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1. Introduction

Consider the following wave equation with a fractional derivative term on part of its boundary:

Uy — Auy = Au+f(u), in (0, 00) X £2,

u=20, on [0, 00) x I7,

a 0 t

gt + au = —/ ko g(t — s)ug(s)ds — bu;, on|[0, 00) x Iy, (1.1)
8V 31) 0 ’ _

u(0, x) = up(x), ur (0, %) = ug(x), in 2.

Here, 0 < o < 1,8,b > 0, £ is a bounded open subset of R"(n > 1) with a smooth boundary 92 = Iy U Iy,
and Iy N I'7 = @, where Iy and I} are measurable over 052, endowed with the (n-1)-dimensional Lebesgue measure
Xn—1(I}), i = 0, 1. v is the unit outward normal to 3£2. The function f (u) = |u|P~2u is a polynomial source. The convolution
termin (1.1) represents a modified fractional derivative (in the sense of Caputo) of u, and the weakly singular kernel k, g (t)
is equal to t*~'e~P!/I" (). We can see that we are in the presence of a “weak fractional dissipation” on part of the boundary
and an internal source term.

In the case of an undamped wave equation, the presence of a nonlinear source term will destabilize the solution, and force
the solution to blow up in finite time. In the case of damping of order one, the source term will compete with the damping
term. In the case of a “weak fractional dissipation” and a strong singular kernel k;(t) = t~*/I' (1 — «), Tatar and Kirane [1]
proved an exponential growth result for the solutions of a wave equation with a nonlinear polynomial source. Tatar [2]
extended this result to a larger class of initial data. A blow-up result for sufficiently large data has been proved in [3]. In the
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case of a “weak fractional dissipation” and a weak singular kernel, Tatar [4] considered a strongly damped wave equation
with an internal polynomial source and frictional damping on part of the boundary; a blow-up result has been established
with certain initial data and an appropriate source term. For more related results, we refer the reader to [5-20].

Inspired by [4,13], we intend to study the blow up of positive initial energy solutions for problem (1.1). By combining
the concavity method with the potential well method introduced by [21,22], we prove that, under some appropriate
assumptions on the parameters, and with certain initial data, solutions to problem (1.1) blow up in finite time.

The present work is organized as follows. In Section 2, we present some notation and material needed for our work and
state our main result. Section 3 is devoted to proving our main result.

2. Notation and main results
In this section, we present some material needed in the proof of our result. Without loss of generality, we take b = 1.
The following notation will be used throughout the paper.
-llg=1"lwe, I-llgr,=1" I, 1=g=o0,
and the Hilbert space
H}. (2) ={u e H(2) : u|r, =0},

(ulpy is in the trace sense). When A,_1(I7) > 0, the Poincaré inequality holds, so that ||Vu]|, is an equivalent norm on
H}l (£2), and we shall use the Sobolev embedding frequently,

. . 2n
Hrl(.Q)C—>L (2), for1<qg< n_z(n>3).

Let C, be the best constant satisfying the trace-Sobolev embedding
lullz.r, < CollVullz,  Vu € HJ (£2).

We set
VT Qo —1 1 _p_ —2 _
C(a,ﬂ):¥(7<a<l), a:B_IJEZ, and d:LB P*pz,
I'(a) /ﬂZa—l 2p

where I («) is the usual Gamma function, and B is the optimal constant of Sobolev embedding H}l (£2) — [P(£2) given by

lull, < B Vull2, Vu € HJ, (). (2.1)
By a formal calculation we define the energy functional of (1.1) as

E®) = > ul3 + > Vul - ~ful}. 22)

2 2 p 7
A simple computation yields
EO =~ [ | (¢ — 9 e P dsdo — 1Vl — el . 23)
') Jr, Jo o

integrating (2.3) from O to t, we have

E(t) —E(0) = / [ Vus|5ds —/ llusll3, r, ds — 7 / / uS/ (s —2)* e Py, dzdo ds. (2.4)

I'(@) o

Noting that our kernel is positive definite in the sense of Definition 1 (see [23]), it follows that

E(t) < E(0). (2.5)

We are now in a position to state our main result.
Theorem 2.1. Assume thatp > 2ifn=1,2,and that2 < p < n% if n > 2. Suppose that the parameters «, B, p satisfy

C(x,B)C <p—2. (2.6)
Let u be a solution of (1.1) with initial data satisfying

17

E(0) < éd, Vuollz > B 72, (2.7)

where0 < § < 1 Qa1

2 T W 2T Then the solution of (1.1) blows up in finite time in the sense of (3.14).

Remark 2.1. By utilizing (2.6), we can easily check that0 < § < 1.
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3. Proof of main result
The proof of Theorem 2.1 relies on the following lemmas.

Lemma 3.1. Assume that uy € H}l (2), u; € [?(R2), and suppose that (2.6), (2.7) hold. Then, forany T > 0,

P

E(t) <éd,  [Vu@®)l, >B 72, (3.1)
forallt € [0, T).
Proof. We first note that, by exploiting (2.2), we have

1 , B p

E(t) > EIIVUIIZ - ?IIVHIIZ = h(lIVull2), (32)
where the function h(§) = %52 — %é" (¢ = 0).Itis easy to verify that h is increasing for 0 < & < q, decreasing for £ > q,
and that h attains its maximum d at £ = a. By using (2.5), (2.7) and (3.2), we have

d > 8d > E(0) > E(t) > h(||Vull2);

therefore there isno t € (0, T) such that || Vu(t)||, = a. Since the function t — ||Vu(t)||, is continuous, and by using (2.7),
it follows that

p

[Vu@®ll >B 72, Vtel[0,T).

Remark 3.1. From the proof of Lemma 3.1, we can conclude that the solution u of (1.1) is global when the initial data satisfies
the following condition:

P

E() <8d,  ||[Vuol, < B 72.

Lemma 3.2 ([24]). Assume that P(t) € C2, P(t) > 0, satisfies the inequality
P(H)P"(t) — (1+ y)P?(t) = 0,

for a certain real number y > 0, and that P(0) > 0, P’(0) > 0. Then there exists a real number Tsuchthat 0 < T <
P(0)/yP’(0) and

P(t) > o0 ast — T,

Proof of Theorem 2.1. Assume by contradiction that the solution u of (1.1) is global. Then we consider a function
g : [0, To] —> R defined by

t t
g = llu®)l3 +/ IVu()ll3ds + (To — )| Vo3 +/ U113, r,ds + (To = Olluoll3 ) + p(t +t0)?,  t < To,
0 0

where the parameters i, ty, Tp are positive constants to be determined later.
Notice that g(t) > 0 forallt € [0, Tp]; hence, since g is continuous, there exists a constant p > 0 such that

g(t) = p forallt € [0, Tp]. (3.3)

Furthermore,
g =2 / uudx + [ Vu(®)ll3 = I Vuoll3 + Ilu@®ll3 r, — lluoll3 1, + 21(t + to)
2
t t
= 2/ uu.dx + 2[ / Vu(s) - Vug(s)dxds + 2/ / u(s)us(s)dods + 2u(t + to),
Q 0 Je 0o Jny

and, consequently, utilizing Eq. (1.1), we obtain

g"(t) = 2llucll3 — 2 Vull5 + 2[|ullh —

t
= u/ (t —s5)* e Py dsdo + 2. (3.4)
') Jry Jo
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Therefore, using the Holder inequality, we get

t ¢ ,
g/(t)2:4</ uutdx+f /V”(s)'vus(S)dxder/ / U(S)us(S)dUds-f-M(t-l—to))
I
0 t )
:4[(/ uutdx> (/ /Vu(s) Vu[(s)dxds> +(/ / u(s)us(s)dgds> F 2t + t)?
[

t
+2 (/ uu[dx) (/ / vu(s) - Vus(s)dxds) +2 (/ uu[dx> (/ / u(s)us(s)dads>
2 0 Jo 2 0 Jny
+2 </ f Vu(s) - Vut(s)dxds> (/ / u(s)us(s)dods) + 2u(t + to)
0 Je 0o Jry

t t
X </ uutdx+/ /Vu(s)~VuS(s)dxds+/ / u(s)us(s)dadsﬂ
Q? 0o Jo 0 Jny
t t t t
4[||uf||§||u||§ + ( / ||Vu(s>||§ds) ( f ||Vus<s>||§ds) + ( [ ||u<s)||§,p0ds) ( f ||us<s>||§,r0ds>
0 0 0 0

t t t
+M2(f+fo)2+||ur||§</ ||Vu(s)||§ds)+||u||§ <f ||Vus(s>||§ds)+||ut||§ (/ ||u<s>||§,r0ds)
0 0 0
t t t t t
+ llull3 ( / ||us||§.p0ds) + ( f ||Vu<s)||§ds) ( f ||us||§,p0ds) + ( f ||Vus(s)||§ds) ( / ||u(s>||%,r0ds>
0 0 0 0 0

t t
+ 1t + o) (Ilutllﬁ +/ IIVus(S)H%dS-i-/ |Ius(5)||§,p0d$>
0 0

t t
+u(llu||§+/ ||Vu(s>||§ds+/ ||U(5)||§,1‘0d5>:|
0 0

t t
=4(||u||§+ f IVu(s)ll3ds + f ||U(S)||§,rods+pb(t+f0)2)
0 0

t t
x <||u[||§+ [ [Vu(s)[I5ds + f ||us(s>||§,p0ds+u>
0 0

t t
= 4g(t) (IIUrllﬁJr/O IIVUs(S)Ilﬁds+f0 ||us(5)||§,r0ds+u>. (3.5)

Using (2.2) and (2.4), we can have

g (gt) — © g(f) = (g”(t) (0 +2)(lucll; + fIIVus(S)IlzdSJr/ IIUs(S)IIerd5+M)>g(t)

= [—Pllurllﬁ = 2[[Vull3 + 2lully — @ + 2)/ IVus(s)lI3ds — (b + 2)/ lus)113, 1, ds
0 0

_pu_m/ /(t—S)“ le—AC S)usdsda:| (t)
Iy

t
= [—ZPE(O) —PM+(P—2)|IVUII§+(P—2)/ [ Vus(s)[13ds + (p — 2)
0

t 2p t N
2 —1,—B(s—2)
X ug(s ds—{——//u/ s—2z2)“ e u,dzdods
/0 lus(H113, 7 @ Jo It 0( ) 2

) /FO /(r 5)* " Te AU=9y dsd0:|g(t) (3.6)
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We now estimate the term ﬁ ffo u fot(t — 5)* e P9y dsdo in the right-hand side of (3.6). By exploiting the Holder
inequality and the Young inequality, we have
1

2 2
da)

2 t 2
= u/ (t —9)* e P udsdo < ——|lullon, /
F((X) /) 0 F(O[) I'o

t
/ (t —s)* e P9y ds
0

2 ' 2(a—1) o —2B(t—s) % ' 2 %
< — t —s)2@ De=2p=9)q dsd
= T leny (fo( s> Ve s) [/F/O |u(s)|*ds o]
1 t
< C(a. B) (enun%,ro + g/ ||us(s)||§,r0ds)
0
1 t
< C. B) (ec,f||Vu||§+ - f ||us<s)||§f0ds>, (3.7)
0

forany e > 0.
Since our kernel is positive definite, it follows that

t s
/ / uS/ (s —2)* e Py, dzdods > 0. (3.8)
o Jrp Jo

Combining (3.6)-(3.8), we can get
2
g'g0 - g 02
t
> [—2pE<0> —pp+ (p—2 — €CXC(a, PIVul3 + (p — 2 — Cla, B)/€) f ||us(s>||%,r0ds] g(). (3.9)
0

2,
Now, choosing u = @BW’TPA and using (2.6), (2.7) and (3.1), we can get

—2p
—2pE(0) — pp + (p — 2 — €C;C (e, B)IIVull; = —28(p —2)B?2 + (p — 2 — €CIC(ax, B) | Vull;

>
> [(p—2)(1—28) — eC2C(a, )1 Vull3. (3.10)
So we take € to be
Cla, B)/(p—2) <€ < (p—2)(1—28)/C3C(a, B) (3.11)

such that

(p—2)(1—28) — eC*C(a, B) > 0,
p—2—C(x,B)/e > 0.

Then, combining (3.3), (3.9)-(3.11), there exists a positive constant C such that
g' (gt - #«g’(t)2 > Cp, fort e [0,Tol.
Moreover, g(0) > 0, and we can choose t; large enough so that
P-2) (/Q uoudx + um) > 2(IVuoll3 + lluoll3. )- (3.12)
From (3.12), we can check that g’(0) > 0, and we can select T satisfying
o2 + 2 < To [”;2 ( /9 oty + w) IVl - ||Uo||§,p0] . (3.13)
According to Lemma 3.2, there exists a real number T* such that T* < g(0)/yg'(0) and T* < Ty, and we have

lim g(t) = oo;

t—>T*~

t t
tlirrri_ <||u(t)||§+/ ||Vu(s)||§ds+/ ||u(s)||§’rods> = 0. (3.14)
— 0 0

This completes the proof of Theorem 2.1. W
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Remark 3.2. The inequality (3.13) implies that T* < g(0)/yg’(0) < To.
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