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Abstract

We consider compact Riemannian spin manifolds without boundary equipped with orthogonal connec-
tions. We investigate the induced Dirac operators and the associated commutative spectral triples. In case of
dimension four and totally anti-symmetric torsion we compute the Chamseddine–Connes spectral action,
deduce the equations of motions and discuss critical points.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Einstein’s field equations can be deduced as equations of motion of the Einstein–Hilbert func-
tional. In the classical context one considers (Lorentzian or Riemannian) manifolds equipped
only with the Levi-Civita connection.

In the 1920s É. Cartan investigated general orthogonal connections i.e. connections which are
compatible with the metric. The difference of such a connection and the Levi-Civita connection
is called torsion. In his seminal articles [6–8] Cartan observed that in general the torsion tensor
splits into three components: the vectorial torsion, the totally anti-symmetric one and the one
of Cartan-type. Taking the scalar curvature of orthogonal connections as the Lagrangian one
attains the Einstein–Cartan–Hilbert functional. Its critical points are exactly Einstein manifolds,
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in particular the torsion of a critical point is zero. (Physics literature refers to this fact as the
Palatini formalism.)

Aiming for a unified theory of gravity and the other forces Chamseddine and Connes intro-
duced the spectral action principle [9]. It states that any reasonable physical action is determined
only by the spectrum of a Dirac operator. Specifically, the Chamseddine–Connes spectral action
comprises the Einstein–Hilbert action and the full bosonic part of the action of the Standard
Model of Particle Physics, if one considers suitable twisted Dirac operators based on Levi-Civita
connections. It even predicts the correct Higgs potential necessary for the electro-weak symme-
try breaking and allows to put constraints on the Higgs mass. Into this framework orthogonal
connections with totally anti-symmetric torsion have been incorporated in [23], and by Iochum,
Levy and Vassilevich in [25] for the purely gravitational action on manifolds with boundary.
Restricting to connections with totally anti-symmetric torsion was geometrically justified by the
fact that the geodesics of such connections coincide with those of the Levi-Civita connection.

Throughout the present article we consider closed manifolds, i.e. compact ones without
boundary. For these we deal with the full class of orthogonal connections. We review Cartan’s
classification and Einstein–Cartan theory in Section 2, and we compute some curvature quanti-
ties in the case of totally anti-symmetric torsion in Section 3. In Section 4 we describe the Dirac
operators constructed from orthogonal connections, and we notice that the vectorial component
of the torsion has to be zero to assure that the Dirac operator is symmetric. This follows from a
result by Friedrich and Sulanke [17]. We show that the Cartan-type component of the torsion has
no effect on the Dirac operator (even pointwise) which provides another good reason to consider
only anti-symmetric torsion.

In this setting many examples for commutative geometries in the sense of Connes’ spectral
triples [12] can be supplied. Given the Reconstruction Theorem [14], we remark that in the
even-dimensional case anti-symmetric torsion is reconstructable from the spectral data. In four
dimensions we calculate the purely gravitational part of the Chamseddine–Connes spectral ac-
tion in some detail. We find that some terms of the action given in [23] actually vanish, thus
confirming the result by [25]. For this action we derive the equations of motion in Theorem 5.7.
One of them is a Proca equation for the torsion 3-form which suggests an interpretation of the
torsion as massive vector boson. The set of critical points of the action, i.e. the solutions of the
equations of motion, contains all Einstein manifolds (with zero torsion). Furthermore, in Lem-
mas 5.10 and 5.13 we exclude critical points which are warped products and carry special choices
of non-zero torsion.

We tried to keep this text elementary and accessible, and we hope that it may also serve as an
introduction for non-experts.

2. Orthogonal connections on Riemannian manifolds

We consider an n-dimensional manifold M equipped with some Riemannian metric g. Let
∇g denote the Levi-Civita connection on the tangent bundle. For any affine connection ∇ on the
tangent bundle there exists a (2,1)-tensor field A such that

∇XY = ∇g
XY + A(X,Y ) (1)

for all vector fields X,Y .
In this article we will require all connections ∇ to be orthogonal, i.e. for all vector fields

X,Y,Z one has



F. Pfäffle, C.A. Stephan / Journal of Functional Analysis 262 (2012) 1529–1565 1531
∂X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉, (2)

where 〈·,·〉 denotes the scalar product given by the Riemannian metric g. For any tangent vec-
tor X one gets from (1) and (2) that the endomorphism A(X, ·) is skew-adjoint:〈

A(X,Y ),Z
〉= −〈Y,A(X,Z)

〉
. (3)

Next, we want to express some curvature quantities for ∇ in terms of A and curvature
quantities for ∇g . To that end we fix some point p ∈ M , and we extend any tangent vectors
X,Y,Z,W ∈ TpM to vector fields again denoted by X,Y,Z,W being synchronous in p, which
means

∇g
V X = ∇g

V Y = ∇g
V Z = ∇g

V W = 0 for any tangent vector V ∈ TpM.

Furthermore, we choose a local orthogonal frame of vector fields E1, . . . ,En on a neighbourhood
of p, all being synchronous in p. Then the Lie bracket [X,Y ] = ∇g

XY − ∇g
Y X = 0 vanishes in p,

and synchronicity in p implies

∇X∇Y Z = ∇g
X∇g

Y Z + (∇g
XA
)
(Y,Z) + A

(
X,A(Y,Z)

)
.

Hence, in p the Riemann tensor of ∇ reads as

Riem(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z

= Riemg(X,Y )Z + (∇g
XA
)
(Y,Z) − (∇g

Y A
)
(X,Z)

+ A
(
X,A(Y,Z)

)− A
(
Y,A(X,Z)

)
(4)

where Riemg denotes the Riemann tensor of ∇g . We note that Riem(X,Y )Z is anti-symmetric
in X and Y . And by differentiation of (3) we get that (∇g

Ei
A)(Ej , ·) and (∇g

Ej
A)(Ei, ·) are skew-

adjoint, and therefore we have〈
Riem(Ei,Ej )Ek,El

〉= −〈Riem(Ei,Ej )El,Ek

〉
. (5)

In general, Riem does not satisfy the Bianchi identity. The Ricci curvature of ∇ is defined as

ric(X,Y ) = tr
(
V �→ Riem(V ,X)Y

)
,

by (4) this can be expressed as

ric(X,Y ) =
n∑

i=1

〈
Riem(Ei,X)Y,Ei

〉
= ricg(X,Y ) +

n∑
i=1

(〈(∇g
Ei

A
)
(X,Y ),Ei

〉− 〈(∇g
XA
)
(Ei, Y ),Ei

〉)
+

n∑(−〈A(X,Y ),A(Ei,Ei)
〉+ 〈A(Ei,Y ),A(X,Ei)

〉)
(6)
i=1
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where ricg is the Ricci curvature of ∇g . We have used that A(Ei, ·) and A(X, ·) are skew-
adjoint.

One obtains the scalar curvature R of ∇ by taking yet another trace, in p it is given as R =∑n
j=1 ric(Ej ,Ej ). For the following calculation we use that (∇g

V A)(X, ·) is skew-adjoint for any
tangent vectors V,X, and we get:

R = Rg +
n∑

i,j=1

(〈(∇g
Ei

A
)
(Ej ,Ej ),Ei

〉+ 〈Ej ,
(∇g

Ej
A
)
(Ei,Ei)

〉)

+
n∑

i,j=1

(−〈A(Ej ,Ej ),A(Ei,Ei)
〉+ 〈A(Ei,Ej ),A(Ej ,Ei)

〉)

= Rg + 2
n∑

i,j=1

〈(∇g
Ei

A
)
(Ej ,Ej ),Ei

〉− ∥∥∥∥∥
n∑

i=1

A(Ei,Ei)

∥∥∥∥∥
2

+
n∑

i,j=1

〈
A(Ei,Ej ),A(Ej ,Ei)

〉
(7)

where Rg denotes the scalar curvature of ∇g .
The classification of orthogonal connections with torsions traces back to [8, Chapter VIII].

Here we adopt the notations of [32, Chapter 3] (see also [1]). From (3) we know that the torsion
tensor A(X, ·) is skew-adjoint on the tangent space TpM . Any torsion tensor A induces a (3,0)-
tensor by setting

AXYZ = 〈A(X,Y ),Z
〉

for any X,Y,Z ∈ TpM.

We define the space of all possible torsion tensors on TpM by

T (TpM) =
{
A ∈

⊗3
T ∗

p M
∣∣AXYZ = −AXZY ∀X,Y,Z ∈ TpM

}
.

This vector space carries a scalar product

〈
A,A′〉= n∑

i,j,k=1

AEiEj Ek
A′

EiEj Ek
, (8)

and the orthogonal group O(TpM) acts on T (TpM) via (αA)XYZ = Aα−1(X)α−1(Y )α−1(Z).
For A ∈ T (TpM) and Z ∈ TpM one denotes the trace over the first two entries by

c12(A)(Z) =
n∑

i=1

AEiEiZ. (9)

The space of quadratic invariants on T (TpM) with respect to the O(TpM)-representation is
spanned by the three quadratic forms
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‖A‖2 = 〈A,A〉, (10)

〈A, Â〉 =
n∑

i,j,k=1

AEiEj Ek
AEj EiEk

, (11)

∥∥c12(A)
∥∥2 =

n∑
i,j,k=1

AEiEiEk
AEj Ej Ek

. (12)

Here Â denotes the (3,0)-tensor obtained from A by interchanging the first two slots,
i.e. ÂXYZ = AYXZ , for all tangent vectors X,Y,Z.

Theorem 2.1. For dim(M) � 3 one has the following decomposition of T (TpM) into irreducible
O(TpM)-subrepresentations:

T (TpM) = T1(TpM) ⊕ T2(TpM) ⊕ T3(TpM).

This decomposition is orthogonal with respect to 〈·,·〉, and it is given by

T1(TpM) = {A ∈ T (TpM)
∣∣ ∃V s.t. ∀X,Y,Z: AXYZ = 〈X,Y 〉〈V,Z〉 − 〈X,Z〉〈V,Y 〉},

T2(TpM) = {A ∈ T (TpM)
∣∣ ∀X,Y,Z: AXYZ = −AYXZ

}
,

T3(TpM) = {A ∈ T (TpM)
∣∣ ∀X,Y,Z: AXYZ + AYZX + AZXY = 0 and c12(A)(Z) = 0

}
.

For dim(M) = 2 the O(TpM)-representation

T (TpM) = T1(TpM)

is irreducible. �
The above theorem is just Theorem 3.1 from [32]. The connections whose torsion tensor is

contained in T1(TpM) ∼= TpM are called vectorial. Those whose torsion tensor is in T2(TpM) =∧3
T ∗

p M are called totally anti-symmetric, and those with torsion tensor in T3(TpM) are called
of Cartan-type.

We note that any Cartan-type torsion tensor A ∈ T3(TpM) is trace-free in any pair of entries,
i.e. for any Z one has

n∑
i=1

AEiEiZ = 0,

n∑
i=1

AEiZEi
= 0,

n∑
i=1

AZEiEi
= 0.

The second equality holds as A ∈ T (TpM), and the third one follows from the cyclic identity
AXYZ + AYZX + AZXY = 0.

Remark 2.2. The invariant quadratic form given in (12) has the null space T2(TpM)⊕ T3(TpM).
More precisely, one has A ∈ T2(TpM) ⊕ T3(TpM) if and only if c12(A)(Z) = 0 for any Z ∈
TpM . �
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Remark 2.3. The decomposition given in Theorem 2.1 is orthogonal with respect to the bilinear
form given in (11), i.e. for α,β ∈ {1,2,3}, α �= β , and Aα ∈ Tα(TpM), Aβ ∈ Tβ(TpM) one gets
〈Aα, Âβ〉 = 0. �

Varying the base point p ∈ M , the decomposition in Theorem 2.1 is parallel with respect to
the Levi-Civita connection ∇g (induced on (3,0)-tensor fields). And from Theorem 2.1 one gets
immediately:

Corollary 2.4. For any orthogonal connection ∇ on some Riemannian manifold of dimension
n � 3 there exist a vector field V , a 3-form T and a (3,0)-tensor field S with Sp ∈ T3(TpM) for
any p ∈ M such that ∇XY = ∇g

XY + A(X,Y ) takes the form

A(X,Y ) = 〈X,Y 〉V − 〈V,Y 〉X + T (X,Y, ·)� + S(X,Y, ·)�,
where T (X,Y, ·)� and S(X,Y, ·)� are the unique vectors with

T (X,Y,Z) = 〈T (X,Y, ·)�,Z〉 and S(X,Y,Z) = 〈S(X,Y, ·)�,Z〉 for all Z. (13)

For any orthogonal connection these V,T ,S are unique. �
Lemma 2.5. The scalar curvature of an orthogonal connection is given by

R = Rg + 2(n − 1)div∇g

(V ) − (n − 1)(n − 2)‖V ‖2 − ‖T ‖2 + 1

2
‖S‖2

with V,T ,S as in Corollary 2.4, and div∇g
(V ) is the divergence of the vector field V taken with

respect to the Levi-Civita connection.

Proof. With the notations from (9)–(12) we rewrite (7) as

R = Rg + 2
n∑

i=1

c12
(∇g

Ei
A
)
(Ei) − ∥∥c12(A)

∥∥2 + 〈A, Â〉. (14)

By Remark 2.2 only the vectorial part of the torsion contributes to the c12-terms, and therefore
one gets

n∑
i=1

c12
(∇g

Ei
A
)
(Ei) =

n∑
i,j=1

(〈Ej ,Ej 〉
〈∇g

Ei
V ,Ei

〉− 〈∇g
Ei

V ,Ej

〉〈Ei,Ej 〉
)

= (n − 1)div∇g

(V ), (15)

∥∥c12(A)
∥∥2 =

∥∥∥∥∥
n∑

j=1

c12(A)(Ej )Ej

∥∥∥∥∥
2

=
∥∥∥∥∥

n∑(〈Ei,Ei〉〈V,Ej 〉Ej − 〈V,Ei〉〈Ei,Ej 〉Ej

)∥∥∥∥∥
2

i,j=1
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=
∥∥∥∥∥

n∑
i=1

(
V − 〈V,Ei〉Ei

)∥∥∥∥∥
2

= ∥∥(n − 1)V
∥∥2

. (16)

In order to compute the last term in (14) we decompose A = A1 +A2 +A3 with Aα ∈ Tα(TpM).
From Remark 2.3 we get

〈A, Â〉 =
3∑

α=1

〈Aα, Âα〉.

For the vectorial part we get

〈A1, Â1〉 =
n∑

i,j,k=1

(
δij 〈V,Ek〉 − δik〈V,Ej 〉

) · (δji〈V,Ek〉 − δjk〈V,Ei〉
)

=
n∑

i,j,k=1

(
δij 〈V,Ek〉2 − δij δjk〈V,Ek〉〈V,Ei〉 − δikδji〈V,Ej 〉〈V,Ek〉

+ δikδjk〈V,Ej 〉〈V,Ei〉
)

= (n − 1)‖V ‖2. (17)

For the totally anti-symmetric part we get

〈A2, Â2〉 =
n∑

i,j,k=1

TEiEj Ek
TEj EiEk

= −
n∑

i,j,k=1

TEiEj Ek
TEiEj Ek

= −‖T ‖2. (18)

Finally, for the Cartan-type part we get

〈A3, Â3〉 =
n∑

i,j,k=1

SEiEj Ek
SEj EiEk

= −
n∑

i,j,k=1

(SEiEj Ek
SEiEkEj

+ SEiEj Ek
SEkEj Ei

) (19)

=
n∑

i,j,k=1

SEiEj Ek
SEiEj Ek

−
n∑

i,j,k=1

SEiEkEj
SEkEiEj

(20)

= 1

2
‖S‖2, (21)

where (19) is due to the cyclic identity for S, (20) follows from the anti-symmetry in the last
two entries, and

∑n
i,j,k=1 SEiEkEj

SEkEiEj
= 〈A3, Â3〉 implies (21). Plugging (15)–(21) into (14)

finishes the proof. �
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Corollary 2.6. Let M be a closed manifold of dimension n � 3 with Riemannian metric g and
orthogonal connection ∇ . Let dvol denote the Riemannian volume measure taken with respect
to g. Then the Einstein–Cartan–Hilbert functional is∫

M

R dvol =
∫
M

Rg dvol−(n − 1)(n − 2)

∫
M

‖V ‖2 dvol−
∫
M

‖T ‖2 dvol+1

2

∫
M

‖S‖2 dvol .

Considering variations over all Riemannian metrics, for which the volume volg(M) stays
fixed, and all orthogonal connections (i.e. over all torsion tensors), we get that (M,g,∇) is
a critical point of the Einstein–Cartan–Hilbert functional if and only if (M,g) is an Einstein
manifold and ∇ = ∇g is the Levi-Civita connection (i.e. V ≡ 0, T ≡ 0 and S ≡ 0).

For an in depth treatment of the physical consequences of Einstein–Cartan–Hilbert theory in
Lorentzian geometry we refer to the classical review [24] and the more recent overview [30] and
references therein.

3. Curvature calculations in case of totally anti-symmetric torsion in four dimensions

Let us collect now some equalities involving curvature tensors and the totally anti-symmetric
torsion. To keep the main part of this paper as readable as possible the proofs of the following
theorems and lemmata have been allocated to Appendix A.

We consider a 4-dimensional manifold M equipped with a Riemannian metric g. Let ∇g

denote the Levi-Civita connection on the tangent bundle. We fix some 3-form T on M and some
s ∈ R, and we are studying the connection ∇ which is given by

∇XY = ∇g
XY + sT (X,Y, ·)� (22)

for any vector fields X and Y on M and T (X,Y, ·)� is defined as in (13). Hence ∇ is an orthonor-
mal connection with totally anti-symmetric torsion.

3.1. Pointwise equalities

In the following we want to express some curvature quantities for ∇ in terms of T and curva-
ture quantities for ∇g . For the Riemann curvature and the scalar curvature we will calculate the
norms explicitly in terms of T , the Levi-Civita connection and its curvatures. The norm of the
Ricci curvature is given in Appendix A.

As in Section 2 we fix some point p ∈ M , and we extend any tangent vectors X,Y,Z,W ∈
TpM to vector fields again denoted by X,Y,Z,W being synchronous in p. Hence we obtain
from (4) the Riemann curvature of ∇

〈
Riem(X,Y )Z,W

〉= 〈Riemg(X,Y )Z,W
〉+ s

((∇g
XT
)
(Y,Z,W) − (∇g

Y T
)
(X,Z,W)

)
+ s2(T (X,T (Y,Z, ·)�,W )− T

(
Y,T (X,Z, ·)�,W ))

= 〈Riemg(X,Y )Z,W
〉+ s

((∇g
XT
)
(Y,Z,W) − (∇g

Y T
)
(X,Z,W)

)
+ s2(〈T (X,Z, ·)�, T (Y,W, ·)�〉− 〈T (Y,Z, ·)�, T (X,W, ·)�〉). (23)
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We used the identity T (X,T (Y,Z, ·)�,W) = −〈T (X,W, ·)�, T (Y,Z; ·)�〉, which follows
from (13).

From (6) we conclude that the Ricci curvature of ∇ for any orthonormal, synchronous frame
E1, . . . ,En defined on some neighbourhood of p is

ric(X,Y ) = ricg(X,Y ) + s

n∑
i=1

(∇g
Ei

T
)
(X,Y,Ei) − s2

n∑
i=1

〈
T (Ei,X, ·)�, T (Ei, Y, ·)�〉. (24)

This formula shows that in general the Ricci curvature is not symmetric in X and Y .
From Lemma 2.5 we get for the scalar curvature R of ∇ that

R = Rg − s2‖T ‖2. (25)

Next, we are aiming at finding an expression for the norm of the Riemann tensor. As the vector
fields X,Y,Z,W are synchronous in p we get for the differential dT and the codifferential δT

of the 3-form T :

dT (X,Y,Z,W) = (∇g
XT
)
(Y,Z,W) − (∇g

Y T
)
(X,Z,W)

+ (∇g
ZT
)
(X,Y,W) − (∇g

WT
)
(X,Y,Z), (26)

δT (X,Y ) = −
n∑

i=1

(∇g
Ei

T
)
(X,Y,Ei). (27)

We define the (4,0)-tensors riem and riemg by

riem(g)(X,Y,Z,W) = 〈Riem(g)(X,Y )Z,W
〉
. (28)

We decompose the Riemann tensor into its symmetric and anti-symmetric component

riem(X,Y,Z,W) = riemS(X,Y,Z,W) + riemA(X,Y,Z,W). (29)

The symmetric part of riem is

riemS(X,Y,Z,W) = 1

2

(
riem(X,Y,Z,W) + riem(Z,W,X,Y )

)
and the anti-symmetric part of riem is then given by

riemA(X,Y,Z,W) = 1

2

(
riem(X,Y,Z,W) − riem(Z,W,X,Y )

)
.

Since riemS and riemA are orthogonal with respect to the scalar product of (4,0)-tensors, as
defined in (57), we find

‖Riem‖2 = ‖riem‖2 = ∥∥riemS
∥∥2 + ∥∥riemA

∥∥2
. (30)

We also decompose the Ricci curvature into its symmetric and its anti-symmetric components
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ric(X,Y ) = ricS(X,Y ) + ricA(X,Y ),

with ricS(X,Y ) = 1

2

(
ric(X,Y ) + ric(Y,X)

)
and

ricA(X,Y ) = 1

2

(
ric(X,Y ) − ric(Y,X)

)
. (31)

Now we give an explicit formula for ‖riem‖2 in the case of M being 4-dimensional.

Theorem 3.1. Let M be a 4-dimensional manifold with Riemannian metric g and connection ∇
as given in (22). Then the norm of the Riemann tensor of ∇ is given by

‖Riem‖2 = ∥∥riemg
∥∥2 + 1

3
s4‖T ‖4 + 1

4
s2‖dT ‖2 − 1

3
s2Rg‖T ‖2

+ 4s2B(T ) + ∥∥riemA
∥∥2

(32)

with

B(T ) =
∑
i,j,k

ricg(Ei,Ek)
〈
T (Ei,Ej , ·)�, T (Ej ,Ek, ·)�

〉+ 1

4
Rg‖T ‖2.

Proof. See Appendix A. �
We notice that the term B(T ) couples the torsion to the Ricci curvature, and the term ‖riemA ‖2

is being computed in Lemma A.3.

3.2. Integral formulas

In this section (M,g) will be a closed, 4-dimensional Riemannian manifold. We will exploit
the topological invariance of the Euler characteristic to deduce integral formulas for 3-forms
defined on M .

Definition 3.2. Let ∇ be an orthogonal connection on M and let Riemij (X,Y ) :=
〈Riem(Ei,Ej )X,Y 〉 be its curvature 2-form defined by Eq. (4). Define the 4-form

K = 1

32π2

4∑
i,j,k,l=1

εijkl Riemij ∧Riemkl,

where εijkl is the totally anti-symmetric tensor with normalisation ε1234 = +1.

One obtains the classical result for the interplay between the topological invariant Euler char-
acteristic χ(M) and the curvature 2-form of ∇:
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Theorem 3.3. The Euler characteristic of M is

χ(M) =
∫
M

K.

Proof. For a proof of this theorem we refer to [26, Vol. II, Chapter XII, Theorem 5.1]. �
In four dimensions the Euler characteristic can be expressed in a particularly convenient form

in terms of squares of the Riemann, Ricci and scalar curvature of ∇ .

Theorem 3.4. Let ∇ be an orthogonal connection on M and let riem = riemS + riemA, ric =
ricS + ricA and R be the Riemann curvature, the Ricci curvature and the scalar curvature of ∇
decomposed into their symmetric and anti-symmetric parts according to (29) and (31). Then the
Euler characteristic χ(M) is

χ(M) = 1

8π2

∫
M

(
R2 − 4

∥∥ricS
∥∥2 + 4

∥∥ricA
∥∥2 + ∥∥riemS

∥∥2 − ∥∥riemA
∥∥2)dvol .

Proof. See Appendix A. �
The classical result for the Euler characteristic in terms of the curvatures of the Levi-Civita

connection is due to Berger [3], and it follows immediately from the above theorem:

Corollary 3.5. Let M be a 4-dimensional manifold with Riemannian metric g and Levi-Civita
connection ∇g . Then the Euler characteristic χ(M) is given by

χ(M) = 1

8π2

∫
M

((
Rg
)2 − 4

∥∥ricg
∥∥2 + ∥∥riemg

∥∥2)dvol .

Proof. For ∇g we have riemS = riemg , ricS = ricg and hence riemA ≡ 0 and ricA ≡ 0. �
The fact that the Euler characteristic does not depend on the connection allows us to deduce a

useful integral formula for 3-forms on closed Riemannian 4-manifolds.

Lemma 3.6. Let M be a closed 4-dimensional manifold with Riemannian metric g and T any
3-form on M . Let Rg denote the scalar curvature of the Levi-Civita connection ∇g . Then∫

M

4‖δT ‖2 dvol =
∫
M

(
1

3
Rg‖T ‖2 − 1

4
‖dT ‖2 + 4B(T ) + 1

s2

∥∥riemA
∥∥2
)

dvol (33)

with B(T ) as defined in Theorem 3.1 and riemA is the anti-symmetric component of the Riemann
curvature of ∇ with sT as torsion 3-form.

Proof. See Appendix A. �
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4. Dirac operators associated to orthogonal connections

In this section we consider an n-dimensional oriented Riemannian manifold (M,g) equipped
with some spin structure. Let ∇ be an orthogonal connection given as in (1)–(3). Then the con-
nection ∇ acting on vector fields induces a connection acting on spinor fields. Next, we will
briefly discuss the construction of this connection (compare [1, p. 17f], or see [27, Chapter II.4]
for more details). Again, we write ∇XY = ∇g

XY + A(X,Y ) with the Levi-Civita connection ∇g .
For any X ∈ TpM the endomorphism A(X, ·) is skew-adjoint and hence it is an element of
so(TpM) ∼=∧2

TpM , we can express it as

A(X, ·) =
∑
i<j

αijEi ∧ Ej . (34)

Here Ei ∧ Ej is meant as the endomorphism of TpM defined by Ei ∧ Ej(Z) = 〈Ei,Z〉Ej −
〈Ej ,Z〉Ei . For any X ∈ TpM one determines the coefficients in (34) by

αij = 〈A(X,Ei),Ej

〉= AXEiEj
. (35)

Each Ei ∧ Ej lifts to 1
2Ei · Ej in spin(n), and the spinor connection induced by ∇ is locally

given by

∇Xψ = ∇g
Xψ + 1

2

∑
i<j

αijEi · Ej · ψ = ∇g
Xψ + 1

2

∑
i<j

AXEiEj
Ei · Ej · ψ. (36)

Remark 4.1. The connection given by (36) is compatible with the metric on spinors and with
Clifford multiplication (see e.g. [1, Lemma 2.1]).

Remark 4.2. For totally anti-symmetric torsion, given by a 3-form T as in Corollary 2.4, one
can rewrite (36) as

∇Xψ = ∇g
Xψ + 1

2
(X�T ) · ψ,

where X�T is the 2-form defined by X�T (X,Z) = T (X,Y,Z). We recall that a k-form ω ∈∧k
TpM , given as ω =∑i1,...,ik

ωi1,...,ikEi1
� ∧ · · · ∧ Eik

�, acts on the spinor space as ω · ψ =∑
i1,...,ik

ωi1,...,ikEi1 · · · · · Eik · ψ .

Remark 4.3. Not any connection on spinor fields is induced by an orthogonal connection on
tangent vector fields. For example, for the connection ∇Xψ = ∇g

Xψ +X ·ψ the endomorphism α

of spinors defined by

α(ψ) = ∇X(Y · ψ) − Y · (∇Xψ) (37)

is given by multiplication by the Clifford element ∇g
XY + X · Y − Y · X, which does not equal

to the Clifford multiplication by any tangent vector. This consideration applies in any dimension
n � 2.
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Remark 4.4. If we assume that for a spinor connection ∇ for any vector fields X,Y the endo-
morphism α defined in (37) is the Clifford multiplication by a tangent vector VX,Y , i.e. α(ψ) =
VX,Y · ψ for all spinors ψ , then it can be shown that the assignment ∇XY = VX,Y defines an or-
thogonal connection on tangent vector fields such that the spinor connection is compatible with
the Clifford multiplication. In that case, physics literature occasionally refers to (37) as the tetrad
postulate.

The Dirac operator associated to the spinor connection from (36) is defined as

Dψ =
n∑

i=1

Ei · ∇Ei
ψ

= Dgψ + 1

2

n∑
i=1

∑
j<k

AEiEj Ek
Ei · Ej · Ek · ψ

= Dgψ + 1

4

n∑
i,j,k=1

AEiEj Ek
Ei · Ej · Ek · ψ, (38)

where Dg is the Dirac operator induced by the Levi-Civita connection.
The next theorem tells us when the Dirac operator D is formally selfadjoint (i.e. symmetric

on the space of compactly supported smooth spinor fields as domain), it is provided as Satz 2
in [17]:

Theorem 4.5. The Dirac operator D is formally selfadjoint if and only if the divergence of ∇
coincides with the divergence of ∇g , i.e. for any vector field Z one has

n∑
i=1

〈∇Ei
Z,Ei〉 =

n∑
i=1

〈∇g
Ei

Z,Ei

〉
(39)

in any point p and for any orthonormal basis E1, . . . ,En of TpM . �
Taking the specific form of ∇XY = ∇g

XY + A(X,Y ) into account, we see that (39) is equiva-
lent to

c12(A)(Z) =
n∑

i=1

〈
A(Ei,Ei),Z

〉= −
n∑

i=1

〈
A(Ei,Z),Ei

〉= 0.

Hence, we can conclude from Remark 2.2:

Corollary 4.6. The Dirac operator D associated to an orthogonal connection is formally self-
adjoint if and only if the (3,0)-torsion tensor A does not have any vectorial component, i.e. one
has

Ap ∈ T2(TpM) ⊕ T3(TpM)

in any point p ∈ M. �
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The next lemma states that for the Dirac operator the Cartan-type component of the torsion is
invisible:

Lemma 4.7. On a Riemannian spin manifold we consider some vector field V , some 3-form T

and some (3,0)-tensor field S with Sp ∈ T3(TpM) for any p ∈ M . Let ∇1 and ∇2 be the ortho-
gonal connections determined by

A1(X,Y ) = 〈X,Y 〉V − 〈V,Y 〉X + T (X,Y, ·)� + S(X,Y, ·)� and

A2(X,Y ) = 〈X,Y 〉V − 〈V,Y 〉X + T (X,Y, ·)�,
respectively (compare Corollary 2.4). Denote the associated Dirac operators by D1 and D2.
Then, for any spinor field ψ one has

D1ψ = D2ψ.

Proof. By (38) the difference of the two Dirac operators is

D1ψ − D2ψ = 1

4

n∑
i,j,k=1

SEiEj Ek
Ei · Ej · Ek · ψ. (40)

We use the cyclic identity for S, the fact that S is trace-free in any pair of entries and the Clifford
relations Ei · Ej = −Ej · Ei for i �= j as well, in order to obtain:

n∑
i,j,k=1

SEiEj Ek
Ei · Ej · Ek = −

n∑
i,j,k=1

SEj EkEi
Ei · Ej · Ek −

n∑
i,j,k=1

SEkEiEj
Ei · Ej · Ek

= −
n∑

i,j,k=1

SEj EkEi
Ej · Ek · Ei −

n∑
i,j,k=1

SEkEiEj
Ek · Ei · Ej

= −2
n∑

i,j,k=1

SEiEj Ek
Ei · Ej · Ek.

Therefore we get
∑n

i,j,k=1 SEiEj Ek
Ei · Ej · Ek = 0, and the right hand side of (40) is zero. �

One should note that the above lemma applies pointwise.

Remark 4.8. In the Lorentzian case it is known that torsion of Cartan-type does not contribute to
the Dirac action under the integral [30, Chapter 2.3]. It is also known that the Dirac action is not
real if the torsion has a non-vanishing vectorial component [19, Chapter 11.6]. Therefore only
totally anti-symmetric torsion is considered to couple to fermions reasonably.

The spinor connection in (36) is the connection which is induced by the tangent vector con-
nection ∇ given in (1), hence one expects that their curvatures are related. Let (E1, . . . ,En) be
an arbitrary local orthonormal frame. For i, j the curvature endomorphism w.r.t. this frame is
defined as
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Ωijψ = ∇Ei
∇Ej

ψ − ∇Ej
∇Ei

ψ − ∇[Ei,Ej ]ψ.

These curvature endomorphisms for spinors can be naturally determined by the Riemann tensor
for tangent vectors, compare with formula (4.37) in Theorem 4.15 of [27, Chapter II].

Lemma 4.9. For the spinor connection ∇ defined in (36) the curvature endomorphisms in p are
given by

Ωijψ = 1

4

∑
a,b

〈
Riem(Ei,Ej )Ea,Eb

〉
Ea · Eb · ψ

with Riemann tensor as defined in (4). �
Corollary 4.10. Let tr denote the trace over the spinor space over some footpoint p. Then one
has

n∑
i,j=1

tr(ΩijΩij ) = −1

8
· 2[n/2] · ‖Riem‖2

where Riem is the Riemann tensor of the vector connection ∇ .

Proof. The spinor space has dimension 2[n/2]. If a �= b and c �= d the Clifford relations imply

tr(Ea · Eb · Ec · Ed) = 2[n/2](δbcδad − δbdδac).

From Lemma 4.9 we derive∑
i,j

tr(ΩijΩij )

= 1

16

∑
i,j

∑
a �=b

∑
c �=d

〈
Riem(Ei,Ej )Ea,Eb

〉〈
Riem(Ei,Ej )Ec,Ed

〉
tr(Ea · Eb · Ec · Ed)

= 1

16
· 2[n/2]∑

i,j

∑
a �=b

(〈
Riem(Ei,Ej )Ea,Eb

〉〈
Riem(Ei,Ej )Eb,Ea

〉
− 〈Riem(Ei,Ej )Ea,Eb

〉〈
Riem(Ei,Ej )Ea,Eb

〉)
= −1

8
· 2[n/2]∑

i,j

∑
a �=b

(〈
Riem(Ei,Ej )Ea,Eb

〉)2
= −1

8
· 2[n/2] · ‖Riem‖2,

where we have used the anti-symmetry of Riem(Ei,Ej )Ea,Eb in the indices a and b, which
holds due to (5). �
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5. Commutative geometries and the spectral action principle

In this section we want to discuss torsion connections within the framework of Connes’ non-
commutative geometry (see [11]). Let M be a closed Riemannian manifold of dimension n with
some fixed spin structure. We denote the algebra of smooth functions by A = C∞(M), and we
denote the Hilbert space of square integrable spinor fields by H. The Dirac operator Dg associ-
ated to the Levi-Civita connection is a selfadjoint operator in H. The triple (A, H,Dg) forms a
canonical spectral triple, and it satisfies all axioms for commutative geometry (see [12], or [21]
for more details).

Now, let ∇ be an orthogonal connection on the tangent bundle of M , and let D denote the
associated Dirac operator. By Corollary 4.6 we know that D is symmetric if and only if the vec-
torial component of the torsion of ∇ is zero. In that case D is the sum of a selfadjoint operator and
a bounded symmetric one, and thus selfadjoint. We notice that D has the same principal symbol
and the same Weyl asymptotics as Dg . Furthermore, we note that any natural algebraic structure
on the spinor space such as a real structure or the Clifford multiplication with the volume element
is parallel with respect to any spinor connection which is induced by an orthogonal connection
on the tangent bundle. Therefore D commutes or anti-commutes with such a structure exactly if
Dg does. Following the details of the proof of [21, Theorem 11.1] we see that these observations
suffice to verify all axioms for commutative geometry and we conclude:

Lemma 5.1. If the vectorial component of the torsion of ∇ is zero, the spectral triple (A, H,D)

satisfies the axioms for commutative geometry. �
Connes’ Reconstruction Theorem (conjectured in [12], proved in [14]) states that, given a

commutative geometry (A, H,D), one can construct a differentiable spin manifold such that
A coincides with the smooth functions on it. Then, from the data (A, H,D) one also gets a
Riemannian metric and one obtains that H is isomorphic to the square integrable spinor fields
(for some spin structure) (see [13, Théorème 6]), and the natural Dirac operator we can always
construct is the one induced by the Levi-Civita connection.

In the above situation of Lemma 5.1, one can algebraically recover the totally anti-symmetric
torsion component from the spectral triple (A, H,D) if the underlying manifold M has even
dimension. This can be done by considering the endomorphism of spinors given as difference
of D and the Levi-Civita Dirac operator Dg , see (38). In even dimensions the complex Clifford
algebra and the space of endomorphisms of the spinor space are identical (see [16, Proposition
on p. 13]), and hence the endomorphism D − Dg can be uniquely determined as a 3-form. In
odd dimensions this argument does not apply, as one easily sees by noticing that e.g. in the
3-dimensional case the volume form acts as multiple of the identity on the spinor space.

By Lemma 4.7 the Cartan-type component of the torsion is invisible for the Dirac operator D,
and therefore it cannot be recovered from (A, H,D). This can be interpreted as some sort of
gauge freedom, which is schematically illustrated in Fig. 1.

Remark 5.2. For some even-dimensional compact Riemannian manifold M with a given spin
structure we fix A = C∞(M) and H the space of square integrable spinor fields. The above
considerations show that one has a family of Dirac operators parametrized by the 3-forms T ∈
Ω3(M) such that the associated spectral triples are pairwise distinct commutative geometries.
Notice that all these Dirac operators are in the same K-homology class since they all have the
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Fig. 1. Cartan-type component S of torsion is invisible for Dirac operator (gauge freedom).

same principal symbol. We leave it open how big the class of first order operators D in H is for
which (A, H,D) forms a commutative geometry.

Remark 5.3. For spectral triples of odd KO-dimension it has recently been shown in [31, Propo-
sition 1.2] that one can modify the Dirac operator by adding a term induced by a selfadjoint
element of the algebra A and still finds the axioms of spectral triples satisfied. In the case of
A = C∞(M) and KO-dimensions 3 or 7 modulo 8, i.e. M is of dimension 3 or 7 modulo 8, this
modification is realised by adding a real-valued function Φ ∈ A to the Dirac operator, see [31,
Remark 1.3].

In the following we will only consider orthogonal connections ∇ with zero vectorial com-
ponent to ensure selfadjointness of the induced Dirac operator D. For the computation of the
Chamseddine–Connes spectral action (see [9]) we need the Seeley–deWitt coefficients a2k(D

2)

of the heat trace asymptotics [18]

Tr
(
e−tD2)∼∑

k�0

tk−n/2a2k

(
D2) as t → 0.

Proposition 5.4. The first two Seeley–deWitt coefficients are

a0
(
D2)= 1

(4π)n/2
2[n/2]

∫
M

dvol,

a2
(
D2)= 1

(4π)n/2
2[n/2]

∫
M

(
3

4
‖T ‖2 − 1

12
Rg

)
dvol .

Proof. By Lemma 4.7 we can assume without loss of generality that the Cartan-type component
of the torsion vanishes. The orthogonal connection ∇ is given by ∇XY = ∇g

XY + T (X,Y, ·)�.
Adapting [2, Theorem 6.2] into our notation we get the Bochner formula

D2 = � + 3

2
dT + 1

4
Rg − 3

4
‖T ‖2 (41)

where � is the Laplacian associated to the spin connection
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∇̃Xψ = ∇g
Xψ + 3

2
(X�T ) · ψ, (42)

which is induced (as in Remark 4.2) by the orthogonal connection

∇̃XY = ∇g
XY + 3T (X,Y, ·)�. (43)

We notice that the trace of dT taken over the spinor space is zero due to Clifford relations. Insert-
ing this into the general formulas for the Seeley–deWitt coefficients (see [18, Theorem 4.1.6])
the claim follows. �

If we consider the spectral action given by the a2(D
2) and variations with respect to the

torsion 3-form T we find that T = 0 is the only possibility for critical points. Therefore this
spectral action detects the Dirac operator induced by the Levi-Civita connection within the class
of Dirac operators induced by orthogonal connections without vectorial torsion. We note that this
holds in any dimension. This is in complete accordance with [15, Section 18.2].

The computation of a4(D
2) is more involved, we will give it only for 4-dimensional mani-

folds. In [25] it has been noted that some terms given in [23] vanish. Similar results have been
found before (compare [20,28,22]). The calculation given below is elementary, it takes place
essentially in the tangent bundle and should therefore be easily accessible.

Proposition 5.5. If M is 4-dimensional, the third Seeley–deWitt coefficient is

a4
(
D2)= 11

720
χ(M) − 1

320π2

∫
M

‖C‖2 dvol− 3

32π2

∫
M

‖δT ‖2 dvol, (44)

where C is the Weyl curvature of M (computed from the Levi-Civita connection).

Proof. We read (41) as D2 = � − E with potential E = − 3
2 dT − 1

4Rg + 3
4‖T ‖2. From [18,

Theorem 4.1.6, c)] we get

a4
(
D2)= 1

5760π2

∫
M

(
tr

(
60RgE + 180E2 + 30

∑
i,j

ΩijΩij

)

+ 20
(
Rg
)2 − 8

∥∥ricg
∥∥2 + 8

∥∥Riemg
∥∥2
)

dvol,

where we have omitted the terms that integrate to zero over the closed manifold M (Laplacians
of functions). The term Ωij is the curvature endomorphism for the spinor connection ∇̃ . The
traces over the spinor space are

tr(E) = −Rg + 3‖T ‖2,

tr
(
E2)= 1

4

(
Rg
)2 − 3

2
Rg‖T ‖2 + 9

4
‖T ‖4 + 9

24
‖dT ‖2,

where we note that tr(ω2) = 1
6‖ω‖2 for any ω ∈∧4. For the orthogonal connection ∇̃ on the

tangent bundle we denote the Riemannian curvature by Riem and apply Corollary 4.10. Then we
get
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a4
(
D2)= 1

16π2

1

360

∫
M

(
5
(
Rg
)2 − 8

∥∥Ricg
∥∥2 + 8

∥∥Riemg
∥∥2 − 15‖Riem‖2

− 90Rg‖T ‖2 + 405‖T ‖4 + 135

2
‖dT ‖2

)
dvol

= 1

16π2

1

360

∫
M

(
5
(
Rg
)2 − 8

∥∥Ricg
∥∥2 − 7

∥∥Riemg
∥∥2)dvol

− 1

16π2

1

8

∫
M

(
Rg‖T ‖2 − 3

4
‖dT ‖2 + 12B(T ) + 1

3

∥∥riemA
∥∥2
)

dvol

by means of Proposition 3.1. With Lemma 3.5 we identify the first integral as the Euler charac-
teristic plus the square of the Weyl curvature. Lemma 3.6 shows that the second integral equals

1

16π2

1

8

∫
M

(
Rg‖T ‖2 − 3

4
‖dT ‖2 + 12B(T ) + 1

3

∥∥riemA
∥∥2
)

dvol = 1

16π2

3

2

∫
M

‖δT ‖2 dvol .

This finishes the proof. �
Next, we want to consider the Chamseddine–Connes spectral action (see [9]) for the Dirac

operator D. For Λ > 0 it is defined as

ICC = TrF

(
D2

Λ2

)
where Tr denotes the operator trace over H as before, and F : R+ → R+ is a cut-off function with
support in the interval [0,+1] which is constant near the origin. Using the heat trace asymptotics
one gets an asymptotic expression for ICC as Λ → ∞ (see [10] for details):

ICC = TrF

(
D2

Λ2

)
= Λ4F4a0

(
D2)+ Λ2F2a2

(
D2)+ Λ0F0a4

(
D2)+ O

(
Λ−∞) (45)

with the first three moments of the cut-off function which are given by F4 = ∫∞
0 s · F(s) ds,

F2 = ∫∞
0 F(s) ds and F0 = F(0). Note that these moments are independent of the geometry of

the manifold.
Now we want to deduce the equation of motion for ICC . In analogy to the Riemannian

Einstein–Hilbert case we consider variations with respect to the metric and the torsion 3-form
while keeping the volume fixed. Then a0(D

2) and χ(M) are constant and their variation van-
ishes. In order to avoid further complications we neglect the contributions of the O(Λ−∞)-term.
Therefore we will consider the following action functional

ĨCC = −α

∫
M

Rg dvol−β

∫
M

‖C‖2 dvol+γ1

∫
M

‖T ‖2 dvol−γ2

∫
M

‖δT ‖2 dvol, (46)

where α,β, γ1, γ2 > 0.
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Before we proceed let us briefly recall the standard scalar product on k-forms induced by a
Riemannian metric g (compare e.g. with [5]). Let E1, . . . ,En be an orthonormal basis of some
tangent space TpM . Then the scalar product on

∧k
T ∗

p M is uniquely determined by the re-
quirement that E∗

i1
∧ · · · ∧ E∗

ik
, i1 < · · · < ik , form an orthonormal basis. In local coordinates

(x1, . . . , xn) it can be written as follows: for ω,η ∈∧k
T ∗

p M with

ω =
∑

i1<···<ik

ωi1···ik dxi1 ∧ · · · ∧ dxik , η =
∑

i1<···<ik

ηi1···ik dxi1 ∧ · · · ∧ dxik ,

where the coefficients ωi1···ik , ηi1···ik are anti-symmetric in the indices i1 · · · ik , the scalar product
is then given as

〈ω,η〉g = 1

k!
∑

i1,...,ik
j1,...,jk

gi1j1 · · ·gikjkωi1···ik ηj1···jk
. (47)

Referring to the norm of 2-forms and 3-forms as used above we note that 〈S,S〉g = 1
2‖S‖2,

〈T ,T 〉g = 1
6‖T ‖2 for S ∈∧2

T ∗
p M and T ∈∧3

T ∗
p M , compare (58). With respect to this scalar

product the Hodge ∗-operator is an isometry, and on a 4-manifold the L2-adjoint of d is δ =
− ∗ d∗ independently of the degree k of the form. For 3-forms δ is given as in (27).

Let g be a Riemannian metric on M . For any k-form η on M we define a symmetric (2,0)-
tensor gη for k � 2 by

gη(X,Y ) = 〈X�η,Y�η〉g
and for k = 1 by

gη(X,Y ) = X�η · Y�η = η(X)η(Y ) for any tangent vectors X,Y.

For (2,0)-tensors a and h the natural scalar product defined in (57) reads as

〈a,h〉 =
∑
r,s
i,j

aij g
irgjshrs, (48)

in local coordinates, as above.

Lemma 5.6. Let (g(t))t be a smooth family of Riemannian metrics on M with g(0) = g and
ġ(0) = h, and let k � 1. Then for any k-form η on M we get

d

dt

∣∣∣∣
t=0

〈η,η〉g(t) = −〈gη,h
〉
.

Proof. In coordinates we write η =∑i1<···<ik
ηi1···ik dxi1 ∧· · ·∧dxik with ηi1···ik anti-symmetric

in the indices. We recall that d |t=0g
ij (t) = −∑ girhrsg

js and use (47) to obtain

dt r,s
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d

dt

∣∣∣∣
t=0

〈η,η〉g(t) = − 1

k!
∑
r,s

( ∑
i1,...,ik
j1,...,jk

ηi1···ik ηj1···jk

k∑
m=1

gi1j1 · · · ĝimjm · · ·gikjkgimrgjms

)
hrs

= − 1

(k − 1)!
∑
r,s

( ∑
i1,...,ik
j1,...,jk

ηi1···ik ηj1···jk
gi2j2 · · ·gikjk

)
gi1rgj1shrs

= −
∑
r,s

i1,j1

(
gη
)
i1j1

gi1rgj1shrs

= −〈gη,h
〉
,

where we have used the total anti-symmetry of ηi1···ik in the indices for the second equality. �
Theorem 5.7. Any critical point (M,g,T ) of ĨCC satisfies

0 = 3γ1T − γ2 dδT , (49)

0 = αGg − βBg + γ1

(
−6g∗T + 1

2
‖T ‖2g

)
− γ2

(
−2gd∗T + 1

2
‖δT ‖2g

)
(50)

where Gg = ricg − 1
2Rgg is the Einstein tensor of the metric g and Bg denotes its Bach tensor

(for a definition see [4, (4.77)]).

Proof. Let (M,g,T ) be a critical point. We consider an arbitrary variation T (t) of 3-forms with
T (0) = T and Ṫ (0) = τ . Then we have

0 = d

dt

∣∣∣∣
t=0

∫
M

(
γ1
∥∥T (t)

∥∥2 − γ2
∥∥δT (t)

∥∥2)dvol

= d

dt

∣∣∣∣
t=0

∫
M

(
6γ1
〈
T (t), T (t)

〉
g

− 2γ2
〈
δT (t), δT (t)

〉
g

)
dvol

=
∫
M

〈3γ1T − γ2 dδT ,4τ 〉g dvol

since d is the adjoint of δ. As τ can be chosen arbitrarily we have established (49).
Now we fix T and consider an arbitrary variation g(t) of Riemannian metrics with g(0) = g

and ġ(0) = h. In the following we label any object which depends on g(t). First we note that
d
dt

|t=0 dvolg(t) = 〈g,h〉dvolg and by help of Lemma 5.6 we compute

d

dt

∣∣∣∣
t=0

∫
M

‖T ‖2
g(t) dvolg(t)

= d

dt

∣∣∣∣
t=0

∫
6〈T ,T 〉g(t) dvolg(t)
M
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= d

dt

∣∣∣∣
t=0

∫
M

6〈∗g(t)T ,∗g(t)T 〉g(t) dvolg(t)

= 3
∫
M

(〈−2g∗gT + 〈∗gT ,∗gT 〉gg,h
〉+ 4

〈
∗gT ,

d

dt

∣∣∣∣
t=0

(∗g(t)T )

〉
g

)
dvolg

=
∫
M

(〈
−6g∗gT + 1

2
‖T ‖2g,h

〉
+ 12

〈
∗gT ,

d

dt

∣∣∣∣
t=0

(∗g(t)T )

〉
g

)
dvolg . (51)

Now we calculate

d

dt

∣∣∣∣
t=0

∫
M

‖δg(t)T ‖2
g(t) dvolg(t) = d

dt

∣∣∣∣
t=0

∫
M

2〈δg(t)T , δg(t)T 〉g(t) dvolg(t)

= d

dt

∣∣∣∣
t=0

∫
M

2〈d ∗g(t) T , d ∗g(t) T 〉g(t) dvolg(t)

=
∫
M

(〈−2gd∗gT + 〈d ∗g T , d ∗g T 〉gg,h
〉

+ 4

〈
δgd ∗g T ,

d

dt

∣∣∣∣
t=0

(∗g(t)T )

〉
g

)
dvolg

=
∫
M

(〈
−2gd∗gT + 1

2
‖δgT ‖g,h

〉

+ 12
γ1

γ2

〈
∗gT ,

d

dt

∣∣∣∣
t=0

(∗g(t)T )

〉
g

)
dvolg (52)

where we have inserted 3γ1 ∗gT = γ2δgd ∗gT which we obtained from (49).
Finally [4, Proposition 4.17] and [4, (4.77)] tell us that

d

dt

∣∣∣∣
t=0

∫
M

(−αRg(t) − β
∥∥Cg(t)

∥∥2
g(t)

)
dvolg(t) =

∫
M

〈
αGg − βBg,h

〉
dvolg . (53)

Combining (51), (52) and (53) gives the assertion (50). �
Remark 5.8. a) Eq. (49) is a Proca equation for a 3-form. This suggests a physical interpretation
of torsion as a massive vector boson. This feature has been observed earlier in the Lorentzian
context, see [29], and appears to be natural for dynamical Lagrangians of the torsion.

b) Equivalently, the Proca equation (49) can be expressed as �T = γ2
3γ1

T under the condition
that dT = 0.

Remark 5.9. Ricci flat manifolds (M,g) with T = 0 are critical points of ĨCC . This follows from
the fact that Ricci flat manifolds have vanishing Bach tensors (see [4, Proposition 4.78]).
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Finding solutions for the equations of motions (49) and (50) with T �= 0 is a challenge. The
following lemmas show that classes of warped products with special choices of T can be ex-
cluded.

Lemma 5.10. Let (N,h) be a compact oriented 3-dimensional Riemannian manifold with con-
stant curvature, and let f : S1 → (0,∞) be some smooth function on the circle S1 = R/Z. Con-
sider M = S1 × N equipped with the warped product metric g = dt2 ⊕ f (t)2h. Let τ : M → R

be a smooth function and set the 3-form T = τ · π∗ dvol(N,h) where dvol(N,h) is the Rieman-
nian volume form of (N,h) and π : S1 × N → N is the canonical projection, and let this triple
(M,g,T ) solve the equations of motions (49) and (50). Then the torsion is zero: T = 0.

Proof. As (N,h) is locally conformally flat, so is the warped product (M,g). Therefore the Bach
tensor of (M,g) vanishes, Bg = 0. In order to get the Einstein tensor Gg we need to calculate
the curvatures of M . By X, Y , Z we denote vectors tangent to the leaves {t} × N , ∂

∂t
is the unit

normal vector field. For the Levi-Civita connection we obtain

∇g
X

∂

∂t
= ḟ (t)

f (t)
X, ∇g

∂
∂t

∂

∂t
= 0, ∇g

XY = ∇h
XY − ḟ (t)f (t)h(X,Y )

∂

∂t
,

where X,Y are also considered as tangent vectors fields of (N,h) and ∇h is the corresponding
Levi-Civita connection. The Riemann tensor of ∇g is given by

Riemg(X,Y )Z = Riemh(X,Y )Z +
(

ḟ (t)

f (t)

)2

· {g(X,Z)Y − g(Y,Z)X
}
,

Riemg

(
X,

∂

∂t

)
Y = f̈ (t)

f (t)
g(X,Y )

∂

∂t
,

Riemg

(
X,

∂

∂t

)
∂

∂t
= − f̈ (t)

f (t)
X.

From that we get the Ricci curvature and the scalar curvature

ricg =
(

−3
f̈ (t)

f (t)

)
dt2 ⊕ (rich −(f̈ (t)f (t) + 2

(
ḟ (t)

)2)
h
)
,

Rg = 1

f (t)2

(
Rh − 6f̈ (t)f (t) − 6

(
ḟ (t)

)2)
.

As (N,h) is assumed to have constant curvature there is a κ ∈ R such that rich = 2κh and
Rh = 6κ . Hence the Einstein tensor of (M,g) is

Gg = 3

f (t)2

((
ḟ (t)

)2 − κ
)
dt2 ⊕ (2f̈ (t)f (t) + (ḟ (t)

)2 − κ
)
h. (54)

Next, we consider normal coordinates (x1, x2, x3) of N about p such that ∂

∂x1 , ∂

∂x2 , ∂

∂x3 form an

orthonormal basis of TpN with respect to h. For the volume distortion
√

h, given by
√

h(x) =√
det(hij (x)), we get in p:
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√
h = 1,

∂

∂xi

√
h = 0,

3∑
i=1

∂2

(∂xi)2

√
h = −1

3
Rh(p) = −1

3
κ.

Now we take the product chart (t, x1, x2, x3) of M . In these coordinates the torsion 3-form T

reads as τ(t, x1, x2, x3)
√

h(x1, x2, x3) dx1 ∧dx2 ∧dx3. From (49) we get dT = 0 which implies
that ∂τ

∂t
≡ 0.

As dx1, dx2, dx3 is an orthonormal basis of T ∗
p N w.r.t. h, we get that dt, f dx1, f dx2, f dx3

form an orthonormal basis of T ∗
(t,p)M w.r.t. g. Hence, we get

‖T ‖2
g = 6〈T ,T 〉 = 6τ 2

f 6
. (55)

In (t,p) we get ∗T = τ(x1, x2, x3) 1
f (t)3 dt and thus

g∗T = τ 2

f (t)6
dt2. (56)

Furthermore we obtain d ∗ T = 1
f (t)3

∑3
i=1

∂τ
∂xi dxi ∧ dt , and therefore

gd∗T

(
∂

∂t
,

∂

∂t

)
= 1

f (t)6

∥∥gradg τ
∥∥2

g
,

gd∗T

(
∂

∂t
,

∂

∂xi

)
= 0,

gd∗T

(
∂

∂xi
,

∂

∂xj

)
= 1

f (t)6
dτ

(
∂

∂xi

)
· dτ

(
∂

∂xj

)
.

If we now assume that Eq. (50) holds, we observe that after restricting the occurring (2,0)-
tensors to T N every ingredient is a multiple of h except gd∗T . So (50) can only hold if dτ = 0.
Therefore the function τ is constant, and d ∗ T = 0 and so gd∗T = 0. Then we decompose (50)
into its dt2-component and its h-component:

3α

f (t)2

((
ḟ (t)

)2 − κ
)= 6γ1τ

2

f (t)6
− 6γ1τ

2

2f (t)6
,

α
(
2f̈ (t)f (t) + (ḟ (t)

)2 − κ
)= − 6γ1τ

2

2f (t)4
.

We divide the first equation by 3, the second one by (f (t))2, and substract the first from the
second. We get:

f̈ (t) = −γ1τ
2

· 1
5
.

α f (t)
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Since f > 0 and α > 0 we conclude that f̈ � 0 and therefore ḟ increases monotonically. On the
other hand ḟ being a function on S1 = R/Z is periodic. Therefore ḟ is constant and hence τ is
zero. �
Remark 5.11. It should be noted that with the ansatz in Lemma 5.10 one can obtain restrictions
on the geometry of (N,h) pointwise from Eq. (49). Namely, in the normal coordinates from
above one finds

dδT = −τ

3∑
i=1

∂2

(∂xi)2

√
h = 1

3
κT .

By (49) we have 1
3κ = 3γ1

γ2
> 0, therefore (N,h) is a spherical space form.

Remark 5.12. If we now consider formally the same equations of motions for Lorentzian mani-
folds, and if we admit also non-compact manifolds as solutions, the argument from the proof of
Lemma 5.10 cannot discard the Robertson–Walker ansatz M = R × N with g = −dt2 ⊕ f (t)2h

and T = τ · π∗ dvol(N,h) because in the above proof the compactness of S1 is essential.

One could argue that in the above examples the torsion T is not dynamical. In the last example
we consider a situation where torsion may be dynamical, and we show that the torsion vanishes
by other reasons.

Lemma 5.13. Let (N,h) be the flat torus T 3 = R3/Z3, let f : S1 → (0,∞) be some smooth
function. Consider M = S1 ×N equipped with the warped product metric g = dt2 ⊕f (t)2h. Let
τ : S1 → (0,∞) be a smooth function, and let

T = τ(t)
(
dx1 ∧ dx2 + dx2 ∧ dx3 + dx3 ∧ dx1)∧ dt.

Assume that the triple (M,g,T ) solves the equations of motions (49) and (50). Then the torsion
is zero: T = 0.

Proof. For the T as above we find

∗T = τ(t)

f (t)

(
dx3 + dx1 + dx2),

d ∗ T = f (t)τ̇ (t) − τ(t)ḟ (t)

f (t)2
dt ∧ (dx3 + dx1 + dx2).

Furthermore we get ‖T ‖2 = 18 · ( τ(t)

f (t)2 )2 and ‖δT ‖2 = 2
f (t)6 · (f (t)τ̇ (t) − ḟ (t)τ (t))2 and

g∗T

(
∂

∂t
,

∂

∂t

)
= 0,

gd∗T

(
∂

,
∂
)

= 3 · (f (t)τ̇ (t) − τ(t)ḟ (t))2

6
.

∂t ∂t f (t)
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Now we insert twice ∂
∂t

into the (2,0)-tensors of (50) and use the specific form of the Einstein
tensor (54). This yields

0 = 3α · (ḟ (t))2

(f (t))2
+ 9γ1 · (τ (t))2

(f (t))4
+ 5γ2 · (f (t)τ̇ (t) − τ(t)ḟ (t))2

(f (t))6
.

Since α,γ1, γ2 > 0 each summand is nonnegative, therefore each term vanishes individually, in
particular the second one. From this we conclude τ = 0. �
Remark 5.14. In the Lorentzian setting actions similar to ĨCC have already been considered and
some cosmological consequences for possible critical points with non-vanishing torsion have
been discussed (see e.g. [24] or [30] and the references therein).
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Appendix A. Proofs of Proposition 3.1, Theorem 3.4 and Lemma 3.6

We consider a manifold M equipped with a Riemannian metric g. For (k,0)-tensor fields S,
T on M one has pointwise the natural scalar product

〈S,T 〉 =
∑

i1,...,ik

S(Ei1, . . . ,Eik ) · T (Ei1, . . . ,Eik ), (57)

where (Ei)i is an orthonormal basis of the tangent space. This coincides with the definition given
in (8) for (3,0)-tensors. If S and T are k-forms there is another natural scalar product, as defined
in (47), given by

〈S,T 〉g =
∑

i1<···<ik

S(Ei1, . . . ,Eik ) · T (Ei1, . . . ,Eik )

= 1

k!
∑

i1,...,ik

S(Ei1, . . . ,Eik ) · T (Ei1, . . . ,Eik ) = 1

k! 〈S,T 〉. (58)

Now let ∇g denote the Levi-Civita connection on the tangent bundle. We fix some 3-form T

on M and some s ∈ R, and we are studying the connection ∇ with totally anti-symmetric torsion
as in (22).

As in Section 2 we fix some point p ∈ M , and we extend any tangent vectors X,Y,Z,W ∈
TpM to vector fields again denoted by X,Y,Z,W being synchronous in p.

We recall the Ricci decomposition for Riemg (compare [4, Chapter 1.G]): Let the trace-free
part of the Ricci curvature be denoted by b(X,Y ) = ricg(X,Y ) − 1 Rg〈X,Y 〉. Then, one has
n
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〈
Riemg(X,Y )Z,W

〉= 1

n(n − 1)
Rg
(〈X,W 〉〈Y,Z〉 − 〈Y,W 〉〈X,Z〉)

+ 1

n − 2

(
b(X,W)〈Y,Z〉 − b(Y,W)〈X,Z〉 + 〈X,W 〉b(Y,Z)

− 〈Y,W 〉b(X,Z)
)+ 〈C(X,Y )Z,W

〉
, (59)

where the (3,1)-tensor C is the Weyl tensor of the Riemannian metric g. The Weyl tensor pos-
sesses all the symmetries of the Riemann tensor Riemg (e.g. the Bianchi identity holds), and
in addition the contraction of 〈C(X,Y )Z,W 〉 taken over any two slots is zero. Furthermore, it
should be noted that this composition into scalar curvature, trace-free Ricci curvature and Weyl
curvature is orthogonal with respect to the usual scalar product in the space of (4,0)-tensors
(see [4, Theorem 1.114]).

A.1. Proof of Proposition 3.1

Proof of Proposition 3.1. First, consider some Riemannian manifold (M,g) of arbitrary dimen-
sion n with Levi-Civita connection ∇g . We fix some 3-form T on M , and we are studying the
connection ∇ defined as in (22).

The symmetric part of riem is

riemS(X,Y,Z,W) = 1

2

(
riem(X,Y,Z,W) + riem(Z,W,X,Y )

)
= riemg(X,Y,Z,W) + s

2
dT (X,Y,Z,W)

+ s2(〈T (X,Z, ·)�, T (Y,W, ·)�〉− 〈T (Y,Z, ·)�, T (X,W, ·)�〉), (60)

where we have used (23) and (26).
In the following we will abbreviate

Cijkl = 〈C(Ei,Ej )Ek,El

〉
, riem(g/S/A)

ijkl = riem(g/S/A)(Ei,Ej ,Ek,El),

ric(g/S/A)
ij = ric(g/S/A)(Ei,Ej ), bij = b(Ei,Ej ),

Tij = T (Ei,Ej , ·)�, dTijkl = dT (Ei,Ej ,Ek,El)

for all indices i, j, k, l.
We will calculate ‖riemS ‖2 =∑n

i,j,k,l=1(riemS
ijkl)

2 by means of (60). Three cross terms ap-
pear, one of them vanishes in the case of arbitrary dimension n: We choose some orthonormal
frame E1, . . . ,En, which is defined on some neighbourhood of p and is synchronous in p. Using
the Bianchi identity we compute

0 = 1

3

n∑
i,j,k,l=1

(
riemg

ijkl + riemg
jkil + riemg

kij l

)
dTijkl =

n∑
i,j,k,l=1

(
riemg

ijkl

)
dTijkl . (61)

From now on we restrict to the case of dimension n = 4. We note that dTijkl �= 0 is
only possible if i, j, k, l ∈ {1, . . . ,4} are pairwise distinct. In that case one has 〈Tij , Tkl〉 =
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∑4
m=1 T (Ei,Ej ,Em)T (Ek,El,Em) = 0 as any m ∈ {1, . . . ,4} is equal to one of i, j, k, l. Hence

we get

0 =
4∑

i,j,k,l=1

dTijkl · (〈Tik, Tjl〉 − 〈Tjk, Til〉
)
. (62)

In order to identify the third cross term we impose the Ricci decomposition (59) which now reads
as

riemg
ijkl = 1

12
Rg(δij δjk − δjlδik) + 1

2
(bilδjk − bj lδik + δilbjk − δjlbik) + Cijkl

and we get∑
i,j,k,l

(
riemg

ijkl

)(〈Tik, Tjl〉 − 〈Tjk, Til〉
)= 1

12
Rg
∑
i,j

(〈Tij , Tji〉 + 〈Tji, Tij 〉
)

+ 1

2

(∑
i,j,l

bil〈Tij , Tjl〉 +
∑
i,j,,l

bj l〈Tji, Til〉

+
∑
i,j,k

bjk〈Tik, Tji〉 +
∑
i,j,k

bik〈Tjk, Tij 〉
)

+
∑

i,j,k,l

Cijkl

(〈Tik, Tjl〉 − 〈Tjk, Til〉
)

= −1

6
Rg‖T ‖2 + 2B(T ) + C(T )

where we have set

B(T ) =
∑
i,j,k

bik〈Tij , Tjk〉 =
∑
i,j,k

ricg
ik〈Tij , Tjk〉 − 1

4
Rg
∑
i,j

〈Tij , Tji〉

=
∑
i,j,k

ricg
ik〈Tij , Tjk〉 + 1

4
Rg‖T ‖2, (63)

C(T ) =
∑

i,j,k,l

Cijkl

(〈Tik, Tjl〉 − 〈Tjk, Til〉
)
. (64)

It follows that∥∥riemS
∥∥2 = ∥∥riemg

∥∥2 + 1

4
s2‖dT ‖2 − 1

3
s2Rg‖T ‖2 + 4s2B(T ) + s2C(T )

+ s4
4∑

i,j,k,l=1

(〈Tik, Tjl〉 − 〈Tjk, Til〉
)2

= ∥∥riemg
∥∥2 + 1

4
s2‖dT ‖2 − 1

3
s2Rg‖T ‖2 + 4s2B(T ) + 1

3
s4‖T ‖4

where for the last step we use the following technical Lemmas A.1 and A.2. �
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Table 1
(Ta)ij := Ta(Ei ,Ej , ·)� for a ∈ {1,2}.

(T1)ij :

�
�i

j
1 2 3 4

1 0 −t1E3 t1E2 0
2 t1E3 0 −t1E1 0
3 −t1E2 t1E1 0 0
4 0 0 0 0

(T2)ij :

�
�i

j
1 2 3 4

1 0 0 0 0
2 0 0 −t2E4 t2E3
3 0 t2E4 0 −t2E2
4 0 −t2E3 t2E2 0

Lemma A.1. Let M be a 4-dimensional Riemannian manifold and p ∈ M . For any T ∈∧3
T ∗

p M

we consider C(T ) as defined in (64). Then one has C(T ) = 0.

Proof. Let E1,E2,E3,E4 be an orthogonal basis of TpM . For T ,S ∈∧3
T ∗

p M we define

c(T ,S) = 2 ·
4∑

i,j,k,l=1

Cijkl〈Tik, Sjl〉.

The Weyl tensor satisfies Cijkl = Cjilk , and hence c is a symmetric bilinear form. For T ∈∧3
T ∗

p M we have

c(T ,T ) =
∑

i,j,k,l

Cijkl〈Tik, Tjl〉 −
∑

i,j,k,l

Cjikl〈Tik, Tjl〉

=
∑

i,j,k,l

Cjikl

(〈Tik, Tjl〉 − 〈Tjk, Til〉
)= C(T ).

Hence, the lemma will be proved if we show that c ≡ 0. We will check this on the basis of∧3
T ∗

p M consisting of E1
� ∧ E2

� ∧ E3
�, E2

� ∧ E3
� ∧ E4

�, E1
� ∧ E3

� ∧ E4
�, E1

� ∧ E2
� ∧ E4

�.

For t1, t2 ∈ R we consider T1, T2 ∈∧3
T ∗

p M defined by

T1 := t1 · E1
� ∧ E2

� ∧ E3
�, T2 := t2 · E2

� ∧ E3
� ∧ E4

�.

We will verify that c(T1, T1) = 0 and c(T1, T2) = 0, this will suffice because the computations
are the same if one inserts any elements of the above basis into c. For a ∈ {1,2} Table 1 gives
(Ta)ij := Ta(Ei,Ej , ·)� explicitly.

Using Table 1 we compute

c(T1, T1) =
4∑

i,j,k,l=1

Cijkl〈Tik, Tjl〉 =
3∑

i,j,k,l=1

Cijkl t
2
1 (δij δkl − δilδjk) = −t2

1

3∑
i,j=1

Cijji . (65)

The Weyl tensor is trace-free in any pair of indices. Hence for any i ∈ {1,2,3} we get −Ci44i =∑3
j=1 Cijji . Inserting this into (65) and using C4444 = 0 we obtain

c(T1, T1) = t2
1

4∑
i=1

Ci44i = 0

as the Weyl tensor is trace-free in any pair of indices.
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Table 2
(Ta)ij := Ta(Ei ,Ej , ·)� for a ∈ {3,4}.

(T3)ij :

�
�i

j
1 2 3 4

1 0 0 −t3E4 t3E3
2 0 0 0 0
3 t3E4 0 0 −t3E1
4 −t3E3 0 t3E1 0

(T4)ij :

�
�i

j
1 2 3 4

1 0 −t4E4 0 t4E2
2 t4E4 0 0 −t4E1
3 0 0 0 0
4 −t4E2 t4E1 0 0

With Table 1 we obtain

c(T1, T2) = 2
4∑

i,j,k,l=1

Cijkl

〈
(T1)ik, (T2)jl

〉
= −2t1t2(C1224 + C2412 + C1334 + C3413)

= −4t1t2(C1224 + C1334)

= −4t1t2

4∑
i=1

C1ii4

= 0

where we used the symmetry Cijkl = Cklij of the Weyl tensor in the second step and C1114 =
C1444 = 0 in the third step, the last step is achieved as the Weyl tensor is trace-free. �
Lemma A.2. Let M be a Riemannian manifold of dimension 4, let p ∈ M and let E1,E2,E3,E4
be an orthonormal basis of TpM . Then for any T ∈∧3

T ∗
p M one has

4∑
i,j,k,l=1

(〈Tik, Tjl〉 − 〈Tjk, Til〉
)2 = 1

3
‖T ‖4.

Proof. Choosing the parameters properly we have T = T1 + T2 + T3 + T4 with T1 and T2 as in
Lemma A.1 and

T3 := t3 · E1
� ∧ E3

� ∧ E4
�, T4 := t4 · E1

� ∧ E2
� ∧ E4

�.

Defining (Ta)ij as in Lemma A.1 we summarise (T3)ij and (T4)ij in Table 2.
In order to calculate ‖T ‖4 = (‖T ‖2)2 we note that

4∑
i,j=1

〈
(Ta)ij , (Tb)ij

〉= {0 if a �= b,

6t2
a if a = b

and therefore

‖T ‖2 =
4∑

i,j=1

〈Tij , Tij 〉 =
4∑

i,j,a=1

〈
(Ta)ij , (Ta)ij

〉= 6
4∑

a=1

t2
a . (66)

Next, we also want to express
∑4

(〈Tik, Tjl〉 − 〈Tjk, Til〉)2 in terms of t1, . . . , t4.
i,j,k,l=1
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Table 3
The summands (〈Tik, Tjl〉 − 〈Tjk, Til〉)2 for i < j , k < l.
����(i, j)

(k, l)
(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

(1,2) (t2
1 + t2

4 )2 t2
3 t2

4 t2
1 t2

3 t2
2 t2

4 t2
1 t2

2 0

(1,3) t2
3 t2

4 (t2
1 + t2

3 )2 t2
1 t2

4 t2
2 t2

3 0 t2
1 t2

2

(1,4) t2
1 t2

3 t2
1 t2

4 (t2
3 + t2

4 )2 0 t2
2 t2

3 t2
2 t2

4

(2,3) t2
2 t2

4 t2
2 t2

3 0 (t2
1 + t2

2 )2 t2
1 t2

4 t2
1 t2

3

(2,4) t2
1 t2

2 0 t2
2 t2

3 t2
1 t2

4 (t2
2 + t2

4 )2 t2
3 t2

4

(3,4) 0 t2
1 t2

2 t2
2 t2

4 t2
1 t2

3 t2
3 t2

4 (t2
2 + t2

3 )2

We note that each summand (〈Tik, Tjl〉 − 〈Tjk, Til〉)2 remains the same after interchanging i

and j and is zero if i = j . Noticing the same for the indices k and l, we restrict ourselves to the
case i < j , k < l.

For (i, j) = (1,2) and (k, l) = (1,2) we get

(〈T11, T22〉 − 〈T21, T12〉
)2 = (〈T12, T12〉

)2 = (〈(T1)12, (T1)12
〉+ 〈(T4)12, (T4)12

〉)2 = (t2
1 + t2

4

)2
,

where we have used that

〈
(Ta)ij , (Tb)ij

〉= {0 if a �= b,

t2
a if a = b.

For (i, j) = (1,2) and (k, l) = (1,3) we find

(〈T11, T23〉 − 〈T21, T13〉
)2 = (〈T12, T13〉

)2 = (〈(T4)12, (T3)13
〉)2 = t2

3 t2
4 ,

and for (i, j) = (1,2) and (k, l) = (3,4) we have

(〈T13, T24〉 − 〈T23, T14〉
)2 = 0.

The same considerations apply to the other summands, and we give the results for the cases
i < j , k < l in Table 3.

Now we drop the condition i < j , k < l, and we get a factor 4 when we add up all summands:

4∑
i,j,k,l=1

(〈Tik, Tjl〉 − 〈Tjk, Til〉
)2 = 4

∑
a �=b

(
t2
a + t2

b

)2 + 16
∑
a �=b

t2
a t2

b

= 12
4∑

a=1

t4
a + 8

∑
a �=b

t2
a t2

b + 16
∑
a �=b

t2
a t2

b

= 12

(
4∑

t4
a + 2

∑
t2
a t2

b

)

a=1 a �=b
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= 12

(
4∑

a=1

t2
a

)2

,

from which in combination with (66) the claim follows. �
Lemma A.3. The square of the anti-symmetric part of the Riemann tensor of ∇ is pointwise
given by

∥∥riemA
∥∥2 = s2

n∑
i,j,k,l=1

((∇g
Ei

T
)
(Ej ,Ek,El)

)2
+ s2

n∑
i,j,k,l=1

(∇g
Ei

T
)
(Ej ,Ek,El)

(∇g
Ej

T
)
(Ei,Ek,El).

Proof. The anti-symmetric part of riem is then given by

riemA(X,Y,Z,W) = 1

2

(
riem(X,Y,Z,W) − riem(Z,W,X,Y )

)
= s

2

((∇g
XT
)
(Y,Z,W) − (∇g

Y T
)
(X,Z,W)

− (∇g
ZT
)
(X,Y,W) + (∇g

WT
)
(X,Y,Z)

)
. (67)

The lemma follows by direct calculation. �
This shows in particular that riemA does only depend on the torsion T and not on the Rie-

mannian curvature Riemg .

A.2. The square of the norm of the Ricci curvature

Now we decompose the Ricci curvature into its symmetric and its anti-symmetric components

ric(X,Y ) = ricS(X,Y ) + ricA(X,Y ).

With (24) we have

ricS(X,Y ) = 1

2

(
ric(X,Y ) + ric(Y,X)

)= ricg(X,Y ) − s2
n∑

i=1

〈
T (X,Ei, ·)�, T (Y,Ei, ·)�

〉
(68)

and

ricA(X,Y ) = 1

2

(
ric(X,Y ) − ric(Y,X)

)= s

n∑
i=1

(∇g
Ei

T
)
(X,Y,Ei) = −sδT (X,Y ). (69)

To evaluate ‖ric‖2 of the Ricci curvature (24) we proceed as in the evaluation of ‖Riem‖2 and
get
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‖ric‖2 =
n∑

i,j=1

(
ric(Ei,Ej )

)2 =
n∑

i,j=1

ric2
ij =

n∑
i,j=1

(
ricS

i,j

)2 +
n∑

i,j=1

(
ricA

ij

)2
= ∥∥ricS

∥∥2 + ∥∥ricA
∥∥2

. (70)

We find

Theorem A.4. Let M be a 4-dimensional manifold with Riemannian metric g and connection ∇
as given in (22). Then the norm of the Ricci tensor of ∇ is given by

‖ric‖2 = ∥∥ricg
∥∥2 + 1

3
s4‖T ‖4 − 1

2
s2Rg‖T ‖2 + 2s2B(T ) + s2‖δT ‖2

with B(T ) as defined in (63).

Proof. In order to compute the squared norm ‖ric‖2 of the Ricci curvature defined in (24) we
proceed as in the evaluation of ‖Riem‖2. With (68) and (69) we get

‖ric‖2 =
n∑

i,j=1

(
ric(Ei,Ej )

)2 =
n∑

i,j=1

ric2
ij =

n∑
i,j=1

(
ricS

ij

)2 +
n∑

i,j=1

(
ricA

ij

)2
.

We restrict ourselves again to dimension n = 4 and calculate ‖ricS ‖2 =∑n
i,j=1(ric

S
ij )

2 with (68).
We find

4∑
i,j=1

(
ricS

ij

)2 =
4∑

i,j=1

(
ricg

ij

)2 − 2s2
4∑

i,j,k=1

ricg
ij 〈Tik, Tjk〉 + s4

4∑
i,j,k,l=1

〈Tik, Tjk〉〈Til, Tjl〉

= ∥∥ricg
∥∥2 − 1

2
s2Rg‖T ‖2 + 2s2B(T ) + 1

3
s4‖T ‖4

where we used Lemmas A.5 and A.6 in the last step. We conclude the proof noting that

n∑
i,j=1

(
ricA

ij

)2 = s2
n∑

i,j=1

(
δT (Ei,Ej )

)2 = s2‖δT ‖2. �

Lemma A.5. Let M be an n-dimensional Riemannian manifold. For any 3-form T one has

n∑
i,j,k=1

ricg
ij 〈Tik, Tjk〉 = −B(T ) + 1

n
Rg‖T ‖2.

Proof. We use the decomposition of the Ricci curvature into its trace-free part and its trace (59)
and find
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n∑
i,j,k=1

ricg
ij 〈Tik, Tjk〉 =

n∑
i,j,k=1

b(Ei,Ej )〈Tik, Tjk〉 + 1

n

n∑
i,j,k=1

Rgδij 〈Tik, Tjk〉

= −
n∑

i,j,k=1

b(Ei,Ej )〈Tik, Tkj 〉 + 1

n
Rg

n∑
i,k=1

〈Tik, Tik〉

= −B(T ) + 1

n
Rg‖T ‖2

with B(T ) as defined in Theorem 3.1. �
Lemma A.6. Let M be a 4-dimensional Riemannian manifold. For any 3-form T one has

4∑
i,j,k,l=1

〈Tik, Tjk〉〈Til, Tjl〉 = 1

3
‖T ‖4.

Proof. We compute:

4∑
i,j,k,l=1

〈Tik, Tjk〉〈Til, Tjl〉

=
4∑

i,j,k,l,n,m=1

T (Ei,Ek,En)T (Ej ,Ek,En)T (Ei,El,Em)T (Ej ,El,Em)

=
4∑

i,j,k,l,n,m=1

T (En,Ek,Ei)T (Em,El,Ei)T (En,Ek,Ej )T (Em,El,Ej )

=
4∑

k,l,n,m=1

〈Tkn, Tlm〉2. (71)

We decompose T = T1 + T2 + T3 + T4 according to the definitions of the Ta in Lemmas A.1
and A.2. Following precisely the arguments of Lemma A.2 we obtain for (71) from the Tables 1
and 2 the summands given in Table 3. It follows that

4∑
k,l,n,m=1

(〈Tkn, Tlm〉)2 = 12

(
4∑

a=1

t2
a

)2

.

Combining this with (66) and (71) finishes the proof. �
A.3. Proofs of Theorem 3.4 and Lemma 3.6

Proof of Theorem 3.4. Choose an orthonormal basis E1, . . . ,E4 of TpM at a point p and ex-
press the curvature 2-form in this basis
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Riemij =
4∑

n,m=1

Riemij (En,Em)(En)
� ∧ (Em)�

=
4∑

n,m=1

〈
Riem(Ei,Ej )En,Em

〉
(En)

� ∧ (Em)�

=
4∑

n,m=1

riemijnm(En)
� ∧ (Em)�

where riem is the (4,0)-tensor defined in (29). Now the 4-form K reads

K = 1

32π2

4∑
i,...,p=1

εijkl riemijnm riemklsp(En)
� ∧ (Em)� ∧ (Es)

� ∧ (Ep)�

= 1

32π2

4∑
i,...,p=1

εijklεnmsp riemijnm riemklsp dvol .

With the standard equality

εijklεnmsp = det

⎛⎜⎝
δin δim δis δip

δjn δjm δjs δjp

δkn δkm δks δkp

δln δlm δls δlp

⎞⎟⎠
and ricij = ric(Ei,Ej ) one finds

K = 1

8π2

(
R2 − 4

4∑
j,k=1

ricij ricji +
4∑

i,j,k,l=1

riemijkl riemklij

)
dvol .

Decomposing the Riemann and the Ricci curvature into their symmetric and anti-symmetric
components we find

4∑
j,k=1

ricij ricji =
4∑

j,k=1

(
ricS

ij

)2 −
4∑

j,k=1

(
ricA

ij

)2 −
4∑

j,k=1

ricS
ij ricA

ij +
4∑

j,k=1

ricA
ij ricS

ij

= ∥∥ricS
∥∥2 − ∥∥ricA

∥∥2

and by the same argument

4∑
riemijkl riemklij = ∥∥riemS

∥∥2 − ∥∥riemA
∥∥2

.

i,j,k,l=1
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Thus we have

K = 1

8π2

(
R2 − 4

∥∥ricS
∥∥2 + 4

∥∥ricA
∥∥2 + ∥∥riemS

∥∥2 − ∥∥riemA
∥∥2)dvol . �

Corollary A.7. Let M be a closed 4-dimensional manifold with Riemannian metric g, ∇ an
arbitrary orthogonal connection and ∇g the Levi-Civita connection. Then∫

M

((
Rg
)2 − 4

∥∥ricg
∥∥2 + ∥∥riemg

∥∥2)dvol =
∫
M

(
R2 − 4

∥∥ricS
∥∥2 + 4

∥∥ricA
∥∥2

+ ∥∥riemS
∥∥2 − ∥∥riemA

∥∥2)dvol .

Proof. The Euler characteristic is a topological invariant and does not depend on the choice of
the connection in the representation of the Euler class. �
Proof of Lemma 3.6. Let riem, ric and R be the Riemann curvature, the Ricci curvature and the
scalar curvature of ∇ . With the decomposition of the norm squared of the symmetric part of the
Riemann curvature, Theorem 3.1, the Ricci curvature, Theorem A.4, and the scalar curvature,
Eq. (25), we have from Corollary A.7

0 =
∫
M

(
R2 − (Rg

)2 − 4
(∥∥ricS

∥∥2 − ∥∥ricA
∥∥2 − ∥∥ricg

∥∥2)
+ ∥∥riemS

∥∥2 − ∥∥riemA
∥∥2 − ∥∥riemg

∥∥2)dvol

=
∫
M

(
−2s2Rg‖T ‖2 + s4‖T ‖4 − 4

3
s4‖T ‖4 + 2s2Rg‖T ‖2 − 8s2B(T ) + 4s2‖δT ‖2

)
dvol

+
∫
M

(
1

3
s4‖T ‖4 + 1

4
s2‖dT ‖2 − 1

3
s2Rg‖T ‖2 + 4s2B(T ) − ∥∥riemA

∥∥2
)

dvol

= s2
∫
M

(
4‖δT ‖2 − 1

3
Rg‖T ‖2 + 1

4
‖dT ‖2 − 4B(T ) − 1

s2

∥∥riemA
∥∥2
)

dvol .

For any s �= 0 the assertion of the lemma follows. �
Remark A.8. At first glance the cancelation of the term ‖T ‖4 in the proof of Lemma 3.6 might
surprise. But it has to vanish because it is the only term scaling in the 4th power in this pre-
factor s while all other terms scale quadradically in s.
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