and the first set of p indices, and

at most λp incompatible partners for j ′ℓ and the second set of p indices, the total number of companion d-tuples for
i, j1, . . . , jℓ−1, jℓ, jℓ+1, . . . , jp


, which can lead to incompatibilities, is bounded by 2λp. Choosing the corridor width of

ξ ∗
= 2λp guarantees the existence of ξ ∗

+ 1 = 2λp + 1 candidates for a companion d-tuple in the desirable area and
therefore the existence of at least one suitable candidate among them. It is easy to make sure that similar arguments are
applicable for violations of Type II(jℓ).

Now consider a weight arrayW defined by (35). For that type of array there are no incompatible partners for first indices
i, and the arguments presented in the previous paragraph can be adjusted: there are atmost λ (p − 1) incompatible partners
for jℓ and at most λ (p − 1) incompatible partners for j ′ℓ. This implies that instead of ξ ∗

= 2pλ we can consider the corridor
width ξ ∗∗

= 2(p − 1)λ. Substituting λ = 1 which holds for (35) we get the required estimate ξ ∗∗
= 2p − 2.

7.3. Bottleneck assignment problem with a bottleneck nearly Monge matrix and its generalizations

Traditional research on optimization problems with Monge matrices examines first problems with min-sum objectives
and then explores the counterparts with min–max objectives. In particular, the results known for the min-sum versions of
the transportation and assignment problems with Monge matrices can be transferred to the bottleneck versions of those
problems, in which ‘‘+’’ is replaced by ‘‘max’’ in the objective function (1) and in the definition of the Monge property (3),
see [5]. For the bottleneck assignment problem, the goal is to minimize max


wi1...id |xi1...id = 1


subject to the constraints

from (1), while the cost arrayW satisfies the bottleneck Monge property:

max{ws1s2 ...sd
, wt1t2 ...td

} ≤ max{wi1 i2 ...id
, wj1 j2 ...jd

}. (38)

202 C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203

Table 1
The summary of complexity results for problem AP(d, λ).
Problem Parameters Complexity Reference
AP(2, λ) d = 2, λ arbitrary O(n3) [4,21] (2-dim. assignment with an arb. cost matrix)
AP(3, λ) d = 3, λ arbitrary str. NP-hard [14] and Observation 3

AP(d, 0) d arbitrary, λ = 0 O(n) [5] (assignment problem with a Monge array)
AP(d, 1) d arbitrary, λ = 1 str. NP-hard [10,27] and Observation 2

AP(d, λ) d fixed, λ fixed O(n) Section 6

Here sℓ = min {iℓ, jℓ} and tℓ = max {iℓ, jℓ} for ℓ = 1, . . . , d. Then an optimal solution to the bottleneck assignment is given
by the same n d-tuples (1, . . . , 1), (2, . . . , 2), . . . , (n, . . . , n), as for the case of the linear assignment problem.

Adapting our definition of a nearly Monge matrix to the bottleneck case, we call an array W which contains ∞-entries
bottleneck nearly Monge if condition (38) is satisfied for all finite entries. It is easy to verify that the proof of the corridor
property presented in Section 5 can be modified accordingly, without affecting the width of the corridor, so that the
bottleneck assignment problem with a bottleneck nearly Monge cost array can be solved in linear time by the adapted
dynamic programming approach of Section 6.

The next step in extending the applicability of our results is to consider the algebraic assignment problem with an
underlying totally ordered commutative semigroup (H, ⊕, ≼), see [5]. This problem can be considered as a generalization
of both the linear and the bottleneck assignment problems. It is known that if in the algebraic assignment problem the
cost array is algebraic Monge (i.e., condition (3) holds with ‘‘+’’ replaced by ‘‘⊕’’ and ‘‘≤’’ replaced by ‘‘≼’’), then an optimal
solution is of the same diagonal shape as in the case of linear assignment and bottleneck assignment.

In the context of our paper, we consider the extension of a cost array with∞-entries. Note that the semigroup (H, ⊕, ≼)
can be naturally modified to include an ∞-element if such an element does not already exist. Consider (H∗, ⊕∗, ≼∗) given
by the set H∗

:= H ∪ {∞}, the extension ⊕
∗ of ⊕ such that a⊕

∗
∞ = ∞ ⊕

∗ a = ∞ for all a ∈ H∗ and the extension
≼

∗ of ≼ such that a≼
∗
∞ for all a ∈ H∗. Then (H∗, ⊕∗, ≼∗) is a totally ordered commutative semi-group. We define an

algebraic nearly Monge array as before: it is required that the algebraic Monge property should be satisfied for finite entries
only. The arguments of Sections 5–6 can be adapted accordingly; notice that the proof of the corridor property only uses the
properties of (R ∪ {∞}, +, ≤) that it shares with semi-groups of the form (H∗, ⊕∗, ≼∗). Thus, the proposed methodology
is applicable to the algebraic assignment problem as well.

8. Conclusions

This paper presents a complexity study of the d-dimensional assignment problemwith a nearly Monge array. It serves as
the underlying model to applications in satellite communication and synchronous open shop scheduling, and it also models
the famous MEC problem for a complete bipartite graph. A summary of the results is presented in Table 1.

In particular we study the version of problem AP(d, λ) where the dimension d and the number of incompatible partners
λ are fixed, which are natural assumptions for applications. For that special case we prove an important structural property
that guides the search for an optimal solution. It allowsus to limit the consideration to entries that lie inside a corridor around
the diagonal. As we discuss in Section 7, the result can be extended to more general types of the assignment problem with
Monge-like matrices.

Another natural extension of the current research is related to the transportation problem TP(2, λ) with a nearly Monge
matrix incurred by incompatible supply/demands pairs, that can be considered as a generalization of AP(2, λ). In the absence
of∞-entries, the transportation problemwith a squareMongematrix is solvable by a greedy algorithm inO(n) time [18]. For
a general squarematrix the problem can be solved inO(n3 log n) time by Orlin’s algorithm [24]. It would be interesting to see
if a faster than standard algorithm can be achieved for TP(2, λ). The following example shows that the corridor property, as
presented in this paper, is not quite relevant for TP(2, λ). Consider an instance with supplies a1 = n−1, a2 = · · · = an = 1,
demands b1 = n − 1, b2 = · · · = bn = 1 and a Monge cost matrix W . For this instance the greedy algorithm produces an
optimal diagonal solution. However, introducing one incompatible pair (1, 1), or equivalentlyw11 = ∞, makes the previous
optimal solution infeasible. For the modified problem an optimal solution is defined by the first row and the first column,
apart from the top left-most entry with ∞-cost. Thus, the corridor that characterizes a possible deviation from the previous
optimal solution without ∞’s, is as large as the whole matrix.

Further extensions of our study can be related to the traveling salesman problem TSP(2, λ) with a nearly Monge matrix
and at most λ forbidden partners per vertex. For aMongematrix without∞-entries, an optimal solution is a pyramidal tour
which can be found in O(n) time as shown in [25]. Clearly, if we allow an arbitrary number of infinities in the matrix, then
finding a finite solution is as hard as finding a Hamiltonian circuit in an arbitrary graph, and therefore strongly NP-hard [19].
On the other hand, for Supnick matrices, which can be viewed as a subclass of nearly Monge matrices with λ = 1, the TSP is
always solved by the pyramidal tour (1, 3, 5, . . . , n, . . . , 6, 4, 2), see [32]. An interesting question related to TSP(2, λ) with
infinities is how far an optimal solution may deviate from the pyramidal tour if λ is a fixed parameter. Pyramidal tours with
step-backs, as introduced in [12], might be a good starting point for that study.

Design of approximation algorithms for problems with nearly Monge matrices is another important research direction.
With respect to AP(d, λ) with arbitrary d, the closest problem is MEC, in which the cost matrix is of type (5). A range

C. Weiß et al. / Discrete Applied Mathematics 211 (2016) 183–203 203

of approximation algorithms for the latter problem is proposed in [8,10,13,22,23]. These ideas might be helpful to find
approximation results for AP(d, λ), which is a generalization of MEC, as the cost values may be arbitrary, unrelated to the
max-formula (5).

Acknowledgments

The work of S. Knust and S. Waldherr was supported by the Deutsche Forschungsgemeinschaft, KN 512/7-1. The work
of N.V. Shakhlevich was supported by the EPSRC grant EP/K041274/1. We want to thank Samuel Wilson for many useful
discussions.

We are very grateful for the comments of two anonymous reviewers who helped us to improve the presentation of the
paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.dam.2016.04.019.

References

[1] A. Aggarwal, J.K. Park, Notes on searching in multidimensional monotone arrays, in: Proceedings of the 29th Annual IEEE Symposium on Foundations
of Computer Science, 1988, pp. 497–512.

[2] W.W. Bein, P. Brucker, J.K. Park, P.K. Pathak, A Monge property for the d-dimensional transportation problem, Discrete Appl. Math. 58 (1995) 97–109.
[3] R.E. Burkard, Monge properties, discrete convexity and applications, European J. Oper. Res. 176 (2007) 1–14.
[4] R.E. Burkard, M. Dell’Amico, S. Martello, Assignment Problems, SIAM, Philadelphia, USA, 2009.
[5] R.E. Burkard, B. Klinz, R. Rudolf, Perspectives of Monge properties in optimization, Discrete Appl. Math. 70 (1996) 95–161.
[6] R.E. Burkard, R. Rudolf, G.J. Woeginger, Three-dimensional axial assignment problems with decomposable cost coefficients, Discrete Appl. Math. 65

(1996) 123–139.
[7] A. Ćustić, B. Klinz, G.J. Woeginger, Planar 3-dimensional assignment problems with Monge-like cost arrays. 2014, E-print, arXiv:1405.5210.
[8] D. deWerra,M. Demange, B. Escoffier, J. Monnot, V.T. Paschos,Weighted coloring on planar, bipartite and split graphs: Complexity and approximation,

Discrete Appl. Math. 157 (2009) 819–832.
[9] V.G. Deineko, R. Rudolf, G.J. Woeginger, On the recognition of permuted Supnick and incomplete Monge matrices, Acta Inform. 33 (1996) 559–569.

[10] M. Demange, D. deWerra, J. Monnot, V.T. Paschos,Weighted node coloring: when stable sets are expensive, Lecture Notes in Comput. Sci. 2573 (2002)
114–125.

[11] M. Demange, B. Escoffier, G. Lucarelli, I. Milis, J. Monnot, V.T. Paschos, D. de Werra, Weighted edge coloring, in: V.T. Paschos (Ed.), Combinatorial
Optimization and Theoretical Computer Science, ISTE, London, 2008.

[12] H. Enomoto, Y. Oda, K. Ota, Pyramidal tours with step-backs and the asymmetric traveling salesman problem, Discrete Appl. Math. 87 (1998) 57–65.
[13] B. Escoffier, J. Monnot, V.T. Pashos, Weighted coloring: further complexity and approximability results, Inform. Process. Lett. 97 (2006) 98–103.
[14] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., San Francisco, USA, 1979.
[15] I.S. Gopal, C.K. Wong, Minimising the number of switchings in an SS/TDMA system, IEEE Trans. Commun. 33 (1985) 497–501.
[16] D.S. Hochbaum, R. Shamir, Minimizing the number of tardy job unit under release time constraints, Discrete Appl. Math. 28 (1990) 45–57.
[17] D.S. Hochbaum, R. Shamir, Strongly polynomial algorithms for the high multiplicity scheduling problem, Oper. Res. 39 (1991) 648–653.
[18] A.J. Hoffman, On simple linear programming problems, in: ed. V. Klee, Convexity: Proceedings of the Seventh Symposium in Pure Mathematics of the

AMS, in: Proceedings of Symposia in Pure Mathematics, vol. 7, 1963, pp. 317–327.
[19] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thatcher (Eds.), Complexity of Computer Computations, Plenum Press,

New York, 1972, pp. 85–104.
[20] A. Kesselman, K. Kogan, Nonpreemptive scheduling of optical switches, IEEE Trans. Commun. 55 (2007) 1212–1219.
[21] H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Q. 2 (1955) 83–97.
[22] G. Lucarelli, I. Millis, Improved approximation algorithms for the max edge-coloring problem, Inform. Process. Lett. 111 (2011) 819–823.
[23] G. Lucarelli, I. Millis, V.T. Paschos, On the max-weight edge coloring problem, J. Comb. Optim. 20 (2010) 429–442.
[24] J.B. Orlin, A faster strongly polynomial minimum cost flow algorithm, Oper. Res. 41 (1993) 338–350.
[25] J.K. Park, A special case of the n-vertex traveling-salesman problem that can be solved in O(n) time, Inform. Process. Lett. 40 (1991) 247–254.
[26] M. Queyranne, F. Spieksma, F. Tardella, A general class of greedily solvable linear programs, Math. Oper. Res. 23 (1998) 892–908.
[27] F. Rendl, On the complexity of decomposing matrices arising in satellite communication, Oper. Res. Lett. 4 (1985) 5–8.
[28] C.C. Ribeiro, M. Minoux, M.C. Penna, An optimal column-generation-with-ranking algorithm for very large scale set partitioning problems in traffic

assignment, European J. Oper. Res. 41 (1989) 232–239.
[29] R. Rudolf, Recognition of d-dimensional Monge arrays, Discrete Appl. Math. 52 (1994) 71–82.
[30] R. Shamir, A fast algorithm for constructing Monge sequences in transportation problems with forbidden arcs, Discrete Math. 114 (1993) 435–444.
[31] B. Soylu, Ö Kirca, M. Azizoğ lu, Flow shop-sequencing problem with synchronous transfers and makespan minimization, Int. J. Prod. Res. 45 (2007)

3311–3331.
[32] F. Supnick, Extreme Hamiltonian lines, Ann. of Math. 66 (1957) 179–201.
[33] S. Waldherr, S. Knust, Complexity results for flow shop problems with synchronous movement, European J. Oper. Res. 242 (2015) 34–44.

http://dx.doi.org/10.1016/j.dam.2016.04.019
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref2
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref3
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref4
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref5
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref6
http://arxiv.org/1405.5210
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref8
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref9
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref10
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref11
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref12
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref13
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref14
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref15
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref16
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref17
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref19
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref20
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref21
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref22
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref23
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref24
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref25
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref26
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref27
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref28
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref29
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref30
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref31
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref32
http://refhub.elsevier.com/S0166-218X(16)30178-0/sbref33

	The assignment problem with nearly Monge arrays and incompatible partner indices
	Introduction
	Applications
	NP-hardness of problem AP (d, λ)
	Some properties of nearly Monge matrices with incompatible partner indices
	Nonexistence of a Monge sequence
	Recognizing nearly Monge arrays
	Completing nearly Monge arrays

	The corridor property for problem AP (d, λ)
	A linear-time algorithm for problem AP (d, λ) with fixed d and λ
	The corridor property for other versions of the assignment problem
	Axial three-dimensional assignment problem with decomposable costs
	Planar 3-dimensional assignment problem with a layered Monge matrix
	Bottleneck assignment problem with a bottleneck nearly Monge matrix and its generalizations

	Conclusions
	Acknowledgments
	Supplementary data
	References

