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1. Introduction

Since it was introduced, Morse theory has been a powerful tool in the study of smooth manifolds by means of differential
geometry techniques. Basically, it allows us to describe the topology of a manifold in terms of the cellular decomposition
generated by the critical points of a scalar smooth map defined on it.

At the end of the last century, Forman [3] developed a discrete version of Morse theory that turned out to provide a fruitful
and efficient method for the study of the topology of discrete objects, such as simplicial and cellular complexes, which play
a central role in many different fields of pure and applied mathematics.

Essentially, a discrete Morse function on a simplicial complex is a way to assign a real number to each simplex of a
complex, without any continuity, in such a way that for each simplex the natural order given by the dimension simplices is
respected, except in at most one (co)face of the given simplex. As in the smooth setting, changes in the topology of the level
subcomplexes are deeply related to the presence of critical simplices of the function, and the analysis of the evolution of the
homology of these complexes can be a very useful tool in computer vision for dealing with shape recognition problems by
means of topological shape descriptors. In our opinion, there are many advantages of using Forman’s theory. First, it can be
applied to discrete objects more general than manifolds. In particular, for the one-dimensional case the smooth approach
can only be applied essentially to circles and lines. However, the discrete version can be applied to any graph. Second, it is
more suitable in the digital context for areas like pattern recognition, shape classification and recognition, and thinning 2D
objects where usually discretized functions are used.

This paper completes the study of the size of the set of discrete Morse functions with a given number of critical simplices
defined on a graph which was initiated by the authors in [ 1]. Our study is carried out by taking into account the rank evolution
of the homology groups of the level sets corresponding to the critical values of the functions.

This paper is organized as follows. Section 2 contains the basic notions and results of discrete Morse theory on graphs
which will be used later. In Section 3 we study some general properties of the homological sequences of a discrete Morse
function on a graph and we establish links between them and certain kinds of walks in Z. o, whose number is obtained.
Section 4 starts by giving two lemmas concerning the properties of the bridge components of a locally finite graph. Next,
inspired by the results of Nicolaescu [7,6] on the number of smooth Morse functions on the 2-sphere, we prove the main
result of the paper which establishes how many non-homologically equivalent discrete Morse functions with a given number
of critical simplices exist on an infinite and locally finite graph G with b;(G) < +oo0. It is worthwhile to mention that the
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proof is constructive in the sense that it indicates precisely how to define an excellent discrete Morse function from a pair
of homological sequences satisfying certain conditions. Finally, we give examples which illustrate how this constructive
procedure is carried out.

2. Preliminaries

Throughout this paper, we only consider infinite graphs which are locally finite. For general topics of graph theory we
will follow [4]. Given such a graph G, a bridge is an edge whose deletion increases the number of connected components
of G. A graph is said to be bridgeless if it contains no bridges. In the particular case of bridgeless graphs, we will consider
non-trivial connected graphs, that is, connected bridgeless graphs not consisting of a unique vertex.

Let B be the set of all bridges of G. The bridge components of G are the connected components of G — B.

A graph G’ is a subdivision of a graph G if G’ can be obtained from G by introducing new vertices. Two graphs G; and G,
are combinatorially equivalent if they have a common subdivision, that is, there is a graph G3 which is a common subdivision
of G; and G,. Notice that the topological spaces |G| and |G,| are the same.

We introduce here the basic notions of discrete Morse theory [3]. A discrete Morse function is a function f : G —> R such
that, for any p-simplex o € G:

(M1) card{z?*) > o /f(x) < f(o)} < 1.
(M2) card{v® D <o /f(v) > f(o)} < 1.

A p-simplex o € G is said to be a critical simplex with respect to f if:

(C1) card{t?V > o /f(x) <f(0)} = 0.
(C2) card{v®V < o /f(v) > f(o)} =0.

A value of a discrete Morse function on a critical simplex is called a critical value.
A ray is an infinite sequence of simplices:

Vo, €0, U1, €15 -+« U, €, Upgp o ..

such that the vertices v; and v;; are faces of the edge e;, for any i € N U {0}. Two rays contained in an infinite graph are said
to be equivalent or cofinal if they coincide starting from a common 0-simplex.
If there is a discrete Morse function f defined on G, a decreasing ray is a ray such that

f(vo) = f(eo) > f(v1) = f(e1) > -+ = f(er) > f(vr1) = -+~
A critical element of f on G is either a critical simplex or a decreasing ray.
Given c € R, the level subcomplex G(c) is the subcomplex of G consisting of all simplices T with f(t) < c, as well as all of
their faces, that is,

o= J Yo

f@=co=t

The next result is a special case of Theorem 3.1 in [2] pertaining to discrete Morse functions with no decreasing rays. It
establishes links between the topology of a graph and the critical elements of a discrete Morse function defined on it.

Theorem 2.1. Let G be a graph and let f be a discrete Morse function defined on G such that the numbers m;(f) of critical
i-simplices of f withi = 0, 1 are finite and f has no decreasing rays. Then:

(i) mo(f) = bo and m1(f) > by, where b; denotes the ith Betti number of G withi =0, 1.
(ii) bo — b1 = mo(f) — m1(f).

Given a discrete Morse function defined on G, we say that a pair of simplices (v < e) is in the gradient vector field induced
by f if and only if f (v) > f(e).
Given a gradient vector field V on G, a V-path is a sequence of simplices

® p+D) () pl+D) P+ ()
oy, By ey, B BT e

such that, for each i > 0, the pair (&” < B¥*") e Vand """ > o # o).
Given a O-critical simplex in G, we say that any vertex w of G is rooted in v if there exists a finite V-path joining w and v.
The next two results provide information about the structure of the set of all V-paths contained in a graph with a given

gradient field. In particular, they state that this set is acyclic, that is, it is a forest.

Proposition 2.2 ([1]). Let G be an infinite graph and let f be a discrete Morse function defined on G with no decreasing rays. It
holds that:

1. Given w any vertex of G, there is a unique O-critical simplex on which w is rooted.
2. Given any O-critical simplex v, the set of all V-paths rooted in it is a tree called the tree rooted in v and denoted by T,.
3. Any two such rooted trees are disjoint.

Theorem 2.3 ([1]). Under the above definitions and notation, the forest F consisting of all rooted trees in G can be obtained by
removing all critical edges of f on G.
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A discrete Morse function defined on a graph G is called excellent if all its critical values are different. It easy to prove
that, by slightly modifying its critical values, every discrete Morse function with a finite number of critical simplices can be
considered as an excellent one. Since the notion of critical value plays a central role in this paper and taking into account
that it is not possible to get an analogous notion for decreasing rays, we will only deal with discrete Morse functions with
no decreasing rays, that is, those whose critical elements are critical simplices.

Two excellent discrete Morse functions f and g defined on a graph G with critical valuesay < a; < --- < ap_1 and
Cp < Cq < --+ < cy—1 respectively will be called homologically equivalent if for alli = 0, ..., m — 1 the level subcomplexes
G(a;) and G(c;) have the same Betti numbers.

3. Homological sequences on graphs

This section is devoted to the study of the properties of homological sequences of a discrete Morse function defined on a
graph.

Let f be an excellent discrete Morse function defined on G with m critical simplices and critical values aq, ..., ap_1.
Notice that the quantity m — bg(G) — b;(G) is an even number, denoted by 2k. We denote the level subcomplexes G(a;)
by G; foralli = 0,...,m — 1. The homological sequences of f are the two sequences By, B; : {0,1,...,m — 1} - N
containing the homological information of the level subcomplexes Gy, ..., Gn_1, that is, B, (i) = by(G;) = dim(H,(G;)) for
eachi=0,...,m—1andp =0, 1.

Notice that the homological sequences of f satisfy

Bo(0) =Bo(m— 1) =bg =1, Bo(i) >0, |Bo(i+ 1) — Bo(i)| = 0or1;
B1(0) =0, Bi(m—1) =by, Bi(i) >0, Bi(i+ 1) —By(i) =0or 1.

Lemma 3.1 ([1]). Foreachi =0, 1, ..., m — 2 exactly one of the following identities holds:

(H1) Bo(i) = Bo(i + 1).
(H2) B1(i) = B1(i+1).

Let f be an excellent discrete Morse function defined on a connected graph G with critical values ay < --- < a,_1. We
say that a critical vertex v is an essential vertex if f (v) is the global minimum of f on G, that is, f (v) = ap. A critical edge
e; with f(e;) = a; is an essential edge if B(i) — B1(i — 1) = 1. Otherwise, if a critical simplex is not an essential one, we
say that it is a superfluous or cancellable simplex. These kinds of simplices can be regarded as the “noise” generated by the
discrete Morse function considered and so, the cancellation of superfluous critical simplices to obtain an optimal function
can be interpreted as a denoising procedure. Notice that the set of superfluous simplices of a graph gives rise to a set of
pairs & given by (v, e) € & < both simplices are cancellable, there is a unique gradient path between them and v is the
“youngest” vertex in the sense that it enters the filtration {G(a;)} at the latest stage (see [5]).

Notice that the identity (H1) in Lemma 3.1 holds exactly when a new 1-cycle of G appears at this stage in the process,
and therefore it holds for exactly by values of i. Thus, the homological sequences By and B; obtained for a connected graph
are as follows:

BO : ng = ]7 e nl’l? nt‘]v nt1+], e n[‘b], ntb]7 ntb1+17 RN Ny = 1
B1Z O, ey O, 1, 1, ey bl—], bl, b], ey b]

If Bo(i) = By (i + 1), then we remove By (i + 1) for these values of i in the sequence By. Hence, we obtain a walk

(1)

np=1,ny,...,Mp1, N =1
in Z. ¢ starting and ending at 1, with even length 2k and steps of size 1. The number of elements of the set D, of such walks

is the kth Catalan number C, = ,ﬁ%] (2k"> (see [7]).

Now we can consider two kinds of walks in Dy:

(W1) : walks satisfying that n; # 1, foreveryt =1,...,2k —1;
(W2) : walks satisfying that there exist t € {1, ..., 2k — 1} such thatn, = 1.

Notice that if we take a walk of type 2, since each step has size -1, n, = 1 implies that ¢ is even.

Lemma 3.2. There are GjC_;_; different walks in Dy such that ny; = 1andn; # 1forall 2j < t < 2k.

Proof. For j = 0, the set of such walks satisfying the required property is the set of walks in D, of type W1. Moreover, there
is a bijection between these walks and the set D;_1. Such a bijection can be obtained as follows: given a walk

ngp=1,n=2,...,n1=2,nx =1
suchthatn, # 1forallt =1, ..., 2k — 1, we consider the following walk in Dj_1:

Mmp=m—1=1m=n,—1,..., My =nNy_1—1=1.
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Therefore, there are C,_; = CyCy_1 different walks in Dy, of type 1.

Now, for 1 <j < k — 1, we divide the given walk ng, . . ., ny in Dy into two walks:
e ng =1,ny,...,Myi_1, Ny = 1, which is awalk in D;, and
® Moy = Nyj = 1,m = Mjt1s « oo s Mok—j)—1 = M2k—1, M (k—j) = Mok = 1, which is a walk in Dk,j of type W1.

Thus, we get a bijection between those walks in Dy satisfying the indicated property for certainj > 0 and those walks in Dy
obtained by joining a walk in D; with a walk in Dy_; of type 1. Therefore, the number of such walks is GGG_j_;. O

As a direct consequence of Lemma 3.2, we determine the number of walks of types W1 and W2 respectively in the
following result.

Proposition 3.3. There are CoCy_g_1 = Cy_1 walks of type (W1) and ZJ’ZJ CjCi—j—1 walks of type (W2) respectively.

Remark 3.4. Notice that it is easily follows from the above result that

k—1

G 1+chk] 1—chk, 1 =G

4. The set of excellent discrete Morse functions on a graph

In this section we will prove the main result of the paper, namely we count the number of non-equivalent excellent
discrete Morse functions with a given number of critical simplices. The main tools used are the properties of the homological
sequences of a function and putting these sequences in terms of certain kinds of reticular walks given in Section 3 and also
the two following two lemmas which provide information about the structure of a connected graph in terms of its bridge
components.

Lemma 4.1. If Gis a connected graph with at least one bridge and by < +o0, thenG = P;UP,U---UP, UF, whereP;, ..., P,
are the non-trivial bridge components of G, F is a forest and every tree in F intersects each P; in at most one vertex. Moreover, if
G is infinite, then F has at least an infinite tree.

Proof. Let B be the set of all bridges of G. It is easy to prove that b;(G) < oo implies that the number of connected
components of G — Bis finite. Let Py, . . ., P, be the non-trivial bridge components of G and set

F=G—(PiUP,U---UP,).

Let us suppose that F is not a forest, that is, F has at least one cycle. If we delete an edge e in such a cycle, the number of
connected components of F does not increase. Then e cannot be a bridge of G; however this is not possible since every edge
in F is a bridge. Therefore F is a forest.

Now let us suppose that F has a tree T such that there exists P;, 1 < t < p, with T N P; containing at least two vertices
u and v. Let e be an edge in the unique path in T joining u and v. Again the deletion of e does not increase the number of
connected components of G; however, since e € T, it is a bridge of G and this is a contradiction. Therefore every tree in F
intersects each P; in at most one vertex. O

Lemma 4.2. Under the notation of the above lemma, if the degree of any vertex of G is greater than 1, then every edge in F is in
at least one path joining two non-trivial bridge components of G. Moreover, given two non-trivial bridge components of G, there
exists a unique path in G connecting them.

Proof. Let e = ugvg be an edge in F. Then e is a bridge of G. If uy and vy are not in any P;, fori = 1,...,p, then we
take edges e; = ugu; and el = vgyv; in F obtaining the path uy, ey, ug, vo, €', vy in F. If u; and v; are not in any P;, we
extend this path in the same way. If u; or v; is in some P;, then we stop at this vertex. After several steps we obtain a path
Ur, e, ..., U, e, Up, Vo, €, vy, ..., e, vsinF suchthatu, € P;, and vs € P, for some 1 < i,, i; < p. Notice that this process
must finish at vertices in some non-trivial bridge component. This can be proved, taking into account that G does not contain
leaves and hence every leaf of F must be in one non-trivial bridge component too. Since such a path is in F and, by the above
lemma, every tree in F intersects each P; in at most one vertex, P;, and P;; must be different non-trivial bridge components.
We conclude that this path joins two non-trivial bridge components and contains the edge e.

Since G is connected, given two non-trivial bridge components | P; and P; of G, there must exist paths joining each vertex
of P; w1th each vertex of P;. Let us consider two such paths Pl and Pz Let P1 and P2 be the paths obtamed by removing from
P1 and Pz all the edges of P; and P;. Then P! and P2 intersect P; and P; only at vertices vl- , vi and vj , j , respectively, and both
contain at least one edge in F. Now we take paths P! and P/ joining v} and v} in P; and v/ and v? in P}, respectively. Thus, ifp!
and P2 are not the same path, then, by joining the paths P!, P2, P! and P/, we obtain a cycle in G containing edges of F, which
is a contradiction since P; and P; are different bridge components. Therefore there exists an unique path in G connecting any
two non-trivial bridge components of G. O
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The following theorem is the main result of this paper which essentially establishes how many classes of excellent
discrete Morse functions with a given level of noise can be defined on a graph. This number not only depends on the
homology of the graph, but also it is linked to certain aspects of its structure not encoded by the homology.

Theorem 4.3. Given an infinite locally finite connected graph Gwithb; < +o0, there exists a graph G’ combinatorially equivalent
to G such that the number of homology equivalence classes of excellent discrete Morse functions with m = by + by + 2k critical
simplices on G’ is:

1. G (’"27(]> if Gis infinite or has at least one vertex with degree 1.

2. C ";{2 if Gis a non-trivial bridgeless graph.

3. Z]’:J GiCe—j— ((";{1) — (Zj“’z}ﬁ]) (2(’;’,&;’1‘172)) if Gis finite and has at least one bridge, and the degree of any vertex

of Gis greater than 1, where by; = min{b{(P;) : F N P; is a unique vertex } and by = b1 — by1, P; and F being the subgraphs
defined in Lemma 4.1.

Remark 4.4. Throughout the proof of this theorem we will use the same notation for the initial graph G and any of its
subdivisions. It will be clear from the context when a subdivision of G is considered.

Proof. 1. In this case G has at least one bridge and we can use Lemma 4.1.
If there are no non-trivial bridge components (p = 0), then G is a tree and by means of Theorem 6.1.1 of [ 1], the number

of homology equivalence classes of excellent discrete Morse functions with m critical simplices is G, = C; (i;:) =
2k

Now, let us consider G = P; UP, U ---UP, UF, withp > 1, where Py, ..., P, are the non-trivial bridge components of

G. Moreover, if G is infinite, then F is a forest containing an infinite tree T or, if G is finite, then F is a forest containing a

tree T with a leaf u which is a leaf in G.

We take into account that the homological sequences satisfy (1). If we remove the repeated copies of n;, fori =1, ..., b

in the sequence By, we obtain any walk in D and #(D;) = Ci (see Section 3). Now, we will consider all the possible

G (")-

positions of the increments in the sequence By and we obtain that there are (’“27(1 ) different sequences B;. Therefore the

number of homology equivalence classes of excellent discrete Morse functions on G is less than or equal to C; ('"27(1

In order to prove the equality, given sequences By and B, satisfying (1), we are going to construct an excellent discrete
Morse function f on G whose homological sequences are the given ones. We start by choosing m simplices which will be
the critical simplices of the Morse function. In particular, we select b, edges (which will play the role of essential edges)
inPyUP,U---UP, (one edge e; for each basic cycle) and the remaining 2k + 1 scjected simplices in the forest F, in fact
i~r1 the tree T. In order to obtain the edges 4, . . ., ey, we consider a spanning tree T of G and take the b, edges of G not in
T.If T is infinite we can consider a ray vy, €, v1, €1, . .., Ur, €, Ur41 . . . in T and take the 2k + 1 remaining simplices in
the path vyvg. Otherwise, if T is finite, we first subdivide the unique edge vou in T, where u is a vertex with degree 1, to
obtain a path vg, €, v1, €1, . . ., Uk—1, €k—1, Ux = u with 2k + 1 simplices. -

As in Theorem 6.1.1 in [1], we construct an excellent discrete Morse function g on the tree T = G — {eq, 2, ..., €, }
whose sequence By is

Mo, M1, o ooy Meyy Negg1,5 -0 N2k

and we can suppose that g reaches its global minimum at vy. Thus, g has critical values ¢ < .-+ < ¢y
where ¢; = g(q;) fori = 0,...,2kand qo = v, ..., g are its critical simplices (in fact, these simplices are
V0, U1s - - - » Vk—1, Uk, €0, €1, . . ., €xk_1 in T, ordered to obtain the given sequence By).

Next, starting from g, we can construct a new excellent function f on G having the given homological sequences. The
critical simplices of f are qo, ..., g2 and the edges ey, ..., ey, where every edge e; is between ¢, and gy, ,, that is,
¢ = f(qy) < f(e) < f(@y,,) = cit1. Thus, we obtain an excellent discrete Morse function f on G with the given
homological sequences.

Consequently, the number of homology equivalence classes of excellent discrete Morse function for graphs of this type
m—1

is Cy
2. IfGis azr’;on—trivial bridgeless graph, then the homological sequences satisfy
Bo(m —2) = By(m—1) =1, Bi(m—1) = b,y
and
Biim—1) —Bi{(m—2)=1.

That is, every excellent discrete Morse function on G reaches its global maximum on a critical 1-simplex e, which
completes one of the basic cycles of G.
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If we take into account that two excellent discrete Morse functions f and g on G are homologically equivalent if and
only if their restrictions to G — {e} are homologically equivalent, we obtain that the number of homology equivalence
classes of excellent discrete Morse functions on G with m critical simplices is equal to the number of equivalence classes
on G — {e} with m — 1 critical simplices. By subdividing if necessary, we may assume that G — {e} has at least one vertex

with degree 1, and we conclude that the number of elements of this set is less than or equal to C;, (””‘2}()_1 ) = Cy (”;{2).

To obtain the equality, we define an excellent discrete Morse function on G — {e} as we did in case 1 and extend it to a
function on G by assigning to e its global maximum.

. In this case, since G has at least one bridge, by applying Lemma 4.1 we have G = PyUP,U---UP,UF, withp > 1, where
Py, ..., P, are the non-trivial bridge components of G and F is a finite forest. Moreover, since every leaf in F has degree
greater than 1in G, then every leaf in F is in exactly one non-trivial bridge component.

It is interesting to note that the proof of this case is rather more complicated than those of the above cases. As in the
mZkl
sequences By and By satisfying (1), it is not always possible to construct an excellent discrete Morse function on G with the
given homological sequences. Let us see which additional properties must satisfy By and B; to be admissible sequences,
that is, to be the homological sequences of an excellent discrete Morse function on G. Obviously, throughout this proof
we will assume that all the homology sequences considered satisfy (1). Let us divide the proof into several steps:

Step 1

At this point we will consider sequences By and B satisfying

Bi(m—1)—By(m—2) = 1. (2)

Then, we can construct an excellent discrete Morse function f on G with the given homological sequences. The property
(2) implies that such a function f must reach its global maximum on an essential critical edge. We begin by selecting an
edge e in a basic cycle of G. By subdividing if necessary, we may assume that G — {e} has at least one vertex with degree
1 and we can construct, as we did in the first case, an excellent Morse function g on G — {e} with homological sequences
Bo(i), B1 (i) withi =0, ..., m—2.Next, letussetf = gonG— {e}andf(e) = C+ 1 where C = max{g(o)/o € G—{e}}.
Thus f is an excellent discrete Morse function whose homological sequences are the given ones.

Now, let us consider those homological sequences not satisfying (2). In this case, we may find non-admissible sequences
By, By when for a certain t, we have that B;(t) = h > 0 but the connected components corresponding to the non-trivial
bridge components containing these h basic cycles have not been created yet in the level subcomplex G;.

Step 2

Now, we are going to determine which homological sequences not satisfying (2) are not valid. Let us consider sequences
By and B not satisfying (2) and let ny, ..., ny be the walk in Dy obtained by removing the repeated copies of n,, for
i=1,...,b1,inBy. Then, thereexistsj € {0, 1, ..., k—1} suchthatny = 1andn; # 1,foreveryt = 2j+1,...,2k—1.
If these sequences By and B, satisfy the following additional property:

there exists h such that Bo(2j +h) =1 and B;(2j+h) =h> b, + 1 (3)

then such sequences are not admissible. Indeed, if there were to be an excellent discrete Morse function f on G whose
homological sequences are the given ones, then property (3) would imply that the level subcomplex Gy is a connected
subgraph of G with h > by, cycles. Since b;; + b1, = by and by Lemma 4.2 two bridgeless components are connected
by a unique path, then every non-trivial bridge component Py, ..., P, of G either is needed to connect two other non-
trivial bridge components or has at least b1, cycles. Thus, G,j;, must contain at least one cycle in every component P;. By
applying Lemma 4.2 again, we conclude that F must be included in Gy, since the paths joining Py, ..., P, in G must be
in Gy too. Then the critical simplices not considered yet, that is, those with critical values greater than ay;,;, must be
in the by — h cycles which have not been completed in the subcomplex Gy;4. On the other hand, since the homological
sequences of f do not satisfy (2), f reaches its global maximum on a superfluous critical edge. Notice that all of the b,
cycles of G have already been completed in the subcomplex G,,_,. However this is impossible since the cycle determined
by the edge e cannot arise until G,,_; appears.

To count the sequences that we have just considered, we will divide them into two parts:

first case, we get that the number of homology equivalence classes is less than or equal to C;, ( ) but now, given any

=1 ..., ng, Ny, ..., Moy Mg oo ny =1
(Leftpal’t) O, e, O’ ‘l7 ey b127 b]2+1, ceey b‘12+1
. myy=1, ..., Ny _ o ooy Mg, ooy, Mg =2, Ny =1
Right part 12t '
(Right part) bn+1, ..., bpp+2, ..., by, ..., b1, by.

We can observe that, since B;(0) = 0, the left part contains 2j + by, + 1 possible positions of the by, + 1 increments of
the sequence B;. Taking into account that (2) is not satisfied, it follows that Bo(im — 2) # Bo(m — 1) as we can see at the
end of the right part. Thus there are 2(k — j) — 1+ by; — 1 possible positions of the by; — 1 increments of the sequence
B;. Moreover, by Lemma 3.2, there are GCy_j—; walks ng, ..., ny for eachj € {0, ..., k — 1}. Therefore we obtain that
the number of non-admissible sequences is

2j+b12+1 2(k—j)—l+b11—1 2j+b12+1 2(](—j)+b11—2
GiCr—j—1 _ = GiCr—j— ) o .
bz +1 b —1 2j 2(k—j) —1
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Step 3
Now let us see that, if By and B, satisfy neither (2) nor (3), then they are admissible sequences.

Again, let ng, . .., ny be the walk in Dy obtained by removing from B, the repeated copies of n;,, withi =1, ..., by.
As we stated before, there existsj € {0, 1, ...,k — 1} such that n;; = 1andn; # 1,foreveryt = 2j+1,...,2k — 1.

Since (2) and (3) do not hold, it follows that B;(2j + h) = h < by, forevery 0 < h < by such that By(2j + h) = 1. Leth
be the maximum of such h. Then we can divide the sequences By and B; as follows:

n=1 ..., nNg, Ng, ..., Ne-, Ney v, Nyi=1
Left part ! ! ~ h J
(Leftparty = o, 1 ... h-1 h ... &
. my=1 ..., R ces Mgy e, My =2, Ny =1
Right part ~ h+1’ 1
(Rightpart) = 51 by by, by.

In order to construct the function f, we first choose those simplices of G which will play the role of critical simplices. Let
us suppose that P; is a non-trivial bridge component of G such that P; N F is a unique vertex v and b;; = b;(Py). In the
unique tree of F that intersects Py, let us take a path with length 2k + 1, beginning at v and satisfying that every vertex
in such a path has degree at most 2. By subdividing the unique edge vu in F if necessary, we get a path y:

Y = Dk> €ks Dk—1s - - - » Dj+1, €j+1, Pjs - - -, P1, €1, Do-

Notice that po will be the essential critical vertex of the function that we will construct, and the remaining vertices of y
will be the superfluous critical simplices. To obtain the edges which will be essential, we consider a spanning tree T in G
and we choose the edges e, ..., e, of GnotinT.

By removing the edge €;; 1 of T we get a forest with two trees To and T contammg the vertices pg and v = py respectively.
Then, we can construct an excellent discrete Morse function gy on the graph GO = TO U {es, ..., e} whose homological

sequences are Bo(i) and B1(i), i =0, ..., 2j+ h, that is, they coincide with the left part of the given sequences By and B.
Such a function can be constructed as we did for graphs in the first part of this theorem. We may assume that py is the
essential critical vertex of go with go(po) = 0.Let qo = po, q1 . - ., ;45 be the critical simplices of g with critical values

¢ = go(q;) fori =0, ..., 2j + h. Notice that these simplices are py, ..., p;, e, ... ,Fj, e1, ..., ey inaconvenient order.
Also, we can construct an excellent discrete Morse function g, on T, whose homological sequence is

Mojp1 — 1, ... g — 1,1 — 1.
This sequence is a walk in D,_;_; since n; > 2 forevery t = 2j+1, ..., 2k — 1.In this way, we get that p; is the essential
critical vertex of g, and we may assume that g, (pr) = 0. Let wg = pk, w1, ..., Wak—j—1) be the critical simplices of g,
with critical values a; = g, (w;) fori =0, ...,2(k—j— 1).

Next, taking into account go and g,, we will construct a new excellent function f on G with the given homological
sequences.

We define f = gy on 50; thus the first 2j + T + 1 critical simplices of f are the critical simplices of gp.

We continue constructing f by means of g, in several steps. From the right part of the given sequences, it follows that we
must get

Bi2j+h+1) = =Bz, +h) =h,

that is, we must define f in such way that no cycle has been added in the process of construction of the level subcomplex
G[’~+1 +# from Gy, 3, and hence only the number of connected components has been modified.
n

It holds that
Bo(2j +h+ 1) = g1, ..., Bty + ) = .

h+1”

So, if A = ¢, + 1, then we set f = g, + A; on the graph 51, which is the level subcomplex of ?U corresponding
to a. 21 Now, the critical simplices of f are the critical simplices of gy together with wo, ..., wg -1 and its
homological sequences are By (i) and B (i) withi =0, ..., t,; + 1. The new critical values are different, since we have
defined f by adding a constant to g, which is excellent. Moreover, f (wg) = f(px) = &, (px) + Coiri + 1> 45 Which is
the maximum critical value of f on G. ~ ~

At this point, in order to obtain By (tj,; + h + 1) = h+ 1, we need to complete a new cycle by taking as the next critical
simplex of f one edge e; withi > h, so we take e, ; = uj vy, and we define f (e ;) = max{f (uz, ), f(vj; 1), C1} + 1

where C; is the maximum critical value of f on G;. On the graph G, whose simplices are w%ﬂ_zj, s W, 0j1 We put

f = g, + Ay where A, = A + f(e5,,) — Ci. Now, the function f is defined on Eo U El U G U {ej, 1}, the new critical
simplices of f are e; ; and w51 for t;, ; +1 < t < t;,, and its homological sequences are By (i) and B, (i) with

i=0,...tr,+h+1
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Now, let us check that the critical values of f are different. In fact, we havef(w%rzj,]) < flejy) < f(w%rl —2j) since

flery) > G =f(wg, —2-1)

and
fwg, ) —Fery) = (80w, 2) + A +F (€)= C1) = Fery)
= 8 (We, , —2j) — &(We,  —2j-1) > 0.
We continue defining f in a similar way, until we get an excellent discrete Morse function on G—{€;1} whose homological
sequences are By and B; withi =0, ..., m — 2.

Finally, in order to obtain Bo(m — 1) = 1, we define

f(ej+1) = max{f (), f(pj+1), C} + 1

where C is the maximum critical value of f on G — {€j;1}. Thus, we obtain an excellent discrete Morse function f on G
whose homological sequences are the given ones.
We conclude this proof by counting the number of admissible sequences. As we obtained before, there are

k_Z]C-C _ 2j+ b+ 1 2(k—j)+bi1 —2
- k-1 2j 20k —j) — 1

non-admissible sequences. Since there are G (msz

excellent discrete Morse functions for graphs of this type is

-1 i 2j+ b+ 1\ 2k —j) + by —2
¢ m _chck—j—l j + 1.2+ (k J)-fj 11

2k = 2j 2(k—j)—1

k

—1 m—1 2j+ by + 1\ [2(k—j)+ by —2
= GiCk—j— - . : :
= 2k 2j 2k —j —1

The following examples clarify the constructions carried out in the proof of the above theorem. Notice that since examples
corresponding to case 1 are provided in [1], then we mainly focus our attention on the cases 2 and 3:

1) possible sequences, then the number of homology classes of

Example 4.5. Let G be the graph given by the figure below:

Now, let us consider an excellent discrete Morse function on G with 13 critical simplices and whose homological sequences
are

Bp: 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1

By: 0, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 7, 8.

Notice that G is a bridgeless graph and the given pair of sequences is admissible since B;(m — 1) — By(m — 2) = 1. That is,
the function f will reach its maximum on an edge e (which can be any edge of G).
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Now, on the graph G — {e}, which has at least one vertex with degree 1, we are going to define an excellent discrete Morse
function g.

First, we select the critical simplices of g: we start by subdividing the edge vou obtaining the path with five simplices
Vo, €0, V1, €1, U2 = u. Next, we _choose the edges ey, ..., e; corresponding to each cycle in G — {e} which are obtained
by considering a spanning tree T in G and taking those edges of G notin T.

In the first step, we define an excellent discrete Morse function h on T, whose essential vertex is vo and whose homological
sequence By is 1, 2, 3, 2, 1 (obtained by removing the repeated values in By):

Now, we are going to extend h in several steps by assigning values to the edges ey, . . ., e; which will play the role of essential
critical edges. Taking into account the sequences By and By, we see that the first critical simplex is vy and the next two critical
simplices must be essential critical edges. Thus, we take g = hin T — {v1, v2, €y, €1} and we define g on e; and e, in such a
way that they became the next critical simplices.
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We continue defining g on v, to be the next critical simplex by adding a suitable value to h on vy:

Repeating the same arguments, we obtain an excellent discrete Morse function g on G — {e} whose homological sequences
are By(i) and B (i) withi =0, ..., m—2 = 12:

Finally, we putf = gon G — {e} and f(e) = C + 1 where C = max{g(o)/o € G— {e}}. Thus f is an excellent discrete Morse
function whose homological sequences are the given ones.

Example 4.6. Let us define an excellent discrete Morse function on the graph G in the figure below:

with 14 critical simplices and whose homological sequences are

Bp: 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2,
By: 0, 1, 2, 3, 3, 4, 5,6 5 6, 7, 7, 8, 9, O.

E\J
—_

Notice that G is a graph in the third case of Theorem 4.3 with

b1 = min{b{(P;) : F N P; is a unique vertex } = 2.
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Taking into account the given sequences, we get that:

e if we remove the repeated copies of By, we get the walk 1, 2, 1, 2, 1in D, of type W2 withj = 1 and
e h = 7 is the maximum value of those h such that Bq(2j + h) = 1and B;(2j + h) = h.

First, we need to choose those simplices which will play the role of critical simplices. Let P; be a non-trivial bridgeless
component such that P; N F is a unique vertex v and b;(P;) = by;. We subdivide the unique edge vu in F and we obtain a
path v = p,, €, p1, €1, po = u such that p; has degree 2. Moreover, we consider a spanning tree T in G to obtain the edges
e; withi =1, ..., 9 corresponding of the basic cycles of G.

At this point, we are going to select the critical simplices: we take py = u, the edges ey, ..., eqin G — T and the remaining
simplices of the path 1iv (shown as the thicker lines in the picture below):

Now, by removing the edges €,, eg and eq, we obtain the graph EO and the tree 'fU:

-

~
Glb

Then, since 50 is a graph in the first case of Theorem 4.3, we define an excellent discrete Morse function gy on the graph 60
with essential critical vertex p, and whose homological sequences are

1, 1, 1, 1, 2, 2, 2, 1, 1, 1
0, 1, 2, 3, 3, 4 5 5 6 7.
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Also, on fv we define the following excellent discrete Morse function g,:
1 v.0
1

1 1

Now, we define f on Eo W Tv starting from gy and g, just by adding a suitable value to g, for instance, f = g, + 12 on ’fv and
f = go on Gy.

13 13

Next, we define f on the edges eg and eqg to be the critical simplices after to p, = v.We putf(eg) = max{f (ug), f (vs), f(p2)}+
1 and f(eg) = max{f (ug), f(vg), f(eg)} + 1 where eg = ugvg and eqg = ugvg:

13 v 12

13

14

1315 13

Finally, we define f on the edge ¢, as the greatest critical value of f.

13

1315 13

As we can see in the last picture, the excellent Morse function f has the given homological sequences.

Remark 4.7. It interesting to point out that the following homological sequences are not admissible for the graph of the
above example:

Bp: 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 1
By: 0, 1, 2, 3, 4, 5, 6, 7, 8 8 8 8, 9, 0O

Otherwise, if we suppose that such a function exists, then the level subcomplex Gg is connected and b (Gg) = 8 > by,. Thus
Gg contains the forest F and all the basic cycles of G but one. In consequence, all the remaining critical simplices which have
not been considered yet will be in the last basic cycle, but we need to complete it before the last level subcomplex arises,
which is a contradiction.
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