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Recently the authors have found in some publications that the following property (0.1) of
Mittag-Leffler function is taken for granted and used to derive other properties.

Eα

(
a(t + s)α

) = Eα

(
atα

)
Eα

(
asα

)
, t, s � 0, (0.1)

where a is a real constant and α > 0. In this note it is proved that the above property
is unavailable unless α = 1 or a = 0. Moreover, a new equality on Eα(atα) is developed,
whose limit state as α ↑ 1 is just the property (0.1).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Mittag-Leffler function is such a one-parameter function defined in the complex plane C by

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, (1.1)

where α > 0 is the parameter and Γ the Gamma function [2]. It was originally introduced by G.M. Mittag-Leffler in 1902 [1].
Obviously, the exponential function ez is a particular Mittag-Leffler function with the specified parameter α = 1, or in other
words, the Mittag-Leffler function is the parameterized exponential function.

In recent years the Mittag-Leffler function has caused extensive interest among scientists, engineers and applied mathe-
maticians, due to its role played in investigations of fractional differential equations (see, for example, [2,6,7,9–11]). A large
of its properties have been proved (see, e.g., [2,3,6,8]), among which the following one will perhaps receive considerable
interests from the society of dynamical systems: the function t �→ Eα(atα) solves the fractional differential equation of
order α

C
0 Dα

t x(t) = ax(t), t � 0, (1.2)

where C
0 Dα

t · denotes the Caputo’s derivative operator of order α, that is,

C
0 Dα

t x(t) = 1

Γ (n − α)

t∫
0

(t − τ )n−α−1x(n)(τ )dτ , (1.3)
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where n is the minimum integer not less than α, and x(n)(t) the traditional n-order derivative of x(t). Since the particular
Mittag-Leffler function eat possesses the semigroup property (i.e., ea(t+s) = eateas for all t, s � 0), it seems reasonable to
assume that the function Eα(atα) also enjoys the semigroup property

Eα(a(t + s)α) = Eα(atα)Eα(asα), ∀t, s � 0. (1.4)

Recently, we have found in some existing publications that the semigroup property of Eα(atα) is taken for granted and used
to derive other properties of the Mittag-Leffler function (see, e.g., [3, formula (3.10)], [4, formula (5.1)]).

The purpose of this note is to prove that the function Eα(atα) cannot satisfy the semigroup property unless α = 1 or
a = 0, and to further develop a new equality relationship involving Eα(atα), Eα(asα) and Eα(a(t + s)α). To this end, the
following properties of Mittag-Leffler function and Caputo’s fractional derivative are needed:

(P1) (cf. [2, formula (2.140)]) The Laplace transform of Caputo’s derivative is given by

̂C
0 Dα

t f (t)(λ) = λα f̂ (λ) −
n−1∑
k=0

λα−k−1 f (k)(0), (1.5)

where n − 1 < α � n, ̂C
0 Dα

t f (t)(λ) and f̂ (λ) denote the Laplace transforms of C
0 Dα

t f (t) and f (t), respectively.
(P2) (cf. [12, p.287]) The Laplace transform of the function Eα(atα) is given by

̂Eα

(
atα

)
(λ) = λα−1

λα − a
, Reλ > |a|1/α. (1.6)

2. Counterexample and disproof

According to [2, formula (1.65), p. 16], the Mittag-Leffler function Eα(z) for α = 1
2 is computed by

E 1
2
(z) =

∞∑
k=0

zk

Γ ( k
2 + 1)

= ez2 · erfc(−z), (2.1)

where erfc(z) is the complementary error function, which is defined by

erfc(z) = 2√
π

∞∫
z

e−t2
dt. (2.2)

Let a = 1 and t = s = 1. Then, we have that

E 1
2

(
a(t + s)

1
2
) = E 1

2
(
√

2) = e2 · erfc(−√
2), (2.3)

E 1
2

(
at

1
2
)

E 1
2

(
as

1
2
) = (

E 1
2
(1)

)2 = e2 · (erfc(−1)
)2

. (2.4)

Using the software Matlab to compute erfc(z) with 0.1% precision, we get the result that erfc(−1) ≈ 1.8427 and

erfc(−√
2) ≈ 1.9545. Which shows that E 1

2
(a(t + s)

1
2 ) 
= E 1

2
(at

1
2 )E 1

2
(as

1
2 ) for a = 1 and t = s = 1.

The above example shows that the function Eα(atα) does not possess the semigroup property (1.4) for the specified
α = 1

2 and a = 1. In fact, it can be further proved that the function Eα(atα) cannot possess the semigroup property unless
α = 1 or a = 0. Indeed, if the semigroup property (1.4) is available, then, as a direct result of the well-known fact that the
exponential functions are the only non-zero anywhere-continuous functions with the semigroup property (cf. [5, p. 197]),
there exists a real constant c such that Eα(atα) = ect for all t ∈ R. By the Laplace transform formula (1.6), it follows that

λα−1

λα − a
= 1

λ − c
, ∀Reλ > max

{
c, |a|α−1}

. (2.5)

It is clear to see that the above equality holds only when α = 1 or a = c = 0.

3. A new equality relationship

By the definition (1.3) it is clear that the Caputo’s fractional derivative operator is nonlocal in the case of non-integer
order α. The memory character of Caputo’s derivative operator is perhaps the cause leading to the result that Eα(atα), as
an eigenfunction of Caputo’s derivative operator (see Eq. (1.2)), does not possess semigroup property that is non-memory.
This seems to tell us that any equality relationship involving Eα(atα), Eα(asα) and Eα(a(t + s)α) should be of memory and
hence be characterized with integrals. The equality relationship stated in the following theorem is a result of the above
idea. Without loss of generality, the following discussion is restricted to the case that 0 < α < 1.
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Theorem 1. For every real a there holds that

t+s∫
0

Eα(aτα)

(t + s − τ )α
dτ −

t∫
0

Eα(aτα)

(t + s − τ )α
dτ −

s∫
0

Eα(aτα)

(t + s − τ )α
dτ

= α

t∫
0

s∫
0

Eα(arα
1 )Eα(arα

2 )

(t + s − r1 − r2)1+α
dr1 dr2, t, s � 0. (3.1)

Proof. Denote Eα(atα) by f (t) for convenience. Then, by the definition (1.3) we have that, for all t, s � 0,

C
0 Dα

t f (t + s) = 1

Γ (1 − α)

t∫
0

(t − τ )−α df (τ + s)

dτ
dτ

= 1

Γ (1 − α)

t+s∫
s

(t + s − τ )−α df (τ )

dτ
dτ

= C
0 Dα

r f (r)
∣∣
r=t+s − 1

Γ (1 − α)

s∫
0

(t + s − τ )−α df (τ )

dτ
dτ

= af (t + s) − 1

Γ (1 − α)

s∫
0

(t + s − τ )−α df (τ )

dτ
dτ . (3.2)

In the last equality the fact that T (t) = Eα(atα) solves Eq. (1.2) is used. Making Laplace transform with respect to t in both
sides of (3.2), we get by the property (1.5) that

λα f̂ s(λ) − λα−1 f (s) = a f̂s(λ) − 1

Γ (1 − α)

s∫
0

(
(t + s − τ )−α

)̂
(λ)

df (τ )

dτ
dτ (3.3)

where f̂ s(λ) and ((t + s − τ )−α)̂(λ) represent respectively the Laplace transforms of f (t + s) and (t + s − τ )−α with respect
to t . For the integral term in (3.3), by integrating by parts we have that

s∫
0

(
(t + s − τ )−α

)̂
(λ)

df (τ )

dτ
dτ = (̂t−α)(λ) f (s) − (

(t + s)−α
)̂
(λ) −

s∫
0

d((t + s − τ )−α)̂(λ)

dτ
f (τ )dτ

= Γ (1 − α)λα−1 f (s) − (
(t + s)−α

)̂
(λ) − α

s∫
0

(
(t + s − τ )−1−α

)̂
(λ) f (τ )dτ ,

which, combining with the quality (3.3), leads to that

Γ (1 − α)λα−1 f̂ s(λ) = λα−1

λα − a

(
(t + s)−α

)̂
(λ) + α

s∫
0

λα−1

λα − a

(
(t + s − τ )−1−α

)̂
(λ) f (τ )dτ . (3.4)

So, making the inverse Laplace transform in both sides and using the convolution property of Laplace transform, we get that

t∫
0

(t − τ )−α f (τ + s)dτ =
t∫

0

(t + s − τ )−α f (τ )dτ + α

s∫
0

( t∫
0

(t + s − τ − r)−α−1 f (r)dr

)
f (τ )dτ .

Replacing the integral variable τ with τ + s in the left term yields directly equality (3.1). The proof is therefore com-
pleted. �
Remark 1. It should be noted that for α = 1, the integrals in (3.1) are divergent and hence equality (3.1) is not available.
However, it can be shown that the semigroup property of E1(at) is just the limit state of equality (3.1) as α ↑ 1. Indeed, if
we multiply both sides of (3.1) with 1 − α and integrate by parts, then, letting α ↑ 1 we get that the limit state of the left
is just E1(a(t + s)) and that of the right is E1(at)E1(as).
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